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Affinity improvement of proteins, including antibodies, by com-
putational chemistry broadly relies on physics-based energy
functions coupled with refinement. However, achieving significant
enhancement of binding affinity (>10-fold) remains a challenging
exercise, particularly for cross-reactive antibodies. We describe
here an empirical approach that captures key physicochemical fea-
tures common to antigen–antibody interfaces to predict protein–
protein interaction and mutations that confer increased affinity.
We apply this approach to the design of affinity-enhancing muta-
tions in 4E11, a potent cross-reactive neutralizing antibody to
dengue virus (DV), without a crystal structure. Combination of
predicted mutations led to a 450-fold improvement in affinity to
serotype 4 of DV while preserving, or modestly increasing, affinity
to serotypes 1–3 of DV. We show that increased affinity resulted in
strong in vitro neutralizing activity to all four serotypes, and that
the redesigned antibody has potent antiviral activity in a mouse
model of DV challenge. Our findings demonstrate an empirical
computational chemistry approach for improving protein–protein
docking and engineering antibody affinity, which will help accel-
erate the development of clinically relevant antibodies.
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Antibodies are of growing importance as therapeutic agents
(1). Engineering improved affinity and specificity of these

compounds can augment their potency and safety while decreasing
required dosages. Production of antibodies with binding properties
of interest typically relies on methods involving screening large
numbers of clones generated by the immune system or by mutant
libraries (2, 3). Alternatively, computer-based design offers the
potential to rationally mutate available antibodies for improved
properties, including enhanced affinity and specificity to target
antigens. Recently, several successful examples of antibody affinity
improvement by computational methods using physical modeling
with energy minimization have been described (4–6). However,
such approaches require a 3D structure of the antibody–antigen
complex and rarely result in affinity gains greater than 10-fold.
Further, these approaches are sensitive to precise atomic coor-
dinates, rendering them inapplicable to computer-generated
models. More significantly, enhancement of affinity in the context
of an antibody that recognizes multiple antigens (i.e., cross-
reactive) remains a particular challenge.
Dengue is the most medically relevant arboviral disease in

humans, with an estimated 3.6 billion people at risk for infection.
More than 200 million infections of dengue virus (DV) are esti-
mated to occur globally each year (7). The incidence, geographical
outreach, and number of severe disease cases of dengue are in-
creasing (8, 9), making DV of increasing concern as a human
pathogen. The complex of DVs is composed of four distinct
serotypes (designated DV1–4) (10), which vary from one another
at the amino acid level by 25–40%. The sequence and antigenic
variability of DVs have challenged efforts to develop an effective

vaccine or therapeutic against all serotypes (11). Currently, no li-
censed vaccine or specific therapy exists for dengue (12), and the
leading vaccine candidate recently demonstrated protective effi-
cacy of only 30% in a phase II study (13). The envelope (E) protein
of DV is the major neutralizing target of the humoral immune
response (14). Antibodies recognizing the highly conserved fusion
loop on E protein demonstrate broad reactivity to all four sero-
types; however, their neutralizing potency is limited due to this
epitope being largely inaccessible in a mature dengue virion (15).
In contrast, antibodies that recognize the “A” β-strand of E protein
domain III (EDIII) have been shown to potently neutralize
some—but rarely all four—serotypes (SI Appendix, Fig. S1) (16).
We asked whether we could, through computational chemistry,
redesign an A-strand-specific antibody, namely 4E11 (17, 18) (SI
Appendix, Fig. S2), to potently neutralize all four serotypes by
introducing rationally selected mutations to the antibody for
increased affinity, thereby enhancing neutralizing activity. To
computationally redesign 4E11 for potent neutralizing activity to
all four serotypes, we faced multiple challenges: (i) to generate
an accurate structural model of 4E11 with its multiple antigens
and (ii) to design mutations that enhance affinity to one serotype
while not detrimentally affecting affinity to the other serotypes.
To overcome these challenges and design affinity-enhancing
mutations, we explored the possibility of mining known antibody-
antigen 3D structures to extract physicochemical information that
may directly aide computational methods in discriminating native-
like structures from decoys and predicting affinity-enhancing
mutations.

Significance

Dengue virus infects more than 200 million people each year,
and incidence of severe disease is increasing with no effective
countermeasures. We demonstrate in this paper the engi-
neering of an antibody that binds to all four serotypes of
dengue virus with potent activity in vitro and in vivo. We also
outline a distinct and widely applicable approach to antibody
engineering that provides important information on the
paratope/epitope interface in the absence of crystal structure
data, enabling identification of antibody amino acids that
could be mutated. We demonstrate experimentally the alter-
ation of both specificity (enabling cross-serotype binding) and
affinity of the engineered antibody.
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Results
Physicochemical Features of Antigen–Antibody Interface Accurately
Discriminate Native-Like Structures from Decoys. In the absence of
a cocrystal structure, computational protein–protein docking can
be used to model an antibody–antigen interaction. Docking in-
volves two components: a search algorithm that generates initial
configurations of the protein–protein interaction and a scoring
function that ranks the configurations based on an energy function.
Docking can be especially effective when partial epitope and/or
paratope residues are known. However, obtaining a native-like
structure remains challenging due in part to limitations in energetic
functions being able to reliably discriminate accurate from in-
accurate structures (19–21). Docked structures having different
antigen–antibody configurations often appear equally probable
when evaluated in the context of an energy-scoring function. We
hypothesized that key physicochemical features could be used to
distinguish native-like structures from decoy structures and thus
could help overcome limitations of using only energetic functions
to rank poses.
In our analysis, an antigen–antibody interface is described

using eleven features: six chemical and five physical (SI Appendix,
Table S1 and Fig. S3). Notably, a knowledge-based pose-scoring
metric, termed “ZEPII” (Standardized Epitope-Paratope In-
terface Index), which incorporates prior structural knowledge of
protein–ligand interaction in the form of epitope–paratope
pairwise amino acid interactions, was implemented and used as
a molecular filter during the screening process to select native-
like ligand-binding conformations (Materials and Methods and SI
Appendix, Table S1). These atomic-level features are intended to
capture the many geometrical and chemical properties that are
the basis of molecular recognition. To test whether physico-
chemical features could distinguish native structures from
decoys, a dataset comprising 84 nonredundant 3D structures of
antigen–antibody complexes was assembled (Materials and
Methods) and split into two parts: a training set consisting of 40
structures and a test set comprising the remaining 44 structures (SI
Appendix, Tables S2 and S3). Corresponding to each crystal
structure, we generated decoy structures using ZDOCK docking
software (22), which uses an optimized scoring function (ZRANK)
involving shape complementarity, desolvation, and electrostatic
energy terms to rank poses (23), followed by a clustering pro-
cedure to select unique nonredundant conformations. In the
clustering procedure, two decoy structures are considered similar
(and therefore redundant) if the rmsd between the two sets of
ligand interface atoms is less than 3 Å (Materials and Methods).
This analysis yielded a total of 1,210 structures. Our expanded
training dataset comprised 617 structures (40 native-like and 577
decoy structures) and testing dataset comprised 677 structures
(44 native-like and 633 decoy structures). In the training phase,
we used multivariate logistic regression analysis (MLR) to de-
termine the relationship between each feature (explanatory
variable) and the degree to which it can successfully discriminate
native-like structures from decoy structures (outcome variable).
The aim was to find a subset of features that, when combined,
will yield the highest probability of success in discriminating
native-like structures from decoys. To prevent nonuniform
learning, which can lead to over- (or under-) estimation of the
significance of the features, structures were grouped according to
their Protein Data Bank (PDB) source, and input features for
each structure were standardized (Z-score) with respect to the
minimum values found within the respective groups. For the
discrimination phase, we used the precomputed significant fea-
tures to predict the probability that a structure in the test dataset
is native-like.
Results fromMLR analysis show that the relative dominance of

individual features found to significantly affect the probability of
accurately discriminating native versus decoy structures is in the

order of ZEPII > density of H-bonds > buried surface area >
density of cation-pi interactions (SI Appendix, Table S4 and SI
Text1). Based on the logistic regression coefficients, H-bond den-
sity, and buried surface area are overestimated in the decoy struc-
tures. This trend is anticipated because increasing the values of
these features tends to maximize the scoring function. On the
contrary, ZEPII and cation–pi interactions appear to be un-
derrepresented in the decoy structures. Cation–pi interactions do
not contribute significantly to the energy scoring function. This
feature was therefore not optimized in the decoy interfaces. As-
sessment of decoy structures further shows that the docking pro-
cedure does not authentically recapitulate the pairwise interactions
common to dissociable antigen–antibody complexes; therefore, the
decoy interfaces were found to have low ZEPII values.
We next used MLR to predict the native-like structures of 44

antigen–antibody complexes in the test dataset using the pre-
computed significant features and, in turn, compared the sensitivity
and specificity of the MLR-based prediction to those of the
ZRANKenergy function (Materials andMethods). Overall,MLR is
seen to be more sensitive at discriminating native-like structures
from decoys than theZRANKenergy function (Fig. 1A), indicating
that the MLR approach yields improvements over ZRANK in
predicting native-like binding structures.Moreover, this trend is not
affected by the rmsd threshold that is used for clustering ligand
conformations (Fig. 1A). When the window size is one (i.e., when
there is only one predicted positive per test case), more than half of
the native-like structures (>65%) are correctly identified by the
MLR method. On the other hand, the accuracy of ZRANK varies
between 30% (rmsd = 5 Å) to 52% (rmsd = 3 Å) at window size
one. The prediction accuracy of the MLR method is seen to be
a logarithmically increasing function of window size with accuracy
reaching ∼90% at window size three and 100% at window size 4.
Conversely, ZRANK fails to predict 100% of the structures even
when the window size is 5 (Fig. 1A).
The prediction accuracy of the MLR method is also superior to

ZRANK at various rmsd cutoffs, indicating that the likelihood of
a false-positive prediction is lower when the poses are ranked
according to MLR-based prediction probability (Fig. 1A). The
superior classification capability of the MLR-based prediction
probability approach is corroborated by the receiver operating
characteristic (ROC) curve analysis (Fig. 1B). Closer examination
of the decoy structures, their ZRANK scores, and MLR-based
prediction probabilities reveals some interesting insights (SI Ap-
pendix, Fig. S4). Irrespective of the ranking of poses, ZDOCK
identified native-like structures for 39 out of the 44 structures, in-
dicating that the search algorithm can identify native-like struc-
tures but that the energy function cannot discriminate them from
decoys. Specifically, (i) ZRANK scores vary significantly, even
between similar structures (SI Appendix, Fig. S4); (ii) structures
with substantially different modes of ligand engagement can re-
ceive highly similar scores, making it difficult to discriminate be-
tween solutions (SI Appendix, Fig. S4); and (iii) inaccurate
solutions often receive better scores than native-like structures (SI
Appendix, Fig. S4). In contrast, whereas MLR-based prediction
probability also varies between similar structures, nonnative
structures rarely receive high prediction probability—highlighting
the ability to discriminate the native or near-native binding struc-
ture of the ligand from among decoy conformations. Accordingly,
MLR-based prediction probability is seen to correlate better with
rmsd compared with ZRANK score (SI Appendix, Fig. S4).
Failure to identify the native-like structure of the five test

cases highlights both the limitations of the docking search al-
gorithm and, more significantly, the challenges in predicting af-
finity-enhancing mutations in those cases.

Amino Acid Interface Fitness Captures Known Affinity-Enhancing
Mutations. Given the success of using physicochemical features
to accurately discriminate native-like structures from decoys, we
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hypothesized that similar analyses could be productively imple-
mented to predict affinity-enhancing mutations. To generate a
scoring scheme for designing affinity-enhancing mutations, we
developed a mathematical model to quantify the propensities of
pairwise amino acid interactions (Materials and Methods). These

statistical propensities are formulated as an interaction matrix
that assigns a weight to each possible protein–protein amino acid
pair (one paratope and one epitope). The fitness of a residue at
a complementarity determining region (CDR) position, termed
amino acid interface fitness (AIF), is the combined propensity of
all interprotein pairwise contacts (defined as two amino acids
within a certain distance of each other) involving that residue.
Substitutions that lead to an improvement in AIF value without
any structural consequences are considered candidates for af-
finity enhancement. The propensities are determined using
known protein structures and statistics on amino acid contacts
(Materials and Methods). Avoiding multiple distance cutoffs and
energy minimization steps eliminates heavy dependencies on
atomic coordinates.
Consistent with observations made in previous studies (24, 25),

the propensity data show the dominance of tyrosine, tryptophan,
serine, and phenylalanine over other residues in the paratope (SI
Appendix, Table S5). We used the AIF metric to predict affinity-
enhancing mutations of antibodies across three different systems
for which published data can be used to validate the predictions.
One of our test cases was the anti-epidermal growth factor re-
ceptor (EGFR) antibody drug cetuximab (Erbitux), where a 10-
fold affinity improvement was engineered by three mutations on
the light chain (6). Two of the mutations predicted by AIF, S26D
and T31E, were shown to improve binding affinity as single
mutations in cetuximab (6). AIF, however, did not identify the
third mutation, N93A. Reportedly, the N93A mutation affects
affinity through lower free energy from desolvation—an effect
highly unlikely to be captured in pairwise interactions (6). Ad-
ditionally, Ala is among a set of residues with weak contact
propensities, and thus overall replacement potential (SI Appen-
dix, Table S5). Another test case was the anti-lysozyme model
antibody D44.1, where we predicted 18 mutations suitable for
affinity enhancement. Four of the predicted mutations on the
heavy chain, T28D, T58D, E35S, G99D, were part of a published
high-affinity variant of D44.1 (6). Still another test case was the
antibody E2, which targets cancer-associated serine protease
MT-SP1. A previous in silico affinity enhancement study identi-
fied a single mutation, T98R, that improved the antibody affinity
by 14-fold (26). AIF metric predicted eight mutations that in-
cluded T98R. Our other AIF-based predictions in the above test
systems remain to be tested.
Motivated by the success of our methods in accurately dis-

criminating native-like structures from decoys and predicting
affinity-enhancing mutations, we were interested to apply these
approaches for ab initio modeling and affinity enhancement of
the DV-neutralizing antibody 4E11.

MLR and AIF Methods Predict Affinity-Enhancing Mutations in the
Cross-Reactive Antibody 4E11. The cross-reactive antibody 4E11
exhibits high affinity and strong inhibitory potency to DV1–3 but
low affinity and limited neutralizing activity to DV4 (SI Appendix,
Fig. S2). This activity profile represents a particularly challenging
case for engineering improved affinity: designed mutations must
not only favorably contribute to DV4 binding but do so while not
detrimentally affecting antibody interactions with three different
antigens (i.e., DV1–3). Moreover, designs must be performed
“blinded,” as there were no available crystal structures. The success
of our design approach (SI Appendix, Fig. S6) therefore relied on
three important factors: (i) to generate an accuratemodel of 4E11-
EDIII interaction, (ii) to understand the serotype-specific struc-
tural elements and recapture the determinants of affinity and
specificity, and (iii) to design substitutions that confer favorable
interaction, and thus improved affinity, with DV4 while not neg-
atively impacting binding to DV1–3.
In the absence of the antibody crystal structure, a structural

model of the Fv region was generated (SI Appendix, SI Text2),
and the modeled Fv was docked against EDIII of DV1 using
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Fig. 1. Sensitivity and specificity of MLR and ZRANK methods evaluated on
test dataset (44 native-like and 633 decoy structures). (A) Effect of window
size on prediction accuracy. The window size represents the number of
predicted positives. Prediction accuracy (or sensitivity) is determined by the
number of test case structures (44 in total) correctly predicted. The rmsd
threshold used for clustering ligand conformations was varied (3 Å, 5 Å, and
10 Å), and its effect on prediction accuracy was analyzed. (B) ROC curves at
rmsd cutoffs 3 Å, 5 Å, and 10 Å for MLR and ZRANK predictions. The area
under ROC curves at rmsd cutoffs 3 Å (MLR, 0.948; ZRANK, 0.862), 5 Å (MLR,
0.95; ZRANK, 0.718), and 10 Å (MLR, 0.943; ZRANK, 0.717) indicate that MLR
is more efficient at recognizing native-like structures.
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ZDOCK software. Previously published functional data on the
epitope and CDR H3 paratope (27, 28) were included as resi-
dues in the binding interface to ensure that docked structures did
not deviate significantly from the native structure (SI Appendix,
SI Text3). To thoroughly sample search space, ZDOCK was run
five times with different combinations of input interface residues.
The best ranking model from each run (SI Appendix, Fig. S7) was
reranked using the MLR probabilities (Table 1). Interestingly,
the top model predicted by the MLR approach did not match the
best prediction of the ZRANK method.
To validate the top model predicted by the MLR approach,

a comparison was performed between paratope hot spots com-
putationally predicted by the web server KFC2 (29) and hot spots
determined experimentally from Ala-scanning at each position in
all CDR loops of 4E11 (Materials and Methods) with binding
assessment by indirect EDIII-DV1 ELISA. Hot spot prediction
of the selected model correctly identified 61% of experimentally
determined hot spots whereas the remaining structures had hot
spot prediction accuracies of <45% (range 28–44%), thus in-
dicating that the selected structure was likely to reflect the true
4E11–EDIII binding configuration.
The top 4E11–EDIII (DV1) model was used to guide the

modeling of the interaction between 4E11 and EDIII of
a representative strain from each of the other three serotypes
(SI Appendix, SI Text3). Using the four structural models, the
mode of antibody binding to each of the serotypes was exam-
ined, and the molecular basis of poor affinity toward DV4 was
explored using a combination of sequence and EDIII domain-
level structural analysis. Multiple amino acid differences
within and around the 4E11 binding interface between DV4
and other serotypes were identified. Notably, the orientation
of the A-strand (residues 305–308) relative to neighboring
β-strands is different in DV4 owing to a localized difference at
position 307, a core epitope residue (Fig. 2). Critically, K307 of
DV1 and DV2 form a salt bridge contact with E59 of VL;
however, K307 is substituted by serine in DV4. Additionally,
the 4E11–EDIII (DV4) interface possessed fewer H-bonds
and salt bridge contacts, consistent with the low affinity and
neutralizing potency to DV4.
Next we applied our AIF index to design mutations that would

add new or improve favorable contacts to DV4, while not det-
rimentally affecting contacts with DV1–3. A conscious effort was
taken to first designing affinity-enhancing mutations at CDR
positions proximal to DV4 serotype-specific residues 307, 329,
361, 364, 385, 388, and 390 (Fig. 2). AIF metric was applied to
4E11–EDIII (DV1–4) models to select mutations that had po-
tential to improve DV4 affinity while not being detrimental to
other serotypes. Next, mutations that created new or improved
favorable contacts to one or more serotypes including DV4 were
also considered. To reduce any drastic changes to the binding,
CDR mutations that affect interactions in the core of the anti-
gen–antibody interface (with positions 308, 309, 312, 325, 387,
389, and 391 of the epitope) were selected only if their beneficial
role was obvious from the structural model. These steps resulted
in a set of 87 mutations spanning 23 CDR positions, with

mutations representing amino acids of varied chemical proper-
ties. The choice of amino acid replacements was not always in-
tuitive; for example, if the epitope region surrounding a paratope
CDR position is negatively charged, Arg and Lys are not always
statistically favored at that CDR position. In an effort to learn
about the effects of point mutations on binding affinity, we did
not restrict ourselves to substitutions with the highest probabil-
ities of success.

Designed Mutations Result in a 450-Fold Affinity Gain with Enhanced
Neutralizing Activity. A total of 87 mutations were selected for
experimental testing by indirect ELISA using purified recombi-
nant EDIII of DV1–4 (Materials and Methods). Mutants were
generated by site-directed mutagenesis, sequence-confirmed,
and expressed from 293 cells by transient transfection (SI Ap-
pendix, SI Text6). Ten mutations were identified with enhanced
EDIII–DV4 affinity with no or minimal reduction in binding to
EDIII of DV1–3 (SI Appendix, Table S6). These 10 mutations
spanned five CDR positions, with four in VL (R31, N57, E59,
and S60) and one in VH (A55). Interestingly, 8 of the 10
mutations were in VL, with 7 being in CDR L2 alone. The
successful mutations were mostly charged or polar in nature and
found to reside at the periphery of the antibody–antigen in-
terface area (SI Appendix, Fig. S8). Structural analysis revealed
that the mutant side chains likely create new contacts with six
different DV4 residue positions out of which four are conserved
in DV-2 and three are conserved in DV1 and DV3 (Fig. 2 and SI
Appendix, Table S7). Out of the six residues, residue at 329 is
DV4–specific and exposed, whereas residues at 305, 310, 311,
323, and 327 are relatively buried in the interface. It is also in-
teresting to note that these six residues do not overlap with the
core epitope residues of the antigen–antibody interface.
To more accurately quantify the binding properties of these

10 single mutants, competition ELISA experiments were per-
formed, which enabled determination of affinities at equilibrium
and in solution (30) (Materials and Methods). Affinity results
from five single mutant antibodies, representing those mutations
that demonstrated the greatest EDIII–DV4 affinity enhance-
ment while maintaining affinity to EDIII of DV1–3, are de-
scribed in SI Appendix, Table S8. The extent of DV4 affinity
enhancement ranged from 1.1-fold (VL-R31K) to 9.2-fold (VH-
A55E). Somewhat unexpectedly, two mutations conferred
increased affinity to other serotypes; VH-A55E resulted in a 16-
and sevenfold affinity increase to EDIII–DV2 and EDIII–DV3,
respectively, whereas VL-N57E demonstrated a threefold af-
finity increase to EDIII–DV2. Only 3 of the 15 affinities mea-
sured to serotypes 1–3 (with the five single mutant antibodies)
showed a decrease greater than twofold, and only one antibody–
EDIII affinity (VL-E59Q for EDIII–DV3) resulted in more
than a threefold decrease in affinity.
The five affinity-enhancing positions structurally map to spa-

tially distinct regions of the paratope (SI Appendix, Fig. S8). This
observation led us to believe that additional enhancement could
be achieved by combining successful single mutations. Multiple
three-, four- and five-mutant combinations were tested, and

Table 1. Physicochemical properties, ZRANK scores, and MLR-based prediction probabilities of the top five docked
structural models

Pose ZEPII BSA Cation-pi density H-bond density MLR probability ZRANK score

1 1.10 2,269 0.176 0.661 0.966 −75.833
2 1.07 1,941 0.155 0.824 0.395 −85.636
3 1.10 2,340 0.128 1.026 0.009 −66.759
4 1.08 2,436 0.164 0.698 0.549 −71.73
5 0.96 2,481 0.202 0.846 1.00e-5 −72.775
Regression coefficient 9.05 −2.796 2.066 −6.384
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a quintuple mutant antibody, termed 4E5A, showed the greatest
increase in EDIII–DV4 affinity. Interestingly, 4E5A is composed
of five substitutions representing the amino acid change at each
position that conferred greatest affinity improvement to EDIII–
DV4 as a single mutant. Compared with the parental mAb,
4E5A displayed 450-fold affinity improvement to EDIII–DV4
(KD = 91 nM) while maintaining affinity to EDIII of DV1 and
DV3 and a 15-fold affinity increase to DV2 (Table 2 and SI
Appendix, Table S9). This observation aligns with the degree of
sequence conservation at the six new contact positions (Fig. 2).
Significantly, we were able to increase affinity of the antibody
from micromolar to near-nanomolar affinity. Surface plasmon
resonance (SPR) was used to verify affinity measurements as well
as to obtain kinetic binding parameters (Materials and Methods
and SI Appendix, Table S10 and Fig. S9). Affinity values from

SPR were in good quantitative agreement with those obtained by
competition ELISA, with the exception that we could not detect
specific binding of 4E11 wild type (WT) to EDIII–DV4, in-
dicating a very low affinity, which is in general agreement with
competition ELISA results (KD = 41 μM).
To determine whether the increased affinity of 4E5A to EDIII–

DV4 translated to enhanced activity, we used a focus reduction
neutralization test (FRNT) assay (Materials and Methods). Com-
pared with WT 4E11, 4E5A showed a >75-fold increase in
neutralizing potency toward DV4, and it maintained potency to
DV1–3 (Fig. 3). 4E5A exhibited strong inhibitory activity to all
four serotypes, with FRNT50 values of 0.19, 0.028, 0.77, and 4.0 μg/
mL for DV1–4, respectively. By contrast, the WT 4E11 had
FRNT50 values of 0.062, 0.034, 0.52, and >300 μg/mL for DV1–4,
respectively. To further extend our understanding of 4E5A activity,

Fig. 2. Sequence and structural determinants of poor DV4 binding. (A) Sequence alignment of EDIII region of representative strains from each of the four
serotypes. Putative antibody binding residues are highlighted in yellow. Residues at 307, 329, 361, 364, 385, 388, and 390 differentiate DV4 from the remainder of
the sequences; these are marked in red and numbered. Residue contacts made by the five antibody mutations are boxed. (B) Structural model of 4E11–EDIII
interaction. Sequence positions that discriminate DV4 from other strains are labeled, and the side chains of amino acids therein are represented as sticks.
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the antibody was assessed in an AG129 mouse model of DV2
challenge (31), which shows peak viremia at day 3 postinfection
(Materials and Methods). AG129 mice have been widely used to
evaluate therapeutic antibodies with viremia as a typical endpoint.
Whereas there is active investigation of other mouse models of
dengue that better captures elements of the pathology and im-
munology of dengue in humans, we used the AG129 mouse model
to demonstrate that in vitro neutralization extended to in vivo
protection. At both 1mg/kg and 5mg/kg, 4E5A caused a significant
reduction in viremia, with 5 mg/kg treatment resulting in virus titer
levels below the limit of detection (Fig. 4). Collectively, these
results demonstrate that 4E5A exhibits strong inhibitory activity to
all four serotypes of DV and has potent antiviral activity in vivo.
The engineered antibody 4E5A represents an interesting

candidate that could be taken up for further rounds of optimi-
zation, including humanization. Cocrystal structures of 4E11–
EDIII complex for each serotype were published (32) at the time
we were testing our combination mutants with FRNT experi-
ments, which allowed us to compare our structural models with
the published complex structures. Consistent with our structural
model leading to experimentally validated affinity-enhancing
mutations, excellent correspondence exists between the crystal
structures and predicted models, with Cα rmsd values of 1.3 Å
(DV1), 1.2 Å (DV2), 1.5 Å (DV3), and 1.7 Å (DV4).

Discussion
Conventional approaches for discovering antibodies of thera-
peutic interest typically rely on experimental methods involving
screening large numbers of immune system-generated clones or
mutant libraries. These approaches can be expensive, technically
challenging, and time consuming. For instance, the influenza FI6

antibody, which neutralizes clade 1 and 2 viruses, was identified
by screening 104,000 B cells (33). An alternative strategy is to
modify the properties of an existing antibody via rational engi-
neering (34). In this study, computational methods for ab initio
modeling and antibody redesign are presented. The MLR
method incorporates prior structural knowledge of protein–
ligand interaction “fingerprints” to identify native-like ligand
conformations. In test runs, the sensitivity of the MLR-based
approach in picking native-like structures (out of several decoy
models) is shown to be superior to that of ZRANK. We further
show that the AIF metric can capture known affinity-enhancing
mutations across multiple antibody systems. Finally, we apply
this framework to engineer greater affinity to a broad-spectrum
anti-DV neutralizing antibody. Our approach and the results
obtained in this study represent multiple findings: (i) this study
used an empirical computational approach toward antibody
redesign and affinity enhancement; (ii) affinity-enhancing muta-
tions were predicted without a crystal structure of the antibody–
antigen complex (i.e., blind prediction); and (iii) only one other
study has attempted to improve the breadth of reactivity of an
antibody by computational design, which was performed with
limited success (26). Our application of a computational ap-
proach has led to a greater than ∼400-fold improvement in af-
finity (SI Appendix, Table S11). Given the simplicity of our
computational methods, they can be broadly used for antibody
engineering, and unlike physics-based energetic approaches, they
are not affected by the precise location of the atom coordinates
of the starting structure.
The top docking solution of 4E11–EDIII from ZRANK was

structurally very different from the native-structure (ligand in-
terface rmsd > 11 Å), indicating that any affinity enhancement

Table 2. Binding affinities of 4E11 WT and 4E5A antibodies

Method mAb

EDIII–DV1 EDIII–DV2 EDIII–DV3 EDIII–DV4

KD, nM Fold-change KD, nM Fold-change KD, nM Fold-change KD, nM Fold-change

Competition ELISA 4E11 WT 0.328 — 5.20 — 21.8 — 40,793 —

4E5A 0.309 1.1 0.246 21.1 16.5 1.3 91.2 447.3
SPR 4E11 WT 0.50 — 6.20 — 7.58 — NB —

4E5A 1.78 0.28 0.70 8.9 5.19 1.5 114 —

Fig. 3. In vitro neutralizing activity of antibodies assessed by FRNT. Neutralization assays were performed with DV1–4 and antibodies 4E11 WT and 4E5A.
Serial dilutions of antibody were mixed with equal amounts of virus and added to Vero cell monolayers followed by a viscous overlay. After 4–6 d, cells were
fixed, and foci were immunostained and counted. Data points represent averages of duplicates with error bars representing SD. A standard four-parameter
logistic model was fit to the data using least squares regression.
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efforts following the top ZRANK model would likely not have
led to fruitful results. To complicate matters further, the
ZRANK score of the native-like pose is in the same range as
two additional decoy poses, pose 4 and pose 5 (Table 1). To
determine whether an energetics-based approach would predict
the affinity-enhancing mutations, we used the 4E11–EDIII
(DV4) crystal structure (PDB: 3UYP) and an in-built binding
energy scoring function in Discovery Studio to predict muta-
tions. The scoring function performs amino-acid scanning mu-
tagenesis on a set of selected CDR residues and evaluates the
effect of single-point mutations on the binding affinity of mo-
lecular partners. Results highlight the challenges in free-energy
discrimination of neutral and destabilizing mutations from
stabilizing mutations (SI Appendix, Table S12). More signifi-
cantly, the affinity-enhancing mutations N57E, N57S, and
E59N were classified as destabilizing (SI Appendix, Table S12).
The choice of docking software and energy scoring function
influences the poses, their ranking, and, thus, the conclusion of
our study. Detailed comparison against other docking algo-
rithms, which goes beyond the scope of this study, should be
performed for a systematic evaluation. Because ZRANK is
widely used and has shown considerable success in critical as-
sessment of predicted interactions (CAPRI) experiments (35,
36), we believe our method will perform comparatively well
when evaluated against other top docking algorithms. The
benchmarked test dataset contained a diverse set of 44 differ-
ent targets that varied in size and in secondary and tertiary
structures (SI Appendix, Table S3); these difficult test cases
provided an opportunity to comprehensively validate the MLR-
based structure discrimination. The fact that ZEPII appears as
a highly significant feature in our MLR analysis indicates that
amino acid composition and interresidue contacts could be
used as an effective molecular filter during the screening pro-
cess to select native-like ligand binding conformations. In-
terestingly, some geometrical features also have the predictive
power to discriminate native interfaces from decoys. This
finding correlates with the observation made in previous studies
that antigen–antibody interfaces are more planar and signifi-
cantly well-ordered or packed (37).
Methods that adopt CDR loop randomization strategies for

affinity maturation (38) typically focus on heavy chain, especially
CDR H3, because this loop accounts for most of the stabilizing
contacts in many cases. Our results with 4E11 show that di-
versification strategies may benefit from a rational approach and
that incorporating VL-loops for targeted diversification may

further aid affinity maturation. The observation that the identi-
fied affinity-enhancing mutations are mainly polar in nature and
lie at the periphery of the binding interface is consistent with
other studies (5, 39, 40). The success rate at predicting mutations
with targeted activities is 12% (10/87). These results are en-
couraging given the complexity of the design problem (i.e., in-
volvement of four antigens) and considering that random
mutations will have, on average, a detrimental effect on binding
affinity.
No approved vaccine or specific therapy currently exists for

dengue. The engineered antibody 4E5A exhibits strong in-
hibitory activity with a broad spectrum profile and is an in-
teresting candidate for potential development for dengue
treatment. A concern, however, in the use of antibodies as
therapeutic or prophylactic agents for dengue rests in their
potential to exacerbate disease by increasing the cellular uptake
of viruses, resulting in higher viremia, a phenomenon termed
antibody-dependent enhancement (ADE) (41). While ADE has
been the leading theory to explain the observation of increased
risk of severe disease upon a secondary infection from a heter-
ologous DV serotype, recent studies in humans have called into
question ADE as the principal mechanism of increased disease
risk (13, 42, 43). Additionally, modifications to antibody Fc
regions that disrupt antibody interaction with Fcγ receptors
have been shown to be effective strategies in preventing ADE-
mediated lethal disease in a mouse model (44). These lines of
evidence support the possibility of using antibodies for dengue
treatment with mitigated concern of enhanced disease. Addi-
tional in vitro and in vivo testing using multiple models needs to
be considered to explore the potential of 4E5A as a broad-
spectrum agent for dengue treatment.

Materials and Methods
Model for AIF and ZEPII Indices Derived from Pairwise Propensities of Epitope–
Paratope Residues. Briefly, in an antigen–antibody interface, a pair of resi-
dues will presumably interact if they have favorable energetics of in-
teraction or by chance occurrence. The propensity of amino acid interaction
is calculated by computing the number of interactions expected by chance,
i.e., the expected frequency, and dividing the observed frequency by
this number.

If two amino acids, one from each side of the antigen–antibody interface,
are within 4.5 Å (i.e., shortest non-H atom distance is less than 4.5 Å) from
each other, they are defined as pair residues. Suppose the total number of
pairwise interactions between residues x (antigen) and y (antibody) at the
interface is Nðx; yÞ, then their concurrence frequency, Fðx; yÞ, can be defined
as follows:

F
�
x; y
� ¼ Nðx; yÞ

∑20
l¼1∑

20
m¼1N

�
l;m

�:
The denominator of the above equation indicates the summation of pairwise
interactions of all residue pairs in the interface.

The frequency of occurrence of every amino acid at paratope and epitope
must be calculated. The frequency of a particular amino acid x in the epitope,
FepitopeðxÞ, can be defined as

F epitopeðxÞ ¼ NðxÞ
∑20

l¼1N
�
l
�;

where NðxÞ denotes the count of amino acid x in the epitope. The de-
nominator represents the total number of all amino acids in the epitope.
Similarly, the frequency of occurrence of amino acid y in the paratope,
FparatopeðyÞ, can be defined as

FparatopeðyÞ ¼ NðyÞ
∑20

l¼1NðlÞ
:

In the above equation, NðyÞ denotes the number of amino acid y in the
paratope. The denominator indicates the total number of all amino acids in
the paratope. Parameters Fsðx; yÞ; F epitopeðxÞ and F paratopeðyÞ are deter-
mined using all of the 40 benchmarked antigen–antibody structures in the
training dataset. Consistent with the observations made by previous studies

Fig. 4. In vivo DV2 challenge model with prophylactic antibody adminis-
tration. AG129 mice were administered 4E5A antibody (1 mg/kg or 5 mg/kg)
or vehicle (PBS) 1 d before infection with DV2. Sera were collected 3 d post-
infection, and virus was titered by quantitative PCR, with log10(CCID50/mL)
titer extrapolated from a standard curve of a sample with known titer. The
dashed line represents the approximate limit of detection, and error bars
represent the SEM.
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(24, 45), tyrosine, serine, glycine, and asparagine are the most abundant
paratope residues whereas lysine, arginine, leucine, and glycine are the most
abundant epitope residues (SI Appendix, Fig. S5). If the occurrences of amino
acids x and y are independent, EF epitope−paratopeðx; yÞ defined in the below
equation is an expected frequency rate that amino acids x and y appear
concurrently.

EFðx; yÞ ¼ F epitopeðxÞFparatope�y�:
If the concurrence rate of the amino acids x and y at the interface for the

antigen is more than the expected rate, the following ratio RAaðx; yÞ
becomes greater than 1.

RAðx; yÞ ¼ Fðx; yÞ
EFðx; yÞ:

The pairwise propensities, RAsðx; yÞ; is a 20 × 20 matrix.
Applications of RAsðx; yÞ:

i) Using RAðx; yÞ to determine the AIF of a CDR residue. The AIF of a CDR
residue in the interface is defined as the sum of the RAðx; yÞ with its
neighbors. Neighbors are defined by a distance criterion (4.5 Å).

ii) Determine the optimal choice of amino acid at an interface position
(paratope reengineering): given an antigen–antibody complex, amino
acid preferences at a CDR position can be computed using the AIF values.
Specifically, at a given CDR position, the WT residue is systematically
substituted by the remaining amino acids excluding glycine and proline
(to avoid backbone conformation alterations), and the probability of
replacement is evaluated at each instance using the AIF metric. Single
mutations with replacement potential higher than WT residue are
reevaluated computationally to find mutations that (i) do not bury polar
groups and (ii) do not cause steric hindrance.

iii) Using RAðx; yÞ to quantify the strength of interaction of antigen–antibody
interface [the “Epitope–Paratope Interface Index” (EPII)]. The interaction
between an antigen and antibody results from the formation of numer-
ous noncovalent bonds. Therefore, the interaction affinity is directly re-
lated to summation of the attractive and repulsive forces (van der Waals
interactions, hydrogen bonds, salt bridges, and hydrophobic force).
Herein, the strength of interaction of an antibody–antigen interface
is investigated quantitatively by a linear combination of RAs for all com-
binations of amino acid pairs. An index expressing the strength of an
antigen–antibody interface ‘i’ (called EPII) is defined by

EPIIi ¼
∑20

x¼1∑
20
y¼1N

iðx; yÞFiðx; yÞRA
�
x; y
�

∑20
x¼1∑

20
y¼1N

iðx; yÞFiðx; yÞ
;

where Niðx; yÞand Fiðx; yÞ denote the number and concurrence frequency
of amino acids x and y at interface i.

iv) Using EPII to discriminate a true antigen-antibody interaction from dock-
ing decoys. To distinguish an interface with the most potential from
other decoy interfaces generated by computational docking, the EPII
values should be normalized by all of the interfaces in the protein. Z-
scored EPII (ZEPII) are used for this purpose. If M interfaces are found in
a protein, the ZEPII for interface i is calculated as follows:

ZEPIIi ¼ EPIIi − μ
σ

;

where

μ ¼ ∑M
i¼1EPIIi
M

and

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

i¼1ðEPIIi − μÞ∗ðEPIIi − μÞ
M

s
:

The ZEPIIscore is an indicator of the probability of antibody binding to
a given interface. Interface with the highest ZEPII score in a protein is the
most probable site for antibody binding.

Dataset of Nonredundant Antigen–Antibody Structural Complexes and
Computational Docking to Generate Decoy Models. We extracted a total of
568 antigen–antibody complexes from the Protein Data Bank. To ensure
proper enumeration of geometric interface features (planarity, buried sur-
face area, etc.), structures wherein the antigen length was less than 20
amino acids were excluded. Additionally, many structures contained the
same or similar antigens, which could bias the studies, giving higher weight
for factors derived from multiply represented protein antigen. To remove
redundant structures from the dataset, structures that have homologous
antigen (defined by BLAST (46); P value 10e27) and share 50% epitope
residues were classified under the same group, and the structure with the
highest resolution was selected as the representative. This analysis led to 84
nonredundant antigen–antibody complex structures.

We used ZDOCK (22) to generate decoy computational models of
antigen–antibody interaction. The protocol for generating the decoy
models was the same for all of the 84 structural complexes. Only the
variable domain of the antibody was used for docking. The larger of the
two molecules was considered the receptor whereas the smaller mole-
cule was considered the ligand. The ligand orientation was rotated 6
degrees at each step to sample the various conformations. Because the
initial docking procedure explores a relatively large area, we set up
distance constraints between putative hotspot residues on epitope and
paratope to ensure the generated models do not shift significantly from
the native structure. We picked two hotspot residues on either side to
ensure the challenges we faced with structure discrimination were
equivalent to the 4E11 scenario. In all of the decoy models, the putative
epitope and paratope hotspots were within 10 Å from each other.
Hotspots were identified using the web server KFC2 (29). The initial
docking procedure generates 100 structures that are then clustered
based on an all-versus-all rmsd matrix, described by Comeau (47) and
Lorenzen and Zhang (48). The rmsd between two docked structures is
calculated based on the ligand atoms that are within 7 Å of the fixed
receptor. Clustering procedure ensures that structures within a cluster
have ligand interface rmsd < 3 Å whereas structures from different
clusters have ligand interface rmsd ≥ 3 Å. Using a smaller value of ligand
interface rmsd will typically increase the number of clusters and reduce
the average number of structures per cluster. Overall, three different
values of ligand interface rmsd were tested: (i ) 3 Å, (ii ) 5 Å, and (iii ) 10 Å.
Docked structures representing the cluster centers were taken up for
further evalution. Among them, native-like structures are defined as
those structures having ligand interface rmsd less than 3 Å from the li-
gand in the solved crystal structure. Native-like structures were replaced
with their corresponding crystal structures for evaluating the sensitivity
of the prediction methods. The remaining structures were considered as
decoys. At rmsd = 3, a total of 617 (training) and 677 (testing) decoys
were generated; at rmsd = 5, a total of 382 (training) and 454 (testing)
decoys were generated; at rmsd = 10, a total of 195 (training) and 249
(testing) decoys were generated. ZDOCK uses shape complementarity along
with desolvation and electrostatic energy terms (“ZRANK”) to rank the
docked poses (23). Each of these decoys was further refined by Chemistry at
Harvard Molecular Mechanics (CHARMM) using the CHARMm force field.

Indirect ELISA. EDIII in PBS (0.1 μg per well) was adsorbed to Maxisorp 96-well
plates (Nunc) at 4 °C overnight. Plates were blocked with PBS-T (PBS with
0.05% Tween) containing 1% BSA for 1 h. Serial dilutions of antibody were
added to wells and incubated for 2 h, and, after washing, bound antibody
was revealed by HRP-conjugated rabbit anti-human IgG (Jackson Immu-
noResearch) followed by TMB substrate (KPL) addition.

Competition ELISA. The affinities of antibodies to EDIII, in solution at equi-
librium, were determined by competition ELISA (30). In 96-well plates, serial
dilutions of EDIII were mixed with antibody at 0.2 nM in PBS-TB (PBS con-
taining 0.01% Tween 20 and 0.01% BSA). The mixtures were incubated
overnight to allow equilibrium to be reached. Subsequently, an optimized
EDIII indirect ELISA, in which antibody concentration is linearly proportional
to absorbance and equilibrium not significantly disturbed, was performed to
measure the concentration of unbound or singly bound antibody. Briefly,
maxisorp plates coated with EDIII-DV1 (2.5 ng per well, 4 °C overnight) were
blocked with PBS-TB containing 1% BSA. After washing, equilibrium anti-
body–EDIII mixtures were added to the wells and incubated for 20 min.
Bound antibody was detected by HRP-conjugated rabbit anti-human IgG
(Jackson ImmunoResearch), followed by addition of TMB substrate (KPL),
and 450 nm absorbance was recorded by a plate reader (Molecular Devices).
The data were fit, by least squares regression in Excel (Microsoft), to the

E1562 | www.pnas.org/cgi/doi/10.1073/pnas.1303645110 Tharakaraman et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1303645110/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1303645110


following model derived from mass action and as described (49), with ad-
justment to take into account antibody bivalence (50):

Ai ¼ ðAmax −AoÞ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4KD½mAb�o

p
−u

2½mAb�o

×

 
w −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 4½EDIII�i ½mAb�o

p
2½mAb�o

þ 1

!−1

þ Ao

where

u ¼ ½EDIII�i − ½mAb�o þ KD

and

w ¼ ½EDIII�i þ ½mAb�o þ KD

and [mAb]0 is the initial antibody concentration, [EDIII]i is the variable
concentration of EDIII, Ai is the OD450 at [EDIII]i, Amax and A0 are the maximal
and minimal OD450 (when [EDIII] = 0 and [EDIII] = ∞, respectively), and KD is
the equilibrium dissociation constant. For data fitting, KD was the sole
floating parameter.

Surface Plasmon Resonance. SPR experiments were performed with a Biacore
3000 (GE Healthcare) instrument. Briefly, substoichiometrically biotinylated
antibody (ligand) was applied to a CAPture Kit chip (GE Healthcare), and EDIII
protein flowed as the analyte. Kinetic parameters (kon and koff) were de-
termined by fitting resultant resonance units curves to a 1:1 binding model
using BIAevaluation software (GE Healthcare). Because no binding of WT
4E11 was detected to EDIII–DV4, this interaction was also tested by steady-
state experimental conditions, which increase sensitivity of detection to KD <
0.1 mM. KD was determined by the ratio koff/kon.

FRNT. Serially diluted antibody was mixed with an equal volume of diluted
virus (30 focus-forming units per well) and incubated for 2 h at 37 °C. The

mixtures were then transferred to Vero cell monolayers in 24-well plates.
Foci were detected as described for focus forming assay (SI Appendix, SI
Text5). Each antibody concentration was run in duplicate. Data are
expressed as the relative infectivity:

Relative infectivity ¼
�
Average # foci at ½mAb�i

�
ðAverage # foci with no mAbÞ × 100:

Four-parameter logistic model was fit to the data. The FRNT50 represents
the concentration of antibody at 50% virus neutralization.

Ala-Scanning. To identify paratope hot spots of binding interaction, Ala-
scanning of 4E11 CDR loops was performed. Briefly, all residues in 4E11 CDR
loops were individually mutated to Ala (or Ala→Gly), expressed, purified, and
tested for binding to EDIII of DV1–3 by indirect ELISA, as described above.
Energetic hot spots were defined as those in which KD increased by >100-
fold for at least two serotypes.

In Vivo Experiments. Mouse model studies were conducted at the Utah State
University Laboratory Animal Research Facility (Institute for Antiviral Re-
search) and were approved by the Institutional Animal Care and Use Com-
mittee (IACUC). AG129 mice (10 per group), which are deficient in IFN-α/β and
IFN-γ receptors (51), were administered 4E5A antibody (1 mg/kg or 5 mg/kg)
or vehicle (PBS) one day before challenge with 106.4 50% cell culture in-
fectious dose (CCID50) New Guinea C virus per animal. Sera were collected
from animals on day 3 postinfection, and viremia was quantified by quan-
titative RT-PCR (Stratagene). A virus stock of known titer was also extracted
in parallel for use in quantification. The data are presented as averages, with
error bars representing the SEM CCID50/mL from each group.
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