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Abstract

Neural prostheses translate neural activity from the brain into control signals for guiding prosthetic 

devices, such as computer cursors and robotic limbs, and thus offer disabled patients greater 

interaction with the world. However, relatively low performance remains a critical barrier to 

successful clinical translation; current neural prostheses are considerably slower with less accurate 

control than the native arm. Here we present a new control algorithm, the recalibrated feedback 
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intention-trained Kalman filter (ReFIT-KF), that incorporates assumptions about the nature of 

closed loop neural prosthetic control. When tested with rhesus monkeys implanted with motor 

cortical electrode arrays, the ReFIT-KF algorithm outperforms existing neural prostheses in all 

measured domains and halves acquisition time. This control algorithm permits sustained 

uninterrupted use for hours and generalizes to more challenging tasks without retraining. Using 

this algorithm, we demonstrate repeatable high performance for years after implantation across 

two monkeys, thereby increasing the clinical viability of neural prostheses.

Introduction

Neural prostheses have recently demonstrated considerable promise through proof-of-

concept animal experiments1–9 and in human clinical trials10–13 for partially restoring motor 

output in paralyzed individuals. Studies in this field primarily focus on adapting insights and 

methods from the basic neuroscience of cortical motor control to this engineering context. A 

critical example of this is the use of motor cortex tuning models, which describe the 

relationship between single unit firing rates and arm movement kinematics, to define a 

mapping for neural control of a computer cursor in closed loop (e.g.1–3). When such a neural 

prosthesis is introduced to a monkey, performance can increase across days through 

learning3. In addition to controlling computer cursors, these systems have successfully 

driven robotic end effectors4. Neural prosthesis studies have incorporated additional 

concepts from motor neuroscience, demonstrating the potential to augment system 

performance by modeling neural activity related to movement preparation5 and 

proprioceptive feedback8. Recent work also suggests that when the recorded neural 

population and control algorithm are held constant, neural prosthetic performance increases 

over time as a stable neural output map is formed and multiple mappings, once learned, can 

be retained and retrieved across different control contexts7. Despite these new insights and 

additional algorithmic advances (e.g.12), system performance on simple cursor control tasks 

remains low relative to native arm control performance, presenting a critical barrier to 

clinical translation14.

In an effort to improve the performance of neural prostheses, we chose to focus on a systems 

engineering approach. Building on existing methods in the field, we developed two key 

innovations that alter the modeling assumptions made by these algorithms and the methods 

by which these algorithms are trained. Additionally, signal conditioning methods, which 

transform recorded neural signals into control algorithm input, were chosen in an effort to 

improve system stability and performance15,16. As demonstrated in closed loop neural 

control experiments, these methods result in high performance across multiple cursor control 

tasks.

Results

Performance Overview

We trained monkeys to acquire targets with a cursor controlled by either native arm 

movement or neural activity. We developed a novel algorithm, ReFIT-KF, that led to 

substantially higher-performance neural prosthetic control. Figure 1a shows representative 
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continuous, uninterrupted cursor movements for three different modalities: native arm 

control, ReFIT-KF, and a velocity Kalman filter (Velocity-KF), that is state-of-the-art for 

current neural prostheses (e.g.,11–13). Monkeys were required to move the computer cursor 

to a visual target and hold the cursor within a demand box for 500 ms to successfully 

complete a trial and receive a liquid reward. Targets alternated between central and eight 

peripheral locations. During online neural control sessions, the contralateral arm was not 

restrained, and movement continued. However, the physical movement was not stereotyped 

and would often attenuate or even stop during some neural control sessions, while retaining 

performance. In a set of additional control experiments, both arms were restrained, and little 

or no arm movement was observed with similar neural control performance (see Table 1 and 

Fig. 2).

The ReFIT-KF algorithm outperformed the Velocity-KF by several measures. First, cursor 

movements with ReFIT-KF control were straighter (Fig. 1a,b and Supplementary Fig. 1), 

producing less movement away from a straight line to the target. Cursor movements 

produced using the ReFIT-KF were qualitatively similar to native arm movements (Fig. 1a, 

Supplementary Figs. 1–2, and Supplementary Videos 1–6). Second, these movements were 

also completed faster. ReFIT-KF cursor control performance, as measured by the time to 

successfully acquire the target (Fig. 1c,d), was 75–85% of native arm control performance 

and at least twice Velocity-KF performance (Supplementary Modeling). In addition to lower 

mean time to target, the variance was substantially smaller, which is important as this 

signifies greater movement consistency and fewer potentially frustrating long trials. Critical 

to achieving this lower time to target, ReFIT-KF controlled cursor movements stopped 

better. The ability to stop is a critical differentiator between the three control modes. The 

Velocity-KF controlled cursor took only modestly longer to first acquire the target, but often 

significantly overshot the target, requiring additional time and multiple passes to stably 

acquire and hold the target. This overshoot-correction time dominates the overall time to 

successful target acquisition for Velocity-KF control (Fig. 1c,d) and is captured by “dial-in 

time” (Fig. 1e,f): the average time required to make the final target acquisition after having 

first reached the target. Both native arm and ReFIT-KF control allowed more precise 

stopping as compared to Velocity-KF (Fig. 1e,f). Across all trials in eight experimental 

sessions with two monkeys, when given five seconds to acquire targets, ReFIT-KF achieved 

a success rate of >99%, while Velocity-KF had a success rate of 95%. The task difficulty 

was chosen to achieve a high success rate for all three control modalities on the first 

experimental day (Supplementary Table 1). When the task difficulty is increased, the 

success rate with Velocity-KF can drop relative to the success rate with ReFIT-KF, and 

similarly ReFIT-KF success rates and performance can drop relative to native arm control 

(see generalization tasks described below).

Experiments across days and years demonstrated consistent high performance (Fig. 2). 

Performance was stable as measured by throughput (Supplementary Modeling) on 280 

individual experimental days. These data were collected across 29 months for monkey L and 

16 months monkey J, spanning the range of 0.4 to 4.4 years post-array implantation. To 

explore the possibility that performance changed with time, we computed least squares 

linear fits on these performance data for each monkey. The slopes of both regression lines 

are positive, suggesting that performance was stable over the time period of the study and 
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providing evidence consistent with the hypothesis that intracortical microelectrode arrays 

may permit years of high performance neural control15 (for more details see Online 

Methods: Quantifying Performance Across Months and Supplementary Table 2).

Generalization & Robustness

We also tested additional behavioral tasks to assess generalization of the ReFIT-KF control 

algorithm. We fit the ReFIT-KF algorithm with center-out-and-back reaches, as before, and 

then tested on a pinball task in which targets could appear at any location in the 2D 

workspace. Monkeys were again required to move the cursor to the target and hold it for 500 

ms to successfully complete a trial. Monkey L continuously acquired targets for over 90 

minutes during two pinball reaching sessions (Fig. 3), one with native arm control and one 

with the ReFIT-KF control. Given two seconds to acquire a target on each trial, both 

sessions had success rates >98%. Across the whole session, the mean time to target for 

ReFIT-KF control was 72% as fast as native arm control (ReFIT-KF: 710 ± 317 ms; native 

arm: 519 ± 196 ms; mean ± s.d.). Comparable performance was found for monkey J 

(Supplementary Video 5). Performance with ReFIT-KF was not only high (over two-thirds 

as fast as the natural arm; comparable acquire time distributions, Fig. 3a), but was also 

sustained without intervention (Fig. 3b). Sustained performance was typical of ReFIT-KF 

control sessions, whereas Velocity-KF control sessions with the same task parameters had 

much lower success rates (<40%), and the monkeys could not be motivated to acquire 

targets for more than 30 minutes.

To further test ReFIT-KF control, we trained monkey J to avoid visually defined obstacles 

that appeared in the direct path of the target (Fig. 4, maze task17,18). The monkey reached 

from a central starting target to either a left or right peripheral target. On some trials a 

barrier appeared along with the peripheral target. To successfully complete a trial, the 

monkey had to use the cursor to acquire and hold the peripheral target for 500 ms without 

hitting the barrier. This task was difficult, but the monkey successfully acquired and held the 

target on 77% of trials with his native arm (Fig. 4a) and on 75% of trials with ReFIT-KF 

control (Fig. 4b). Under ReFIT-KF control, mean time to target for this task was 74% as fast 

as with native arm control (ReFIT-KF: 1253 ± 588 ms; native arm: 932 ± 709 ms; mean ± 

s.d.). With Velocity-KF control, the monkey could not complete the task and quickly 

became frustrated and disengaged. As in the previous tasks, the ReFIT-KF was fit with 

center-out-and-back movements and used without modification for the maze task, 

demonstrating robustness across behavioral contexts.

ReFIT-KF: Two Innovations Designed for Closed Loop Neural Control

The described cursor control performance was achieved by redesigning the Velocity-KF 

algorithm from a closed loop control perspective (Supplementary Modeling). The prosthetic 

device constitutes a new physical plant with different dynamical properties than the native 

arm (Fig. 5a). The subject controls this new plant by modulating measured neural signals 

(yt), which are then decoded into a velocity (vt) by the control algorithm. This velocity is 

used to update the cursor on screen, affecting neural signals on subsequent time steps. This 

closed loop control perspective suggests two design innovations that both contribute to the 

described performance (Supplementary Figs. 3,4). The first innovation is a modification of 
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neural prosthetic model fitting methodology. The second innovation is an alteration of the 

control algorithm. These ReFIT-KF innovations produce the neural prosthetic results 

described above.

Innovation 1—The first design innovation is to fit the neural prosthesis against estimates 

of intended velocity. Previous algorithms1,3,5,10 implicitly assume that the subject uses the 

same control strategy for moving the native arm and the prosthetic cursor. Since these 

control strategies may be quite different, we, in the vein of past studies2,4,6,9,12,19,20, 

evaluated methods that attempt to better capture the subject’s strategy during prosthetic 

control. Ideally, the control algorithm would be fit to the subject’s intended cursor velocity 

during closed loop neural control. Since we lack explicit access to the monkey’s intentions, 

we hypothesized that the monkey wished to move directly towards the target; this resembles 

movements made by the native arm and is a good strategy for acquiring rewards.

A two-stage optimization procedure (Fig. 5b) is used to fit the neural prosthetic model to 

these estimates of intended velocity during online neural control. In stage 1, the monkey 

controls the cursor using his arm. An initial model is fit using arm trajectories and 

simultaneously recorded neural signals. The monkey then controls the neural prosthesis with 

this initial model. In stage 2, neurally controlled cursor kinematics and neural signals are 

recorded and used to fit a new model with an estimate of intended cursor velocity. By 

starting with cursor velocities collected during the previous online control session (shown in 

red), these estimates are calculated for model fitting using two transforms. First, the 

velocities are rotated towards the target (blue vectors) to generate the set of estimated 

intended velocities. Second, if the cursor is on target, the monkey’s best strategy is to keep 

the cursor still to satisfy the hold time requirement. Thus, in the training set, we assume that 

the monkey’s intention during these hold periods was to maintain the cursor position by 

commanding zero velocity. This zero velocity assumption applied to the fitting of model 

parameters improves online performance without changing the control algorithm 

(Supplementary Modeling and Supplementary Fig. 5). These estimated intentions and 

corresponding neural data are used to fit the ReFIT-KF control algorithm. It is important to 

note that the intention estimation is applied only to training data: during online control the 

neural prosthesis has no knowledge of the task goal or placement of targets (unlike 

e.g.5,21,22).

The aforementioned training protocol utilizes arm-controlled reaches as training data. In a 

paralyzed individual, it is not possible to record arm kinematics for this step. Instead, this 

training step could rely on the individual imagining a set of instructed movements. To test 

this possible strategy, we trained the initial algorithm based on visual cue observation8,12, 

removing the requirement for arm control in step one. During these trials the monkey 

watched a computer controlled training cursor that automatically moves out to targets. The 

initial model was fit using automated training cursor trajectories and simultaneously 

recorded neural activity, without using measured arm movement (Online Methods: 

Observation Based Model Training). Table 1 summarizes ReFIT-KF performance for three 

experimental sessions from each monkey in which stage 1 of ReFIT-KF model training is 

based on observation data instead of arm movements. The performance, as measured by 
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Fitts’s Law23 (Supplementary Modeling), for these sessions is similar to that attained for the 

native arm control initiated sessions described (Figs. 1 and 2).

Innovation 2—The second design innovation builds on the observation that neural activity 

is correlated with both the velocity and the position of the cursor. Most existing neural 

prostheses model a relationship between neural activity and either velocity2,4 or position1,10. 

A human clinical trial has shown that neural prostheses modeling velocity have higher 

performance11,12. However, if the control algorithm models only the velocity relationship, 

then position-based changes in firing will confound decoded velocities (Supplementary 

Modeling). To mitigate this effect, we explicitly model velocity as the user’s intention and 

cursor position as an additional variable that affects neural output. This modification allows 

the user to control velocity with measured neural signals while accounting for the influence 

of cursor position. We explicitly assume that the current cursor position, determined by 

integrating the previous velocity output, is encoded in the neural activity along with the 

monkey’s current intended velocity output. Thus, the expected contribution of position to 

neural activity is removed, enabling more accurate estimation of intended velocity (Fig. 1 

and Supplementaty Modeling).

Discussion

Other studies have noted the potential change in plant and control strategy and have 

addressed it by iteratively refining parameters during neural prosthetic 

experiments2,4,6,9,12,19,20. This approach recognizes that control strategies, and therefore 

model parameters, are best measured and understood during closed-loop neural prosthetic 

experiments. However, randomizing initial parameters2,4,20 may create a control algorithm 

that never attains the highest possible performance, just as optimization problems can easily 

become trapped in local optima (Supplementary Modeling). Although, if the recorded neural 

population and the neural control mapping are held constant, the consequences of the plant 

mismatch can be overcome through learning. Such learning was demonstrated with neural 

control mappings built to reconstruct arm kinematics, as well as with a neural control 

mapping in which neuron identities were shuffled, so the decoder output was no longer 

predictive of native arm kinematics7.

The focus of the present study was to obtain high control performance within a single 

session by improving the neural control algorithm and optimizing its parameters. Although 

the neural prosthesis constitutes a new plant with different properties than the native arm, 

the motor cortices are involved in native arm control (e.g.,24). Therefore, we hypothesized 

that initializing a model with the relationship between neural activity and natural arm 

movement would allow the second stage of our training method to achieve a higher level of 

optimization. Previous studies4,20 have relied on manipulating the control task to refine the 

neural decoder, such as by providing assisted control. In those studies, an automated correct 

answer was mixed with the output of the neural prosthesis. Over successive iterations the 

weight of automated control was decreased by experimenter intuition until control was 

driven only by neural activity. Our approach is different, as the control task remains constant 

throughout a neural prosthetic session and only the training data are manipulated between 

the first and second neural prosthetic sessions.
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In a study with quadriplegic humans11,12, the neural prosthesis was initially trained with 

visual cue observation, similar to the control experiments described above. The study also 

uses a second neural prosthetic training session to account for differences during online 

control. Unlike ReFIT-KF training, both the neural cursor and the automated training cursor 

were on screen during the second session. The neural cursor was presented to provide 

feedback so that the participant could attempt to alter their neural output to better follow the 

training cursor. After this second session, the neural prosthesis was fit with the training 

cursor kinematics. Thus, the underlying assumption is that the training cursor kinematics 

capture the intended kinematics during online control, while ReFIT-KF fitting assumes that 

intended kinematics are best inferred by the output of the neurally controlled cursor and 

knowledge of the task goals.

In studies with adaptive decoders6,9, the kinematics of the neurally controlled cursor are 

continuously used to refine neural prosthetic parameters, also allowing them to account for 

differences when switching to online control. However, they take different approaches to 

estimating intended kinematics for retraining. One approach is to use decoder parameters 

non-causally, via smoothing, to estimate intended kinematics for retaining without task or 

target information9. Impressively, this method was shown to slow performance declines in 

one monkey over 29 days when using static spike sorting. However, unlike with ReFIT-KF 

model fitting, initial performance was not surpassed, perhaps because without incorporating 

task goals, the method is subject to inaccuracies present in the initial model fit. In another 

adaptive study6, target information was incorporated in the kinematics used for retraining. 

Their algorithm was retrained with a weighted average of decoded trajectory positions and 

the target position for each trial as an estimate of intended position. In contrast, ReFIT-KF 

estimates intended velocities based on intuitive rules applied to cursor position, decoded 

velocity, and target position.

ReFIT-KF explicitly treats position and velocity differently. The resulting neural prosthesis 

assumes that the monkey is controlling velocity and not position, providing performance 

gains over a position/velocity Kalman filter that does not make this distinction 

(Supplementary Figs. 6–8 and Supplementary Modeling). We structured the model 

assuming that velocity intentions evolve smoothly and that the influence of position is based 

on the monkey’s internal model of the cursor. Furthermore, we assume that the control 

algorithm output and the monkey’s internal belief about cursor position agree. In reality, 

there is some mismatch between the control algorithm’s position estimation and the animal’s 

internal belief due to inaccuracies in assessing visual information. There are likely spatial 

and temporal components to this inaccuracy that are not modeled. The spatial aspect is an 

inexact assessment of the last seen location, and the temporal aspect is due to visual latency. 

The spatial aspect could be modeled as fixed position uncertainty. To fully account for the 

temporal aspect, one could attempt to algorithmically model the animal’s internal model of 

cursor dynamics since the last known position of the cursor. In this work, we chose to start 

with a simpler model, assuming that this estimation, which is local in time, is exact. It is 

possible that augmenting the algorithm to account for the mismatch between the temporally 

local forward model and our dynamics model could further increase control performance. 

Such work could also lead to improvements in the intention estimation methods used for 

model training. It is important to note that there may be alternative explanations for the 
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presence of position information in neural output. For example, this information could be 

intended cursor position instead of an internal model estimate of current cursor position. In 

support of the internal model hypothesis, a recent study suggests that a forward model of 

cursor position is used during closed loop control25. However, further study of the role of 

position information in the neural activity during online control is necessary and could aid in 

the development of future control algorithms.

In experimental sessions, ReFIT-KF performance was stable until the monkey appeared to 

lose interest in the task (e.g. drop in target acquisition rate, Fig. 3b). This rapid drop off is 

consistent with native arm control session performance and is presumably the analogue of 

when a hypothetical human user is finished using their neural prosthesis. It is expected that 

performance will drift over time14, and methods for continuous adaptation of neural control 

algorithm parameters may be necessary. In a previous study9, information from the output of 

the control algorithm was used with a Bayesian approach to adapt parameters throughout 

sessions to sustain performance. If task goals were known throughout neural prosthesis use, 

the intention estimates defined in this study could be used in conjunction with these 

parameter adaptation methods. It may be possible to estimate these task goals based on 

features of the neural prosthetic output. For example, if a click or target selection signal is 

simultaneously decoded12, indicating user intended target selection, intended cursor 

velocities could be estimated for moments prior to target selection. Additionally, in future 

work, it will be important to assess how multi-day learning7 affects the performance and 

robustness when control algorithm parameters are set as described in this work, based on 

estimated movement intention, versus existing methods for parameter initialization. 

Adapting the methods of this work to enable multi-day learning and plasticity, such as by 

providing a consistent controller day over day, may well lead to even better performance 

over time.

Long-duration, continuous, high-performance operation is central to successful translation of 

neural prostheses to human patients14. The above performance depended upon three specific 

design choices used by both Velocity-KF and ReFIT-KF, in addition to the two key 

innovations defining ReFIT-KF. First, we did not employ spike sorting. The goal of spike 

sorting is to separate single channels composed of action potentials from many neurons into 

multiple channels of spiking activity from individual neurons. This standard practice can 

yield high information per electrode, but requires tracking each sorted action potential shape 

over days, which has recently been shown to be extremely difficult for many electrode 

channels7,26,27. To reduce signal instabilities that can result from imperfect spike sorting and 

neuron tracking, we counted the number of threshold crossings per electrode instead of spike 

sorting (Online Methods: Signal Acquisition & Conditioning)15,20. Second, the results 

reported here were acquired from arrays 19–40 months (monkey L) and 4–21 months 

(monkey J) after neurosurgical implantation15,26. The number of highly distinguishable 

single neurons on an electrode array tends to decrease over time. Yet, remaining multiunit 

activity often has neural prosthesis relevant tuning. By employing these older array 

implants, which had relatively few clearly distinguishable single units, we confirm that 

threshold-crossing-based activity, together with the ReFIT-KF, provides high performance 

for months and years after array implantation (shown in Fig. 2, also see Supplementary 

Table 2, and Supplementary Fig. 9). Finally, we used a single, relatively short 50 ms neural 
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integration time window with no additional temporal lag, unlike some neural prosthetic 

designs that explicitly incorporate neural data with longer histories and additional lags (e.g., 

multiple 100 ms time bin7; multiple 50 ms time bins with history as far back as 1 sec8,10). 

This choice was based on experiments with humans using an online prosthetic simulator16 

and on subsequent neural control experiments with monkeys. Both indicated that shorter 

time bins are preferable due to reduced closed-loop feedback time.

This study demonstrates the utility of an online control perspective for the development of 

neural control algorithms. Although performance advances must ultimately be verified 

online, this perspective can be applied in offline simulation studies to gain insight into 

algorithmic design decisions (Supplementary Modeling). However, as with any simulation 

study, the applicability of the results are subject to both the limitations of simulation 

platform and the design decisions made in developing the simulation16.

The sustained performance and robustness of these ReFIT-KF neural prosthetic experiments 

demonstrate the potential to provide functional restoration for patients with a limited ability 

to move and act upon the world due to neurological injury and disease. Although descending 

pathways are compromised, motor cortex may be largely intact, enabling this class of 

technology10–12,28. In recent years, brain interface technologies employing a variety of 

signal sources, such as the intracortical arrays described here, electroencephalography 

(EEG)29, and electrocorticography (ECoG)30, have been developed. The neural prostheses 

research community continues to create options for disabled individuals and to assess 

relative risk and benefit31. In this report, we have investigated the principled design of 

closed loop neural control algorithms, resulting in the development of the ReFIT-KF and 

demonstrations of a significant advance in performance and robustness. This algorithm, 

closed loop control perspective, and system design methodology may be applied to other 

neural prosthetic domains with the potential to considerably increase benefit and the clinical 

viability prostheses.

Methods

Surgical Procedures and Behavioral Experiments

All procedures and experiments were approved by the Stanford University Institutional 

Animal Care and Use Committee (IACUC). Experiments were conducted with adult male 

rhesus macaques (L and J), implanted with 96 electrode Utah arrays (Blackrock 

Microsystems Inc., Salt Lake City, UT) using standard neurosurgical techniques32. Monkeys 

L and J were implanted 19–53 months and 4–21 months prior to the experiments. Electrode 

arrays were implanted in the dorsal aspect of premotor cortex (PMd) and primary motor 

cortex (M1), as estimated visually from local anatomical landmarks.

The monkeys were trained to make point-to-point reaches in a 2D plane with a virtual cursor 

controlled by the contralateral arm or by a neural decoder16. The virtual cursor and targets 

were presented in a 3D environment (MSMS, MDDF, USC, Los Angeles, CA). Hand 

position data were measured with an infrared reflective bead tracking system (Polaris, 

Northern Digital, Ontario, Canada). Behavioral control and neural decode were run on 

separate PCs using the Simulink/xPC platform (Mathworks, Natick, MA) with 
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communication latencies of less than 3 ms. This system enabled millisecond-timing 

precision for all computations. Neural data were initially processed by the Cerebus recording 

system (Blackrock Microsystems Inc., Salt Lake City, UT) and were available to the 

behavioral control system within 5 ± 1 ms. Visual presentation was provided via two LCD 

monitors with refresh rates at 120 Hz, yielding frame updates within 7 ± 4 ms. Two mirrors 

visually fused the displays into a single 3D percept for the user, creating a Wheatstone 

stereograph (see Fig. 2 in 16).

Central results were replicated multiple days in each monkey, employing a within-day A-B-

A block structure trial design to highlight algorithmic impact and thereby quantify 

performance and robustness (Supplementary Figs. 3,4).

Center-Out-and-Back Task Configurations

Training sets for fitting the neural control algorithm were collected using the same center-

out-and-back task shown in Figure 1a. Targets were either uniformly placed at an 8 cm 

radius or at a 12 cm radius. For some native arm control sessions, the top target was at 14 

cm and the upper right and upper left targets were at 13 cm. Training sets were typically 

composed of about 500 (peripheral and central) target acquisitions. All of the test sets from 

Figure 1 were collected using a standardized target configuration, with eight peripheral 

targets uniformly placed at 8 cm from the central target with either 5 cm or 6 cm acceptance 

windows.

Signal Acquisition & Conditioning

Neural signals are acquired from an implanted 96-channel Utah Microelectrode Array 

(Blackrock Microsystem, Salt Lake City, UT) using the Cerebus Recording System 

(Blackrock Microsystems, Salt Lake City, UT). An analog bandpass filter with a 0.3 Hz to 

7.5 kHz passband is applied to each channel. Channels are sampled at 30 k Samples/second 

and are filtered with a 250 Hz to 7.5 kHz digital bandpass filter. A threshold detector is 

applied to each bandpassed channel. The threshold value is set automatically as −4.5 times 

the measured root mean squared value of the channel. When the signal value is less than 

threshold a spike event is registered for that channel. The number of spike events are 

counted in non-overlapping temporal bins (typically 50 ms). The counts for each channel are 

the inputs to the control algorithm.

Quantifying Performance Across Months

The same center-out-and-back task was run on 280 sessions across monkeys L and J, 

spanning at least 16 months for each monkey. Although additional experiments (using 

different control algorithms and behavioral tasks) may have been run on these experimental 

days, at least 200 trials of center-out-and-back with the ReFIT-KF control algorithm were 

tested. On most experimental days, the task difficulty was greater than that shown in Figure 

1 and Supplementary Table 1. For the experiments documented in Figure 1, the task 

difficulty was selected so that the monkey could successfully complete the task with the 

lower quality of control afforded by the Velocity-KF algorithm.
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The Fitts’ law calculation is used to provide a metric that normalizes across task difficulty. 

For reference, monkey L was implanted on 01/22/2008 and monkey J was implanted on 

08/24/2009. Data for monkey L were collected on 182 sessions over 29 months (from 24 to 

53 months post-implantation). Data for monkey J were collected on 98 sessions over 16 

months (from 5 to 21 months post-implantation). Each open square and circle in Figure 2 

corresponds to a single experimental day on which the index of difficulty was 1.32 (4 cm 

targets at 8 cm from center) and throughput was calculated from at least 40 trials of center-

out to either a vertical or horizontal target. All experiments from the timespans indicated that 

match these criteria were included, except for days on which other experiments may have 

impacted animal behavior. Regression lines were fit for data from each monkey using least 

square regression and p-values were calculated using an ANOVA for linear regression 

models.

Observation Based Model Training

Since paralyzed users of neural prostheses cannot generate overt arm movements an 

observation based algorithm training methodology can be used, as in previous animal 

studies8 and clinical trials10. We tested the ReFIT-KF algorithm with observation based 

training, replacing the native arm movement stage of algorithm training with an observation 

stage (Fig. 5b).

Observation-based decode models were built with both of the monkey’s arms comfortably 

restrained along his side. A previously recorded arm-controlled experimental block of 500 

center-out and back trials was shown to the monkey while in this posture. The kinematics of 

this recording were derived from a arm-controlled session from Monkey L. To help keep the 

monkey engaged in the task, he was rewarded when the computer-controlled cursor acquired 

and held the target for 500 ms.

Under this experimental context, the neural data recorded during these observation sessions 

and the previously recorded cursor kinematics served as the training data to build the initial 

decode model. This resulting model was then run online and used as training data to build 

the ReFIT-KF decoder. Little to no arm movement was visually noted during both 

observational blocks and decoding blocks.

Performance of ReFIT-KF based control during these sessions, as measured by the Fitts’ law 

metric, was roughly equivalent to performance on sessions that initially trained from arm 

movement data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Performance comparison of native arm, ReFIT-KF, and Velocity-KF based cursor 
control
Native arm control shown in blue, ReFIT-KF in red, and Velocity-KF in green. All plots, 

except the cursor path traces, are constructed from 4 experimental days for each monkey on 

which all 3 control methods were tested. For each monkey and control method there are 545 

to 659 center-out-and-back movements. (a) Representative traces of cursor path during 

center-out-and-back reaches. Dashed lines (not visible to the monkey) are the demand boxes 

for the eight peripheral targets and the central target, shown as translucent green circles. 

Targets alternated between the center and the peripheral in the sequence indicated by the 

numbers shown. Traces are continuous for the duration of all sixteen center-out-and-back 

movements, representing 15.27, 16.87, and 32.23 seconds of native arm, ReFIT-KF, and 

Velocity-KF reaching, respectively. (b) Bar graphs plotting maximum deviation from a 

straight-line path to the target on each successful trial (mean ± s.e.m). (c,d) Histograms of 

time to target for successful trials are shown as line graphs for monkeys J and L. The inset 

bar graphs plot the time to target (mean ± s.e.m). (e,f) Line graphs plotting the mean 

distance to the target as a function of time. The inset bar graph plots the mean ± s.e.m of the 
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dial-in time, or the time required to finally settle on the demand box, after first acquired, to 

successfully hold for 500 ms. Hold time is not included in the dial-in time. The thickened 

portion of the line graphs also indicate dial-in time, beginning at the mean time of first target 

acquire, and ending at mean trial duration minus 500ms. These data are from experiments 

J-2010-10-27, J-2010-10-28, J-2010-10-29, J-2010-11-02, L-2010-10-27, L-2010-10-28, 

L-2010-10-29, and L-2010-11-02.
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Figure 2. Performance of ReFIT-KF control across 4 years
Performance is measured by the Fitts’s law metric (Supplementary Modeling). Data from 

monkey J and monkey L are shown as 98 orange circles and 182 cyan squares, respectively. 

Each point plots the performance of the ReFIT-KF algorithm trained on that experimental 

day. The eight filled data points (four for each monkey) are calculated from the same 

datasets used to generate Figure 1. Linear regression lines for data from monkey J (orange) 

and monkey L (cyan) are shown. For all datasets shown, the trial success rate was >90%. 

Additional details on these data are summarized in Supplementary Table 2.

Gilja et al. Page 16

Nat Neurosci. Author manuscript; available in PMC 2013 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Performance comparison of native arm vs. ReFIT-KF for the pinball task
Native arm control is in blue, ReFIT-KF in red. In this task, each target location is selected 

from a uniform distribution spanning the workspace. (a) Each column shows data from 20-

minute segments. The top rows are randomly selected cursor traces for 4 subsequent target 

acquisitions. Target demand boxes are shown as dashed lines and target sequence is 

indicated from 0 to 4. The bottom row shows normalized histograms of time to target for 

successful trials. Arrows below the plot indicate average time. (b) Target acquisition rate per 

minute throughout the sessions is shown. The sharp rate drop indicates when the monkey 

lost interest in the task. A histogram of acquisition rate across the sessions is inset. The 

native arm and ReFIT-KF sessions (L-2010-04-01 and L-2010-04-12) were on two separate 

days, within 11 days of each other, when the monkey demonstrated a high degree of 

motivation.
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Figure 4. Performance comparison of native arm vs. ReFIT-KF for the obstacle avoidance task
Native arm control shown in blue, ReFIT-KF in red. In this task the monkey had to move the 

cursor from the initial target (labeled 0) to the final target (labeled 1, demand box shown as 

dashed line) without hitting the magenta-colored barrier. One representative cursor trace is 

shown from each of the four principle observed movement types: curve under, curve over, 

straight (no barrier), and collision into barrier. These data are from experiment 

J-2010-03-09.
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Figure 5. Illustrations of the online neural control paradigm and the ReFIT-KF training 
methodology
(a) The input to the control algorithm at time i is a vector of spike counts, yt, from implanted 

electrodes. Yt is translated into a velocity output, vt, to drive the cursor. (b) ReFIT-KF is 

trained in two-stages. Initially, cursor kinematics and neural activity are collected during 

arm control or during an observation phase in which cursor movement is automated. These 

arm movement or observed cursor kinematics are regressed against neural activity to 

generate an initial control algorithm. Then, a new set of cursor kinematics and neural 

activity are collected using the initial algorithm in closed loop. The kinematics collected 

during neural control (red vectors) are used to estimate intention by rotating the velocities 

towards the goal (blue vectors). This estimate of intended kinematics is regressed against 

neural activity to generate and run ReFIT-KF.
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