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Next-generation sequencing is a powerful approach for discovering genetic variation. Sensitive variant calling and hap-
lotype inference from population sequencing data remain challenging. We describe methods for high-quality discovery,
genotyping, and phasing of SNPs for low-coverage (approximately 53) sequencing of populations, implemented in
a pipeline called SNPTools. Our pipeline contains several innovations that specifically address challenges caused by low-
coverage population sequencing: (1) effective base depth (EBD), a nonparametric statistic that enables more accurate
statistical modeling of sequencing data; (2) variance ratio scoring, a variance-based statistic that discovers polymorphic
loci with high sensitivity and specificity; and (3) BAM-specific binomial mixture modeling (BBMM), a clustering algorithm
that generates robust genotype likelihoods from heterogeneous sequencing data. Last, we develop an imputation engine
that refines raw genotype likelihoods to produce high-quality phased genotypes/haplotypes. Designed for large pop-
ulation studies, SNPTools’ input/output (I/O) and storage aware design leads to improved computing performance on
large sequencing data sets. We apply SNPTools to the International 1000 Genomes Project (1000G) Phase 1 low-coverage
data set and obtain genotyping accuracy comparable to that of SNP microarray.

[Supplemental material is available for this article.]

Next-generation sequencing technologies (NGS) are rapidly be-

coming a desirable choice for population-level genomic studies.

Until high-coverage sequencing becomes affordable for large co-

hort interrogation, study designs that aggregate NGS data across

thousands of subjects are compelling (Li et al. 2011). Low-coverage

population (approximately 33–53 coverage over the whole ge-

nome) sequencing strategy aims to achieve both high-sensitivity

population-level variant discovery and high-accuracy genotyping

by utilizing redundancy of reads at loci across multiple samples.

Borrowing strength across multiple samples improves identification

of common and low-frequency (minor allele frequency, >0.5%–1%)

genetic variants (The 1000 Genomes Project Consortium 2010).

Linkage disequilibrium (LD) between variants allows for genotype

imputation to improve sensitivity and specificity (Nielsen et al.

2011). For example, if two SNPs are tightly linked in the pop-

ulation (r 2 = 1), then their respective read depth can be shared/

summed to obtain much more accurate genotype calls at both sites

(Carlson et al. 2004; International HapMap Consortium 2005;

Duitama et al. 2011; Le and Durbin 2011). This strategy was ini-

tially demonstrated by Liti et al. (2009) and on a large scale in the

1000G Pilot (The 1000 Genomes Project Consortium 2010).

Analytical challenges in low-coverage genome sequencing

data had not been fully addressed by most SNP calling pipelines.

For example, tools such as SOAPsnp (Li et al. 2008) detect SNP sites

on a sample by sample basis. As a result, for a population-based

study, each sample is evaluated independently and the analyzed

data are then aggregated. These methods also tend to apply

simple heuristics to read level information such as mapping and

base quality (Li et al. 2008). For example, a common cut off is the

phred-type quality score of Q20. The application of simple heu-

ristics does not measurably impact high-coverage genome stud-

ies due to the high number of reads at each position (Nielsen

et al. 2011); however, filtering for parameters such as mapping

and base quality reduces the power to detect variants in low-

coverage studies because of the limited number of reads at each

locus. In addition, simple heuristics are difficult to generalize to

new data due to sequencing platform, reagent, and mapping al-

gorithm heterogeneity (Harismendy et al. 2009; Suzuki et al.

2011).

We devise an integrative pipeline, ‘‘SNPTools,’’ which achieves

high-quality (1) variant site discovery, (2) genotype likelihood

(GL) estimation, and (3) genotype/haplotype inference from pop-

ulation NGS data. The pipeline, in particular, introduces two new

constructs for low-coverage data: (1) effective base depth (EBD) as

a pseudo-count for read depth and (2) BAM-specific binomial mix-

ture model (BBMM), which calculates GLs. The SNPTools pipeline

demonstrates high performance when dealing with low-coverage

(approximately 23–63 per sample) data that are collected from

heterogeneous platforms.

Results
SNPTools is organized by functionality into four modules (Fig. 1):

1. EBD calculation: It summarizes mapping and base quality in-

formation to improve computational performance and reduce

storage space.
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2. SNP site discovery: The variance ratio statistic utilizes EBD in-

formation to provide high-quality SNP variant calls. Optional

heuristic filters can be applied subsequently to further improve

the specificity of these calls.

3. GL estimation: BBMM incorporates EBD to generate GLs at dis-

covered variant sites. BAM-specific parameter estimation allows

this algorithm to overcome data heterogeneity due to platforms,

reference bias (from mapping or capture), and low-quality data.

4. Genotype/haplotype imputation: A ‘‘constrained Li-Stephens’’

population haplotype sampling schema that is based on genetic

coalescence reduces computational burden when dealing with

thousands of samples in cohort sequencing projects.

The variants from this pipeline are provided as phased genotype

results in the variant calling format (VCF) (Fig. 1). Users have the

option to apply the pipeline as an integrated NGS variant caller or to

apply individual components to produce intermediate results. These

individual modules and their intermediate results are compatible

with a number of available tools. For example, if variant sites are

discovered using SAMtools (Li et al. 2009), SNPTools can be applied

to generate highly accurate GLs. The GLs can subsequently be used

for genotype and haplotype inference through SNPTools’ imputation

algorithm or others such as Beagle (Browning and Browning 2007).

EBD summarizes read depth information after recalibration
with base qualities and mapping qualities

Quality indicators such as base quality and mapping/alignment

quality scores have been utilized in NGS to improve sensitivity and

specificity in variant calling (DePristo et al. 2011; Li 2011a). These

quality scores are under continuous improvement and are regu-

larly recalibrated by different tools to attempt to accurately reflect

the true underlying sequence qualities (Li 2011b) and are often

used by different heuristic approaches for SNP discovery. For ex-

ample, one may choose to remove all bases with a phred-type

quality score below Q20 and reads with mapping quality score of

zero. This approach is suitable for high-coverage studies (Koboldt

et al. 2009; Nielsen et al. 2011); however, it can result in a pro-

nounced reduction in sensitivity in data where average coverage is

approximately 33–53 coverage per individual.

To maximize the usable read depth information, we calculate

a sample and locus-specific pseudo-count, EBD. For each genomic

position, s, there are Ks number of reads covering the site. An EBD

value is calculated for each nucleotide (A, C, G, and T) by weighing

each individual read, k, with its base quality and mapping quality.

Thus for each sample and locus, we calculate four EBD values, one

for each nucleotide (Equation 1) (for derivation, see Supplemental

Material):

EBDs; g = A;C;G;T = +
Ks

k

1� BaseQualitykð Þ

3 1�MappingQualitykð Þ for all k = g: ð1Þ

In this framework, the maximum EBD value for a single read is

one (base quality and mapping quality are defined as the proba-

bility of an error). This occurs when both base quality and mapping

quality are high. If there is no read level evidence for a given al-

ternative nucleotide, it is assigned a value of zero. SNPTools utilizes

EBD as the underlying read depth throughout our pipeline. For

example, EBD is used in SNP site discovery and in GL estimation

and is used in all derivations in this manuscript.

Variance ratio statistic–based SNP site discovery

A major challenge in variant site discovery from low-coverage data

stems from the relatively high error rate (;1%) that originates

from sequencing and mapping. These errors can introduce false

allele counts that confound calls for the true alternative base(s).

Rare variants with allele frequency <5% in low-coverage studies

can be difficult to differentiate from this background noise due to

the low allele counts in the population. To improve identification

of variants, SNPTools utilizes a two-step SNP site discovery process

that first aggregates reads from all the sequenced samples in order

to identify the alternative alleles and then applies a statistical

test to evaluate whether they are true variant alleles instead of se-

quencing errors.

To identify and select a possible alternative allele, we compute

four population-level EBD values for each site, by summing the

squared EBD values for each of the nucleotides over all samples i =

1,. . .,I. The reference allele is defined by human genome build

hg19 (GRSCh37). We select the nonreference allele (of the

remaining 3 nucleotides) that has the greatest squared EBD evi-

dence as the alternative allele (for details, see Supplemental

Material).

It is important to note that we are employing a biallelic as-

sumption by selecting only a single alternative nucleotide. While

there is evidence that poor modeling of triallelic alleles may result

in false negatives (Le and Durbin 2011), we use a biallelic as-

sumption because triallelic loci only comprise ;0.2% of all SNPs

(Hodgkinson and Eyre-Walker 2010). While this limits our ability

to detect multiallelic variant sites segregating in the population, it

Figure 1. Overview of the SNPTools Pipeline. The SNPTools pipeline
utilizes binary sequence map (BAM) files and then processes them through
four modular steps: calculation of effective base depth (EBD), SNP site
discovery, BAM-specific binomial mixture modeling (BBMM) to calculate
genotype likelihoods, and genotype and haplotype imputation.
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nonetheless reduces by ;60% the number of alternative bases that

are called due to sequencing errors. Further, a biallelic assumption

simplifies downstream analytical steps and reduces the computa-

tional cost in large-scale imputation.

After having selected a candidate alternative allele, we utilize

the variance ratio statistic to evaluate the existence of an alterna-

tive allele. The numerator of the variance ratio statistic calculates

the excess variation above the null hypothesis, i.e., the extra-

binomial variation for a given site. For example, if reads for al-

ternative alleles cluster among a few samples, the extra-binomial

variation will be high when compared to a situation where the

alternative alleles are distributed relatively evenly across sam-

ples. The latter case, the null hypothesis, describes the likely

distribution when alternative alleles are generated by sequenc-

ing errors.

The first term in the numerator is the sum of the estimated

variance in the observed data over all individuals. This is calculated

by summing the square of the difference between the observed

EBD of the alternative allele and the expected EBD of the alterna-

tive allele in the population. The second term is the Bernoulli

variance for the population, assuming a null hypothesis (Equation

2). We omit the site level index, s, for readability:

Variance Ratio Statistic

=
+I

i = 1 ai � e ai + rið Þ½ �2�Te 1� eð Þ
+I

i = 1 Min ai � 0 ai + rið Þ½ �2; ai � 1
2 ai + rið Þ

� �2
; ai � 1 ai + rið Þ½ �2

n o
where

ai = EBDi;g = alternative allele

ri = EBDi;g = reference allele

T = +
I

i

ai + rið Þ

e =
+I

i aið Þ
+I

i ai + rið Þ
: ð2Þ

To enhance our ability to detect true sites of genetic variation,

we take advantage of the genotype property of biallelic SNPs.

For a SNP, there are only three genotypes with corresponding

binomial parameters (0, 0.5, and 1 for Ref/Ref, Ref/Alt, and Alt/Alt,

respectively). We construct a goodness-of-fit test that sums over all

samples the squared difference in the observed EBD for the alter-

native allele and the expected EBD for each of the three genotypes.

The smallest sum provides the best fit for a given genotype. Placing

the goodness of fit test in the denominator has the effect of max-

imizing the variance ratio statistic for true-positive sites (Equation

2). Thus the variance ratio statistic computes a ratio between the

extra-binomial variation and the best genotype fit. Sites with high

levels of extra-binomial variation and a best genotype model will

have the highest computed statistic, while sites with low extra-

binomial variation or no genotype fit will have the lowest statistic.

We rank the candidate sites by their computed variance ratio

statistic (for derivation, see Supplemental Material).

Estimation of GLs by BBMM

As evidence for alternative alleles in low-coverage sequencing data

is limited, it is difficult to calculate the data likelihood for a par-

ticular genotype. Small amounts of variability in mapping and base

quality may result in lower-confidence GL. This variability can also

be exacerbated by operational heterogeneity between sequencing

centers and between sequencing runs. For example, sequencing

centers may vary in sequencers (platforms and versions), aligners,

and other operational parameters, while sequencing runs may vary

in reagent composition or by operator. If summed together, this

variability will decrease the signal-to-noise ratio. In order to over-

come the operational heterogeneity common to large-scale se-

quencing projects with several thousand BAMs such as the 1000G

and projects like GO Exome Sequencing Project (ESP) (http://

evs.gs.washington.edu/EVS/), we developed BBMM, which accu-

rately estimates GLs for putative variant sites by modeling intra-

BAM variability. The millions of putative SNP sites within each

BAM provide SNPTools a large data set from which it is possible to

perform accurate BAM-specific genotype class parameter estima-

tion (Fig. 2A). These parameters are then used to calculate the GL in

light of the EBD evidence for each putative site.

For each sample i, we model the BAM as a mixture of three

binomials that each represent the three genotype classes rr = Ref/

Ref, ra = Ref/Alt, and aa = Alt/Alt. Each of the three genotype classes

has a weight coefficient wv, where the sum of the weights is equal

to 1, and a binomial probability pv, which is defined as the prob-

ability of a reference read. If sequencing was error free, the bi-

nomial probability would be equal to 1, 0.5, and 0 for v = rr; ra; aa;

in practice, this parameter deviates from ideal values due to se-

quencing variability. To estimate the value of these parameters, we

employ the expectation-maximization (EM) algorithm (Dempster

et al. 1977; Bishop 2006).

We initialize the EM algorithm by introducing a binary three-

dimensional latent variable zs;v = 0;1f g, which assigns each site to

a genotype class. This variable takes a 1 of V representation; i.e.,

zs;v = 1 if and only if the site is in genotype class v (Bishop 2006).

The EM algorithm allows us to iteratively compute the maximum

likelihood expectation (MLE) of the latent variables and the un-

known parameters. We start the E-step by initializing the param-

eters {p0
v ;w

0
v } and computing the expectation of zs;v with respect to

the initial parameters and the data {rs; as}. For the M-step, the

updated parameters pt + 1
v ;wt + 1

v maximize the joint data likelihood

of {zs;v ; rs; as} (for details, see Supplemental Material).

After convergence, we use these parameters to calculate the

GL at each site given the genotype class (Equation 3):

GLs;v = rr;ra;aa = p asjzs;v ; pv

� �
= Binomial rs + as; pv

� �
where

Binomial rs + as; pv

� �
=

rs + as

as

� �
pv

as
1� pv

� � rs;

:

ð3Þ

A binomial mixture is a flexible continuous distribution com-

posed of three parametric densities.

Genotype/haplotype inference via imputation using
a ‘‘constrained Li-Stephens’’ algorithm

For most sites, utilizing a maximum likelihood method for geno-

typing will result in low-accuracy genotypes, particularly in het-

erozygous calls due to the dearth of coverage. Imputation is thus an

integral part of accurate genotype calling in low-coverage se-

quencing projects (Li et al. 2011; Nielsen et al. 2011). Accurate

phased genotype imputation requires capturing LD patterns that

result from recombination (Scheet and Stephens 2006).

Many imputation algorithms are based on work on coalescent

recombination processes (Kingman 1982; Hudson 1983). Hidden

Markov model (HMM) block-based cluster models divide the ge-

nome into predetermined segments of high LD based on known

recombination rates and allow cluster assignment to shift only

Genotype/haplotype inference in population NGS
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along these boundaries (Greenspan and Geiger 2004). This ap-

proach, while computationally efficient, cannot accommodate more

complex patterns of LD. The PAC model of Li and Stephens (2003),

which underlies the Markov chain-based PHASE software, flexibly

accommodates patterns of LD by conditioning the joint distribu-

tion of sampled haplotypes on the recombination rate. Additional

HMM-based haplotype estimation packages such as fast PHASE

(Scheet and Stephens 2006) and MaCH (Li et al. 2010) share these

underlying features; i.e., these models utilize sampled haplotypes

as a mosaic of a set of population haplotypes but improve com-

putational time.

Our imputation method also derives from the genetic co-

alescence-based method. However direct application of the Li and

Stephens (2003) method is computationally expensive; the esti-

mation of a multihaplotype mosaic model by HMM is demanding

due to the large number of hidden states that scales with the

number of samples I [O (I 2) states and O ( I 4) transitions]. In our

model, the ‘‘constrained Li-Stephens’’ method, we use a haplotype

template-sampling scheme that constrains the number of parental

haplotypes to only four during the HMM. This tremendously eases

the computational burden by allowing us to sample in constant

time [from O (I 4) to ;O (I ) time].

To begin the phasing and imputation process, we first ini-

tialize haplotypes for each individual by randomly generating

haplotypes given the set of observed GL. We then iterate the fol-

lowing two steps to produce accurate phased genotypes. (1) For

each sample Hi, we search for a set of four ‘‘parental’’ haplotypes,

Hi*, by proposing haplotypes from the sample population based on

observed GLs for each sample. We accept and reject it according to

a Metropolis Hastings (M-H) acceptance criterion (see Supple-

mental Material). We repeat the M-H sampler a fixed number of

times. (2) Once the set of four parental haplotypes are selected, we

refine the sample’s haplotype Hi, using a four-state HMM where

the sample haplotype is a mosaic combination of the four parental

haplotypes. We repeat the above procedure defined for all samples

until convergence.

Figure 2. Illustration of the BBMM. (A) BBMM models each BAM as a mixture of three binomials that represent the three genotypes classes (rr = Ref/Ref,
ra = Ref/Alt, and aa = Alt/Alt). Each of these classes has a class-specific binomial probability, pv which is defined as the probability of a reference read for
a given genotype. BBMM estimates the parameters for each BAM by pooling data from all variant sites (approximately 34 million candidate sites that we
discovered in the 1000G). (B–D) To qualitatively view the cluster assignment for each site, we compute an expected number of reference alleles by
multiplying the genotype likelihood (GL) for each genotype by the number of reference alleles. We find that BBMM is able to cluster the genotypes
for Illumina, SOLiD, and 454 sequencers. As representative samples, we plot HG00096 sequenced with the Illumina platform and aligned using BWA
(B), HG00076 sequenced with the SOLiD platform and aligned using BFAST (C ), and NA07347 sequenced by the 454 platform and aligned using
SSAHA (D).
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Applying SNPTools to obtain high-quality results from
the 1000 Genomes Low-Coverage NGS data

The 1000G low-coverage component (LowCov) sequenced 1092

individuals from 14 ethnicities at an average coverage of ;33–63

(Methods) (Abecasis et al. 2012). The data were produced at nine

different sequencing centers using three NGS platforms, Illumina,

SOLiD, or Roche 454 (Methods). The alignments were produced

using BWA (Li and Durbin 2009), BFAST (Homer et al. 2009), and

SSAHA (Ning et al. 2001) for different platforms (Illumina, SOLiD,

and Roche 454), respectively. This level of heterogeneity reflects

the reality of many large cohort disease studies; therefore, the

challenges of the 1000G can be generalized and transferred to

other ongoing large-scale studies as well. We have applied SNPTools

to the 1000G LowCov data as a proof of principle and obtained

high-quality results.

Variance ratio statistic produces candidate SNP sites with high
sensitivity and specificity

Using a cut-off of 1.5 for our variance ratio statistic (see Supple-

mental Material), we generated an autosomal unfiltered SNP site

list with 34,656,295 candidate SNP sites. These sites had an overall

SNP transition/transversion ratio (Ti/Tv) of 2.11, a value consistent

with genome-wide expectations, ratios found using GATK

(DePristo et al. 2011), and values found in the 1000G Pilot (Sup-

plement Table S3; The 1000 Genomes Project Consortium 2010).

The Ti/Tv ratio is an important metric for assessing the specificity

of new SNP calls, with the caveat that uncertainties in Ti/Tv ratio

limit its interpretation in cases of minor differences in Ti/Tv ratios

(<0.05) (DePristo et al. 2011). We evaluated sensitivity and speci-

ficity of the unfiltered call set using sites on Illumina 2.5M OMNI

SNP microarray (Methods). We compare to the microarray because

it is an orthogonal technology to NGS (Supplemental Table 3).

Sensitivity for polymorphic sites was 97.9% (2,138,395 of 2,183,344

polymorphic OMNI SNP sites were discovered). The false-discovery

rate (FDR) was 1.95% (1946 of 99,817 monomorphic OMNI SNP sites

were falsely discovered), similar to the rates found by QCALL in the

1000G Pilot CEU data (Supplemental Table 3; Le and Durbin 2011).

To improve SNP specificity, we applied the following optional

heuristics: (1) maximum population read depth, (2) minimum

population read depth, (3) strand bias as tested by a 2 3 2 con-

tingency table, and (4) position bias to the unfiltered SNP site.

These criteria effectively removed false-positive sites but at the cost

of reducing sensitivity (Methods; Supplemental Table 1). After

application of these heuristics, 5.5% of the originally discovered

sites were removed. The remaining 32,737,954 SNP sites had an

overall Ti/Tv from 2.11–2.15. This call set included 7.2M pre-

viously discovered SNPs (ascertained by comparing to dbSNP129)

and 25.6M novel SNPs (Fig. 3A). As expected, the vast majority of

novel SNPs had minor allele frequency (MAF) < 1%, with the ma-

jority of the SNPs with MAF < 0.25% (Fig. 3B). The Ti/Tv ratio for

known and novel sites of 2.17 and 2.15, respectively, was compa-

rable and indicated a high-quality discovery process (Fig. 3C). The

false-positive rate was reduced to 1.29% (1284 of 99,817 mono-

morphic OMNI SNP sites were falsely discovered), a reduction of

;30% in FDR when compared to the unfiltered call set. However

the sensitivity was also reduced by 4.3% to 93.6% (Supplemental

Table S2). The removed sites had a Ti/Tv ratio ranging from 1.30–

1.74, a large deviation from genome-wide expectations and an

indicator that these were largely false positive sites (Supplemental

Table S3).

To validate the SNP discovery methods, the 1000G Consor-

tium also conducted a SNP validation of 300 low-coverage sites in

eight samples selected from the variant quality score recalibration

Figure 3. SNP statistics for sites discovered in 1000G PHASE1 with SNPTools. SNP sites were discovered using the variance ratio statistic. The unfiltered
autosomal site list was composed of 34,656,295 candidate SNP sites, with an average Ti/Tv ratio of 2.11. SNPs were filtered using four criteria (Sup-
plemental Material) to produce a final list of 32,737,954 SNPs with a Ti/Tv ratio of 2.15. (A) We found that 78.3% of the ;32.7 million SNP were novel
when evaluated with dbSNP 129. These novel sites had a Ti/Tv ratio of 2.15, which was comparable to the Ti/Tv of known sites, 2.17. (B) The site frequency
spectrum of our discovered SNPs reveals that most novel SNPs were rare with MAF < 0.5%. (C ) We provide discovery statistics for Chr20 and for the
whole genome. Known SNPs are defined as being present in dbSNP129. SNPTools had a low false-discovery rate of 1284 sites out of 99,817 monomorphic
OMNI sites.
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(VQSR) consensus list version 2b (Methods). This site list was

pooled from the SNP site lists of five different sequencing centers,

which includes BCM SNPTools. The SNPTools filtered site list over-

lapped 297 of these randomly selected 300 selected sites. The three

sites not included in our call set were singleton sites. By use of PCR,

this study showed an overall confirmation rate of 98.2%, with 100%

confirmation of sites with >1% MAF, all of which were included in

the SNPTools call set. Although a small sample size, this study pro-

vides further support for the quality of our site list (Methods).

To further investigate the false-negative rate of the SNPTools

discovery process, we compare our SNP discovery against the

363,034 sites discovered in the Phase 1 exome consensus. Sites

discovered in the exome project benefit from the high coverage

provided by exome capture and sequencing. This comparison

provides an upper bound on the discovery rate. We found that our

SNPTools discovery process was able to discover >43.6% (158,431)

of all SNPs discovered in the Phase 1 exome project, with 96.7%

sensitivity for SNPs with MAF > 1.0%. Of the undetected SNPs,

90.3% had a MAF < 0.10% (i.e., singletons, doubletons), while

99.1% had MAF < 0.50%. This mainly reflects the limitations of

low-coverage sequencing and not SNPTools.

High-quality GLs were generated using BBMM

The BBMM algorithm overcomes platform, technology, and align-

ment heterogeneity by estimating BAM-specific parameters for

the VQSR2b sites that were discovered in the 1000G Phase 1

(Methods). BBMM generates GLs by separately modeling each

BAM over all VQSR2b sites as a mixture of three binomials (Fig. 2A).

We plot the expected number of reference alleles for all sites for

samples HG00096, HG00076, and NA07347 as examples. These

samples were sequenced using the Illumina, SOLiD, and 454

platforms, respectively. Although these platforms utilize different

technologies for sequencing, Illumina (sequencing by bridge am-

plification), SOLiD (bead and ligase based sequencing), and 454

(pyrosequencing) (Shendure and Ji 2008), we nevertheless found

that BBMM is able to cluster the three different genotypes Ref/Ref,

Ref/Alt, and Alt/Alt for the three. However the clustering between

genotype groupings appears more distinct for the Illumina and

SOLiD sequencers than for 454, particularly for Ref/Alt genotypes

(Fig. 2B–D).

We further examine the classification of EBD into the three-

genotype classes by evaluating the ability of raw GL to estimate

genotypes using maximum likelihood. While genotypes estimated

via imputation are more accurate, we compare chromosome 20

genotypes estimated from SNPTools GL using maximum likeli-

hood and compared them to OMNI genotypes to identify a maxi-

mum error rate for genotype accuracy. We found that the genotype

discordance rates over all samples for Ref/Ref, Ref/Alt, and Alt/Alt

to be 0.4%, 28.2%, and 1.1%, respectively. The lower accuracy in

heterozygous estimates is expected as the low-coverage nature of

the project results in a high probability that only one of the two

haplotypes have been sampled at a specific site. For example, for a

heterozygous site with 53 coverage, there is an 18.75% (binomial

distribution) chance that only zero or one alternative allele is

sampled. This results in underrepresentation of heterozygous ge-

notypes when using maximum likelihood variant calling. As sug-

gested by Figure 2, B through D, there were sequencer-specific dif-

ferences in genotype accuracy when estimated using maximum

likelihood. Illumina had an average discordance rate of 0.43%,

27.0%, and 0.92% for Ref/Ref, Ref/Alt, and Alt/Alt alleles; however,

SOLiD had discordance rates of 0.26%, 35.24%, and 2.70%, while

454 had discordance rates of 0.26%, 47.52%, and 1.13%. These

differences were likely due to reference bias in SOLiD and com-

paratively lower read coverage in Roche 454.

To evaluate clustering quality in BBMM, we plotted the bi-

nomial probability, prr, (Ref/Ref) and paa, (Alt/Alt) for all samples

(Figure 4A–D). As the binomial probability can reflect the se-

quencing variability in a BAM, we expect samples to have high

correlation between the binomial probabilities. Although we find

some variation between samples, binomial probabilities for these

genotypes are highly correlated with r 2values of 0.55, 0.85, and

0.75 for Illumina, SOLiD, and 454 sequencers, respectively. While

the correlation of 0.55 for Illumina sequencers is not as high as for

SOLiD or 454, the correlation is nonetheless significant given the

increased number and diversity of ethnic populations completed

on Illumina (946 BAMs, 14 populations) relative to SOLiD (142

BAMs, 12 ethnic groups) and 454 (15 BAMs, one ethnic group). In

addition, Illumina samples were completed at multiple sequencing

centers, while SOLiD and 454 samples were completed at a single

sequencing center. These plots also revealed samples that diverge

drastically from the main population of samples. These samples are

located in the top left corner of Figure 4A; upon further examination,

these deviated samples were sequencing runs that had poor coverage

or operational issues such as lane swap (data not shown).

SNPTools imputation generated accurate genotypes/haplotypes
from SNPTools GL

Using GLs generated by the BBMM module, we generated phased

genotype imputation call sets of chromosome 20 using optimal

parameters for the imputation engine (chunk size of 200 sites

for 200 Markov chain Monte Carlo [MCMC] iterations) (Supple-

mental Material). The imputation generated highly accurate SNP

genotypes when compared to OMNI microarray (Methods), with

an overall discordance rate of 0.55%. This error rate is similar to the

discordance rate found in site-independent, high-coverage indi-

vidual calls (0.5%–1%) but is still higher than the microarray error

rate (0.2%;0.3%). In addition, the nonreference error rate, which is

inclusive of all alleles that are not Ref/Ref, was 1.24% (Table 1).

To evaluate genotype accuracy, we utilize benchmark geno-

types generated by the 1000G with Illumina 2.5M OMNI SNP

microarray. In Table 1, we compare the accuracy of data sets im-

puted with Beagle and SNPTools using GLs generated by SNPTools

and SAMtools (Methods). Compared with SAMtools GL, SNPTools

GL provided improvements in Non-Ref accuracy (Ref/Alt and Alt/

Alt), with decreases in discordance from 1.40% to 1.24% and

1.67% to 1.38% when imputed using SNPTools and Beagle, re-

spectively (Table 1). Overall, we found that SNPTools imputation

was more accurate for Ref/Ref and Ref/Alt genotypes but that

Beagle provided more accurate Alt/Alt imputation. A comparison

of four genotype imputation methods using HapMap3 SNPs by

Menelaou and Marchini (2012) also found that SNPTools provides

the highest accuracy heterozygous and Non-Ref genotypes.

To evaluate haplotype quality, we utilize benchmark haplo-

types generated by the 1000G for Phase 1 (Abecasis et al. 2012).

These high-quality haplotypes were generated by phasing array

genotypes (Illumina Omni 2.5M SNP array) for 1856 samples (all

Phase 1 samples + family members + unrelated individuals for later

phases of the project) using SHAPEIT (Methods; Delaneau et al.

2008, 2012). SHAPEIT handles mixtures of unrelated, duos, and

trios. While SHAPEIT haplotypes are phased with statistical in-

ference from a population and are thus not perfect, they none-

theless provide a high-quality comparison point. We compare our

phasing results using SNPTools phasing with SNPTools GL against
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haplotypes generated by Beagle using SNPTools GL. Haplotype

phasing was evaluated in the African (AFR), American (AMR), Eu-

ropean (EUR), and Asian (ASN) populations using three metrics:

switch accuracy, incorrect genotype percentage (IGP), and in-

correct haplotype percentage (HIP) (Marchini et al. 2006) (Methods).

In Figure 5A, we compare switch accuracy and found that switch

accuracy with SNPTools was better in all populations compared

with results produced by Beagle (P < 10�16, two-sample proportion

test). When compared using IGP, SNPTools performed better in

EUR and ASN populations but moderately

worse than Beagle in the AMR and AFR

admixture (P = 0.01, two-sample propor-

tion test) (Fig. 5B). Evaluating HIP on all

populations showed that SNPTools phased

genotypes were more accurate, particularly

at distances >40 kb [log10 (40 kb);1.6]

(Fig. 5C). Last, we evaluated each of the

ethnic populations using SNPTools (Fig.

5C). With SNPTools (Beagle showed sim-

ilar results), phasing of AFR haplotypes

was less accurate at shorter distances, likely

due to their higher genomic diversity,

however after 100 kb [log10 (100kb) = 2],

all populations (EUR, AMR, and ASN)

showed similar levels of HIP.

Computational performance

SNPTools is a relatively lightweight variant calling pipeline. By

using EBD, a whole genome with 43 coverage can be compressed

from a 60 Gb BAM file into a 1- to 2-Gb .ebd file, a 30- to 60-fold

compression. This allows for high performance input/output (I/O)

when processing large numbers of samples and sites. Site discovery

for the entire 1092 samples in the Phase 1 pipeline occurred in

several hours. Once site discovery is complete, GL computation,

Table 1. Genotype discordance rates for SNPTools and Beagle

GL source
Imputation

engine
Reference

panel Ref/Ref Ref/Alt Alt/Alt Non-Ref Total

SNPTools SNPTools OMNI 0.22% 1.32% 1.11% 1.24% 0.55%
SAMtools SNPTools OMNI 0.20% 1.51% 1.21% 1.40% 0.59%
SNPTools Beagle OMNI 0.25% 1.56% 1.08% 1.38% 0.62%
SAMtools Beagle OMNI 0.41% 1.97% 1.18% 1.67% 0.82%

Discordance rates for imputed genotypes on chr20, created using 200 MCMC iterations, and a chunk
size of 1024 was calculated by comparing genotypes to Illumina OMNI microarray. We evaluated
genotype accuracy using SNPTools and SAMtools GL and SNPTools and Beagle imputation. Discor-
dance rates were improved using SNPTools instead of SAMtools GL. In particular, SNPTools GL im-
proved Non-Ref discordance with mixed effects on the Ref/Ref discordance rate, depending on the
imputation engine. Overall SNPTools imputation also provides more accurate Ref/Ref and Ref/Alt im-
putation when compared to Beagle.

Figure 4. Evaluation of estimated binomial probabilities by plotting all BAMs. BBMM models each BAM as a mixture of three binomials. For each
sample on each NGS platform (Illumina, SOLiD, and Roche 454), we plot the binomial probability prr vs. paa. The error free expectation for these values is 1
and 0, respectively. As the binomial probability accounts for sequencing variation within a sample, we expect correlation between these two values. (A–C )
We find that correlation is highest for SOLiD samples and lowest for Illumina samples. (D) While the binomial probabilities do vary between samples,
BBMM is able to model variation within each sample even if they are sequenced using different technologies. Samples located in the top left corner of the
plot (high-sequencing variability/error), upon further examination, are low quality due to known operational mishaps.
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using BBMM, is ;1 h per BAM. Last, SNPTools can impute/

phase ;200,000 sites per hour when using 128 threads. As

SNPTools is parallelizable, great improvements in computational

time are possible (see Supplemental Material).

Discussion
Accurate variant calling (of both common and rare) from NGS data

is critical for the success of many ongoing large-scale population

and association studies (The 1000 Genomes Project Consortium

2010). Due to current NGS cost constraints, such consortium

studies may utilize a low-coverage sequencing design (Li et al.

2011; Nielsen et al. 2011) carried out across multiple laboratories

with different data generation and processing procedures. There-

fore, this experimental design poses unique computational chal-

lenges for the accurate detection and genotyping of population

SNPs. We herein provide an integrative pipeline, SNPTools, that

applies novel algorithms to detect, impute, and phase SNPs. It has

achieved high sensitivity and specificity from low-coverage,

whole-genome sequencing in the 1000G data set.

We have designed our pipeline to be flexible in using inputs

from other GL generation and imputation engines. For example,

BBMM can intake any site list and evaluate the likelihood of po-

tential SNPs for each sample. This means that we can utilize a

comprehensive SNP list from a continually updated database such

as dbSNP to ensure that every known putative SNP is evaluated in

any samples in future population-based studies. Also, although we

currently calculate GLs for only a single BAM, in cases where

multiple BAMs are available for one sample, we can extend the

above model to compute BAM-specific parameters while comput-

ing joint GLs from data observed across multiple BAMs. This is

possible in the 1000G where there are BAMs from different plat-

forms, SOLiD, Illumina, or Roche 454, for single samples using

different designs (LowCov and Exome Capture). We expect this

situation will become more common as exome capture is supple-

mented and supplanted by whole-genome sequencing. Last, our

imputation engine may provide a unique pathway to incorporate

prior information from SNP microarrays. For instance, known geno-

types from arrays can be incorporated as strong priors (high like-

lihood). Given the large amount of knowledge that already and

Figure 5. Haplotype phasing accuracy evaluation. SNPTools and Beagle are compared against the benchmark haplotypes from the 1000G Phase 1. (A)
Switch accuracy between SNPTools and Beagle showed that SNPTools had higher switch accuracy. (B) While SNPTools had moderately worse perfor-
mance on incorrect genotype percentage (IGP) for admixture populations (American [AMR] and African [AFR]), it showed comparable performance on all
other populations. (C ) Incorrect haplotype percentage (HIP) for AFR samples (representative of all populations). Phasing by SNPTools and Beagle were
comparable until 100 kb [log10 (100kb) = 2]. At longer distances, SNPTools was moderately more accurate than Beagle. (D) Phasing by SNPTools on AFR,
Asian (ASN), AMR, and European (EUR) populations shows that AFR samples were more likely to be incorrectly phased at a given distance (data not shown).
However, at 100 kb, all populations have an HIP of 65%–70%.

Wang et al.

840 Genome Research
www.genome.org



will continue to originate from array-based technology, our pipe-

line provides opportunities to integrate those results with NGS.

Similarly our imputation platform also provides opportunities

to incorporate GLs for biallelic structural variants, copy number

variants, and INDELs (Lu et al. 2012) produced by other variant

callers (Li et al. 2009; McKenna et al. 2010; Albers et al. 2011;

DePristo et al. 2011; Handsaker et al. 2011). Nonetheless chal-

lenges remain; work on incorporating multiallelic SNPs as well

as integration of polymorphic structural variants, copy number

variants, and INDELs from low-coverage genomic data con-

tinues to be compelling. Adoption of these more complex geno-

mic features will improve the fidelity of large-scale association

studies.

Methods

Data set description
We applied our pipeline to LowCov Phase I BAMs (20110213 BAM
index file). The data set contains 1092 individuals (1103 BAMs)
from 14 populations (Americans of African ancestry in SW USA
[ASW], Utah residents [CEPH] with Northern and Western Euro-
pean ancestry [CEU], Han Chinese in Beijing, China [CHB],
Southern Han Chinese [CHB], Colombians from Medellin,
Colombia [CLM], Finnish in Finland [FIN], British in England and
Scotland [GBR], Iberian population in Spain [IBS], Japanese in
Tokyo, Japan [JPT], Luhya in Webuye, Kenya [LWK], Mexican an-
cestry in Los Angeles, USA [MXL], Puerto Ricans from Puerto Rico
[PUR], Toscani in Italia [TSI], and Yoruba in Ibadan, Nigeria [YRI]),
representing continental groups—AFR, AMR, ASN, and EUR. These
BAMs were sequenced on different platforms at nine different se-
quencing centers: Illumina GAII and HiSeq (946 BAMs), SOLiD
(142 BAMs), and Roche 454 (15 BAMs) with an average coverage
of 53 (http://www.1000genomes.org/sites/1000genomes.org/files/
documents/20101214_1000genomes_samples.xls). These BAMs
passed a series of consensus preprocessing procedures previously
described in the Pilot paper (The 1000 Genomes Project Consortium
2010; Abecasis et al. 2012).

SNP site filtering

Although the unfiltered site list generated using our variance ratio
statistic (see Results) provides high-sensitivity results, optional
filtering of the site list using heuristics increases the specificity of
SNP discovery, however, with some reduction in sensitivity. Our
pipeline employs four widely used heuristics to improve SNP
specificity: (1) maximum aggregated read depth in the population,
(2) minimum aggregated read depth in the population, (3) strand
bias, and (4) position bias to the read ends. For tests 1 and 2 in-
volving population read depth, we removed SNP sites that deviated
significantly from the median values for the remaining SNPs. To
evaluate strand and position bias, the means of the reference and
alternative bases were compared using Fisher exact test. We re-
moved SNP sites based upon P-values (see Supplemental Material).
Many of these filters can be executed on the VCF level.

SNP site validation

The 1000G Phase 1 conducted a SNP validation of 300 low-cov-
erage sites on the VQSR2b consensus list using PCR. Two hundred
ninety-seven of these sites were included in the SNPTools filtered
site list. The filtered SNPTools site list was included in the 1000G
Phase I release (http://www.1000genomes.org/node/506) and was
combined with other call sets to produce the consensus VQSR2b
(Methods) site list.

GL and genotype evaluation

SAMtools and SNPTools pipelines generated GLs at VQSR2b
sites. Both sets of GL were then imputed using SNPTools and
Beagle (Browning and Browning 2007). The 1000G Phase 1 VQSR2b
site list is the consensus site list for the project. It was compiled with
contributions from different variant callers including SNPTools.

The VQSR2b site list is located at ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/technical/working/20110621_vqsr_sites_v2b/.

Phased imputed genotypes using SAMtools and SNPTools GL
and Beagle are located at ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/technical/working/20110512_wg_VQSRv2_GL_beagle_genotypes/.
The GL are annotated directly into the vcf files for each chromosome.

Phased imputed SNPTools genotypes using SNPTools are located
at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20101123/
interim_phase1_release/. GL for SAMtools were extracted from an-
notated VCF files from Beagle and then used for imputation in the
SNPTools pipeline.

All individuals were genotyped using HumanOmni1-Quad
BeadChip microarray from Illumina. Phasing was completing us-
ing SHAPEIT (Delaneau et al. 2012). The phased OMNI genotypes
from the interim release are located at ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/technical/working/20110426_omni_phased_vcfs/.

Discordance rates

We measure the error by the discordance rate (percentage) for the
genotype classes, Alt/Alt, Ref/Alt, and Ref/Ref. Comparisons be-
tween discordance rates were completed using the two-sample
proportion test on statistical software package R (version 2.12.0).
We also evaluate a nonreference genotypes and an overall discor-
dance rate. Total/pooled discordance rate and ‘‘non-ref’’ discor-
dance rate are defined at http://www.broadinstitute.org/gsa/wiki/
index.php/File:GenotypeConcordanceGenotypeErrorRate.png.

Evaluation of phased results

Phased results for chromosome 20 were compared against phased
OMNI genotypes. Three different criteria were used to evaluate the
accuracy of phased results (Li et al. 2011). These criteria were de-
fined by Marchini et al. (2006) to evaluate phasing against trios.

1. Switch accuracy: Switch accuracy is one minus the percentage of
switches in heterozygous sites necessary to recover the correct
phase of an individual. It is defined in Lin et al. (2004) as (n – 1 –
sw)/(n – 1), where n is the number of heterozygous sites and sw
the number of switches between neighboring heterozygous
sites needed to recover the original desired sequence (Marchini
et al. 2006). Switch accuracy was calculated for each sample and
averaged over the ethnic grouping.

2. IGP: This is defined as the number of heterozygotes that were
phased incorrectly divided by the total number of imputed
genotypes. IGP was calculated for each sample and averaged
over the ethnic grouping.

3. HIP: This is the percentage of individuals whose haplotypes are
not completely correct for a given distance. Note that this mea-
surement eventually equals 100% at a long enough distance.

Data access
SNPTools can be found at http://sourceforge.net/projects/snptools/.
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