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The human genome encodes 1500–2000 different transcription factors (TFs). ChIP-seq is revealing the global binding
profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly
next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific.
Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead
done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for
transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all
major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million con-
served, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene
functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of
particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM
(predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety
of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%)
tested binding site regions in five different contexts act as enhancers in functionally matched cells.

[Supplemental material is available for this article.]

The complex spatiotemporal regulation of gene expression is a

critical component in vertebrate development, evolution, and

disease (Visel et al. 2009; Levine 2010). Understanding this regu-

lation involves unraveling the cis-regulatory architecture, namely,

the biological roles of transcription factors, their target genes in

different biological contexts, and the regulatory elements such as

promoters and enhancers through which they exert their effect

(Michelson 2002).

The recent coupling of chromatin immunoprecipitation with

deep sequencing (ChIP-seq) is allowing unprecedented and mostly

unbiased access to the whole genome landscape of transcription

factor (TF) binding (Bernstein et al. 2012). Hundreds of such ex-

periments for different TFs under different conditions have re-

vealed a few general phenomena. A typical TF reproducibly binds

thousands of genomic regions in any given context. The majority

of bound sites are distal, located 10–1000 kb upstream of or

downstream from the nearest transcription start site. Transcription

factors almost invariably are found to bind near a large number

(dozens to hundreds) of target genes involved in a shared bi-

ological function, with most of these binding sites also being distal

(McLean et al. 2010). Interestingly, TFs also often bind not once

but multiple times next to some of their best-known functional

target genes. We have recently incorporated all of these observa-

tions into a new statistical test used to reveal the functions of

a ChIP-seq data set, which we call GREAT (for genomic regions

enrichment of annotations tool) (McLean et al. 2010).

GREATand similar analyses reveal yet another key property of

ChIP-seq experiments—their context dependence. While TFs are

often pleiotropic, playing key roles in multiple independent cel-

lular contexts, a ChIP-seq experiment reveals only the subset of

functions relevant to the assayed cell population. For example,

when SRF—an important regulator of muscle development—is

assayed by ChIP-seq in immune cells, its role in muscle develop-

mental is not readily apparent (Valouev et al. 2008). To examine

the function of SRF in muscle cells, muscle cells must be assayed.

Although ChIP-seq is a high-throughput approach, the required

expense, time, and technical skill result in it being only rarely used

as an exploratory tool to ask whether a TF has a role in a newly

hypothesized cellular context. Almost invariably, a TF ChIP-seq is

attempted in a given context only after the TF has already been

shown to be important in said context. Yet, the human genome

encodes 1500–2000 different transcription factors, and recent

progress shows that many factors play important roles in biological

contexts that remain to be discovered. Moreover, the genome itself

encodes the transcriptional response of all cells in our body under

numerous different cellular conditions.

Motivated by these observations, we aimed to apply tran-

scription factor binding site prediction to produce novel hypoth-

eses for transcription factor function in a wide range of contexts, as

a guide for further experimental exploration. Recent technologies

including protein binding microarrays (Berger et al. 2008), high-

throughput SELEX ( Jolma et al. 2010), and ChIP-seq itself have

facilitated the quantification of the binding preferences of hun-

dreds of different TFs. Meanwhile, decades of protein research have

been collected into biological ontologies and large gene annotation
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repositories. And lastly, while single sequence/species prediction of

transcription factor binding sites results in far too many erroneous

predictions, the subset of binding site predictions that shows cross-

species sequence conservation exhibits much higher specificity as

measured by ChIP-seq occupancy of predicted sites (Xie et al. 2009)

and a higher likelihood of residing within active enhancers (Cheng

et al. 2008; Rada-Iglesias et al. 2012). Although a conservation-

based assay misses many species-specific functional binding sites

(Blow et al. 2010; Schmidt et al. 2010), it is not limited to a single

cellular context and allows exploratory questions about the roles of

a transcription factor.

Previous approaches to this challenge have focused on small

numbers of TFs, gene promoters, and specific biological processes,

thus ignoring the vast majority of binding events (Das et al. 2006;

Down et al. 2007; Sinha et al. 2008). To extend this work, we here

develop the PRISM (predicting regulatory information from single

motifs) method, which combines genome-wide conserved binding

site prediction with transcription factor and binding site function

prediction. We introduce the excess conservation score, an im-

proved measurement of binding site conservation that favors sites

that are more conserved than neighboring nucleotides. We com-

pile a nonredundant, high-quality library from more than 800

public transcription factor motifs, covering all major DNA binding

domains, and predict 3.3 million binding sites for all factors across

the human and mouse genomes. We then place GREAT (McLean

et al. 2010), a tool for functional analysis of a set of cis-regulatory

regions, in a novel statistical framework that lets us predict tran-

scription factor and binding site functions en masse. In total, we

infer more than 2500 transcription factor functions, covering

nearly 7700 different target genes. We show that our inferences

include hundreds of transcription factor function predictions di-

rectly supported by existing literature and annotations, for each of

which we implicate tens to hundreds of novel binding sites. We

validate a subset of our predictions experimentally in a variety of

functional contexts. Lastly, we present novel hypothesized tran-

scription factor functions with supporting evidence. We offer

the PRISM predictions to the community through a web portal at

PRISM.stanford.edu.

Results

Improving transcription factor binding site prediction using
excess conservation

A long line of previous works (culminating in Xie et al. 2009) has

defined a methodology for predicting conserved binding sites

from a genome-wide multiple alignment and the position weight

matrix, or motif, representation of transcription factor binding

specificity. However, focusing on the motif alone ignores the sur-

rounding sequence in which prediction is done. Mammalian ge-

nomes are full of long (100–1000 bp), highly conserved noncoding

regions (Waterston et al. 2002; Bejerano et al. 2004). The more con-

served a longer genomic stretch is, the more likely it is to include

conserved binding site–like patterns in it by chance (see Fig. 1B). Ac-

counting for this differential likelihood of false predictions has been

valuable in improving earlier methods (Kheradpour et al. 2007).

We have developed an adjustment to the latest conservation

metrics that accounts for the conservation level of the predicted

binding site’s immediate genomic vicinity (Fig. 1A–C). We assign

each binding site prediction an ‘‘excess conservation’’ score, which

measures how unlikely it is for the binding site to be conserved by

chance to the observed depth in a particular region of the genome

based on the behavior of shuffled versions of its motif in similarly

conserved regions of the genome (see Methods). Shuffled motifs

have previously been shown to be the most realistic null model for

motif-based prediction methods (Lewis et al. 2003; Kheradpour

et al. 2007). The method explicitly favors binding sites that are

conserved more strongly than surrounding sequence, which sug-

gests evolutionary constraint aimed at transcription factor binding

site preservation (Fig. 1C). While motif conservation-only metrics

gravitate toward prediction in deeply conserved regions, the excess

conservation adjustment produces predictions with a conserva-

tion profile matching closely to that of actual ChIP-seq binding

sites (Fig. 1D). The excess conservation method also more accu-

rately identifies binding sites, as measured by area under the curve

analysis of overlap with ChIP-seq, for 44 of 47 (94%) examined

transcription factors (Supplemental Table 1).

Genome-wide binding site prediction reveals trends
in mammalian transcription regulation

We obtained 389 motifs covering 289 factors from UniPROBE

(Newburger and Bulyk 2009), 133 motifs covering 90 factors from

JASPAR (Bryne et al. 2008), and 294 motifs covering 151 factors

from TransFac (Matys et al. 2006). Careful semiautomated curation

to select only high-quality, nonredundant motifs (see Methods)

resulted in 332 motifs, covering at least one member from every

major DNA binding domain family (Fig. 2A).

For each motif, we identified the approximately 5000 in-

stances genome-wide with the highest excess conservation scores,

for a total of nearly 3.3 million predicted binding sites for the

human and mouse genomes across all motifs at a false-positive

rate of 0.6 (see Methods). While our predictions are encourag-

ingly enriched in the proximal promoter (2.3-fold compared with

genome-wide expectation), >90% of binding site predictions lie

outside of proximal promoters (Fig. 2B).

The predictions reveal interesting trends in the propensity of

certain DNA binding domain families to target genes more proxi-

mally or distally than others (Fig. 2C). We associate binding sites to

target genes using default GREAT gene regulatory domains (basal

domain: 5 kb upstream + 1 kb downstream; distal domain: up to 1

Mb in each direction to the nearest basal domain), which we pre-

viously have shown is ideal for analysis of distal binding sites from

ChIP-seq (McLean et al. 2010). For the most proximal family, the

E2F/TDF genes, >47% of binding site to target gene associations are

within 5 kb of the transcription start site (TSS). Many fewer asso-

ciations are within 5 kb for the most distal families: HMG (4.2%),

Homeodomain (3.6%), and POU (3.2%). In fact, >93% of the pre-

dictions for the HMG, Homeodomain, and POU families are >100

kb from the TSS of the associated target gene.

Interestingly, the transcription factor families with the most

distal predictions have the fewest downstream targets, showing

a tendency to cluster around a relatively small number of target

genes (Fig. 2D). In fact, a clear inverse relationship between dis-

tance to TSS and number of predicted target genes holds across the

full set of motifs, with a Pearson correlation of �0.75 (Fig. 2E). No

family has a markedly wider set of target genes than random ex-

pectation, but the C2H2 zinc-finger CTCF motif is a clear outlier

(Fig. 2D,E), reflecting its special role in genome structure organi-

zation (Phillips and Corces 2009).

To examine which genes and gene families are most densely

regulated, we calculated the fraction of base pairs in a gene’s reg-

ulatory domain that are covered by a binding site prediction. Not

surprisingly, HOX genes are among the most densely regulated
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genes (Supplemental Table 3). When we grouped all target genes

into families using Interpro domain composition and performed

a Wilcoxon rank-sum test, numerous transcription factor families

rose to the top, suggesting that the regulators themselves have the

most upstream regulation (Fig. 2F; Supplemental Table 4).

Excess conservation binding site predictions overlapping
GWAS SNPs

The NHGRI maintains a catalog of the most significant simple

nucleotide polymorphisms (SNPs) associated with a growing num-

ber of diseases and traits, discovered using genome-wide association

studies (GWAS) (Hindorff et al. 2009). Our excess conservation

binding site predictions overlap 15 of these phenotype-associated

SNPs (Supplemental Table 5), a significant overlap (1.86-fold en-

riched compared with dbSNP overlap, P-value < 0.018, Fisher’s

exact test) (see Methods). For at least five of these SNPs, the tran-

scription factor that we predict to bind has itself been associated

with the phenotype in question (Table 1). For example, rs445 is

associated (P < 10�7) with white blood cell count (Kamatani et al.

2010). The risk allele weakens a predicted binding site for c-MYB,

a key player in the onset of leukemia, a cancer characterized by an

abnormal increase in white blood cells ( Jin et al. 2010). In other

cases, such as rs339331, associated (P < 10�11) with prostate cancer

(Takata et al. 2010), the risk allele strengthens a potential binding

site for HOXA13, a key factor in prostate gland development

(Podlasek et al. 1999).

Predicting transcription factor functions from binding site
predictions

To analyze ChIP-seq using microarray/gene list–based tools, re-

searchers would often ignore distal binding sites, convert proximal

sites into a gene list, and test this gene list against the full list of

Figure 1. PRISM excess conservation rescoring favors predicted transcription factor binding sites conserved above their local environment. (A) Excess
conservation uses the abundance of conserved binding site predictions for shuffled versions of the input motif, in similarly conserved 100-bp genomic
neighborhoods, to rescore conserved binding site predictions (framework in green). (B) The NFYA binding site motif is equally conserved in the two shown
loci. Yet it is intuitively appealing to consider the left, less conserved 100-bp neighborhood, more likely to conserve an actual NFYA site. (C, left) Excess
conservation plots made from all 100-bp neighborhoods conserved like the two loci in panel B. The y-axis is �log10 of the likelihood of a shuffled NFYA
motif to achieve the motif conservation score on the x-axis or higher by chance. (Right) Because shuffled versions of NFYA more easily achieve high motif
conservation scores in loci like the right locus of panel B, the excess conservation score of this NFYA prediction is lower. (D) Excess conservation rescoring is
shown to correct motif conservation-only binding site predictions toward the conservation profile observed in real ChIP-seq peaks. It also outperforms it in
area-under-the-curve analysis of 44 (94%) of 47 analyzed ChIP-seq sets (see text).

PRISM predicts human transcription factor functions
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genes in the genome for any enriched function. GREAT (the ge-

nomic regions enrichment of annotations tool) never converts

peaks to genes. Instead, each gene is assigned a putative ‘‘regula-

tory domain,’’ which always contains 5 kb upstream of and 1 kb

downstream from its transcription start site and an extension up to

the basal regulatory domain of the nearest upstream and down-

stream genes within 1 Mb. Given a list of genes for a particular term

(e.g., actin cytoskeleton), GREAT computes the fraction of the ge-

nome covered by the regulatory domains of the genes in the list

and the number of peaks hitting these regulatory domains. From

this a binomial P-value is computed (see Fig. 1 in McLean et al.

2010).

We have previously shown that GREAToutperforms gene list–

based or microarray-based tools at revealing biologically mean-

ingful enrichments in ChIP-seq data sets (McLean et al. 2010). Our

extensive comparisons featured four transcription factors—REST

(NRSF), GABPA, SRF, and STAT3—in both human and mouse

contexts, for which GREAT leverages distal binding sites to reveal

accurate and specific function predictions (McLean et al. 2010). To

compare our transcription factor and binding site predictions from

motif and genome sequence alone to those obtained via antibody

ChIP-seq in a particular cellular context, we predicted binding sites

from high-quality motifs for the same four factors and analyzed

the predictions with GREAT (Table 2).

Figure 2. Genome-wide excess conservation binding site predictions reveal fundamental properties of mammalian transcription regulation. (A) The
curated library of 332 nonredundant high-quality transcription factor (TF) motifs includes members of all major DNA binding domain (DBD) families. (B)
Distributions of all genomic bases (red) and all conserved binding site predictions (blue) as a function of distance from the transcription start site (TSS).
While predictions are 2.3-fold enriched in the proximal promoter, >90% of them are distal. (C ) Different DNA binding domain families exhibit different
binding distance preferences relative to the TSS. (Black ticks) Median distances per motif; (green dot) the family median; random is the median of 332 uniform
shuffles. (D) Number of predicted target genes for the different TF DBD families. Black ticks, green dots, and random are as in panel C. POUs and Homeo-
domains cluster the most around target genes, while CTCF is at the opposite extreme. (E) Distance to TSS and number of target genes have a strong inverse
correlation. (F) Transcription factors (blue) are the most densely regulated gene families in the human genome, as measured by the fraction of base pairs in the
gene’s regulatory domain covered by a binding site prediction. Shown are all nonredundant significant terms after Bonferroni correction (see text).

Wenger et al.
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GREAT analysis of REST and GABPA binding site predictions

substantially agrees with analysis of ChIP-seq peaks for these fac-

tors, with ChIP-seq peaks overlapping 31%–71% of implicated

binding site predictions when the enrichments agree (Table 2;

Supplemental Tables 6, 7). GREAT analysis of SRF ChIP-seq data

from human Jurkat cells generates enrichments that reflect the

known role of SRF as the master regulator of actin (42 peaks, P <

10�8) (Supplemental Table 8; McLean et al. 2010). Using our

binding site predictions for SRF, we see this same result (P < 10�57)

from a broad set of 356 binding sites for 142 target genes (false

discovery rate = 38%), the majority of which are not identified in

this particular ChIP-seq set (Table 2). In addition, 155 of our

binding site predictions for SRF are strongly associated with genes

that cause a dilated heart phenotype when knocked out (P < 10�17;

binding site FDR = 46%). SRF is well known for its role in heart

development, and a conditional knockout of Srf itself in the de-

veloping mouse heart leads to a dilated heart phenotype (Parlakian

et al. 2004). This experimentally supported result is not found

when analyzing the SRF ChIP-seq data, which was generated using

Jurkat cells, a T-cell-derived cell line unlikely to reflect the biology

of the developing heart.

The enrichments for STAT3 differ markedly between the

ChIP-seq and binding site prediction sets. The top enrichments for

the STAT3 ChIP-seq data set reflect the context of the experiment,

mouse embryonic stem cells (mESC) (see Supplemental Table 9). In

contrast, GREAT analysis of genome-wide conserved binding site

predictions for STAT3 highlights its well-known role in signaling

(P < 10�15; 150 predicted binding sites; binding site FDR = 48%)

and the immune system (P < 10�18; 145 sites; binding site FDR =

43%), two functions with no overlapping peaks in the mESC ChIP-

seq data (Table 2). Conserved STAT3 binding sites and ChIP-seq

data thus produce distinct yet complementary enrichments, which

are equally supported by experimental literature.

GREAT analysis of our binding site predictions also produces

novel, plausible hypotheses. For example, 98 predicted SRF bind-

ing sites show an association with target genes related to the reg-

ulation of insulin secretion (P < 10�25; binding site FDR = 28%)

(Table 2). While, to our knowledge, this association has not yet

been experimentally verified, a recent paper shows that insulin

resistance in humans and mice is marked by increased SRF activity

( Jin et al. 2011). Similarly, GREAT analysis implicates GABPA in

regulating ‘‘general transcription by RNA polymerase I’’ (P < 10�11;

19 binding sites at FDR = 13%), an enzyme that transcribes ribo-

somal RNA. GABPA is known to regulate transcription of ribosomal

proteins (Genuario and Perry 1996). Our predictions suggest that

GABPA may function as a regulator of multiple facets of ribosome

synthesis.

The PRISM framework: Predicting biological roles, target
genes, and enhancers for hundreds of transcription factors

Motivated by the biological function predictions obtained for the

four different factors, we set out to analyze the predicted binding

sites from each of our 332 curated motifs using GREAT (McLean

et al. 2010). We examined nine GREAT ontologies that provide

more than 2.4 million facts about human and mouse gene roles in

different biological processes, molecular functions, cellular com-

ponents, phenotypes, molecular pathways, and gene families

(Supplemental Table 10; see Methods).

Applying GREAT to binding site predictions from hundreds of

transcription factors results in many TF function predictions (Table

3, stage 1). While GREAT accounts for multiple hypothesis test

correction for multiple ontology terms against a single set of ge-

nomic regions, here we repeatedly apply GREAT to hundreds of

sets, one for each motif. To control for multiple hypothesis testing

in this framework, we used two filtering stages. First, we focused

our attention on only up to the top 20 predictions per motif using

a more stringent P-value, and removing broad terms that annotate

many genes (see Methods). This resulted in keeping only 23% of

the human, and 18% of the mouse GREAT predictions (Table 3,

stage 2).

To properly account for multiple hypothesis testing, we then

applied our entire method to the 2857 shuffled versions of tran-

scription factor motifs used as null models in calculating the excess

Table 1. Biologically appealing PRISM predicted binding sites affected by GWAS risk alleles

PRISM identifies potentially causative binding sites affected by phenotype-associated genome-wide association single-nucleotide polymorphisms. For the
shown cases, the risk allele either weakens (down arrow) or strengthens (up arrow) a binding site prediction for a transcription factor known to be relevant
to the associated disease.

PRISM predicts human transcription factor functions
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conservation score (Fig. 3A) (see Methods). We expect such shuf-

fled motifs, by and large, to lack real functional signals, although

the method is conservative because some shuffles may capture

whole or partial binding preferences of uncharacterized factors and

complexes.

For each biological role (annotation term), we used the total

fraction of shuffled motifs for which the term satisfies the GREAT

significance thresholds to estimate the expected number of times

the term would be falsely called as significant for a set of 332

motifs. Any term expected to occur falsely once or more was ex-

cluded (see Methods). Following this very stringent pruning, only

22% of human and 9% of mouse TF function predictions were

retained (Table 3, stage 3).

Our shuffled motif TF function predictions can also be used to

compute the false discovery rate (FDR) of our original and filtered

set, by harshly assuming that all shuffled enrichments are false (see

Methods). We see that while the TF function FDR of the human

original GREAT predictions is 50.5%, the filtered predictions have

a much more appealing FDR of 16.4%. Similarly, for mouse the

FDR improves from 59.3% to 17.8%, a more than threefold im-

provement for both species (Table 3).

In summary, we predicted binding sites using the excess

conservation method in the human and mouse genomes, ana-

lyzed the predictions with GREAT, and controlled for multiple

hypothesis testing using shuffled versions of the same motifs.

We term this combined approach PRISM (for predicting regu-

latory information from single motifs) (Fig. 3A). For each tran-

scription factor, PRISM predicts: (1) biological roles, (2) target

genes, (3) binding sites, and implicitly (4) cis-regulatory elements

through which the factor regulates each target gene in each bi-

ological role.

For the human genome, PRISM predicts 1658 associations

between a transcription factor and a biological role (Fig. 3B; Sup-

plemental Figs. 10A, 12A). In all, the predictions connect 178

transcription factors with 5340 target genes via a wide range of 883

different biological roles (captured as a word cloud in Supple-

mental Fig. 10B) and 59,135 role-specific binding sites, >85% of

which are distal (>5 kb from TSS) (see Fig. 3C). The approach

produces a similar breadth and quality of coverage for the mouse

genome—1173 associations connecting 168 factors with 4993

target genes and 61,437 binding sites through 640 biological roles

(Supplemental Figs. 11, 12B). Combining the human and mouse

sets and counting identical orthologous predictions only once,

PRISM predicts 2543 transcription factor–biological role associa-

tions, connecting 217 distinct transcription factors with 7692

distinct target genes (see Methods).

PRISM offers both breadth and depth of biological role
predictions

PRISM predictions offer not only breadth (as reflected in Supple-

mental Fig. 10B), but can also offer depth and accuracy in terms of

specific function and perturbation predictions. For example, five

genes have been previously identified as key master regulators of

muscle differentiation: MYOD1, MYOG, MYF5, MYF6 (MRF4), and

the MEF2 family (Pownall et al. 2002). PRISM predicts muscle-re-

lated roles for all five (Supplemental Table 13). However, the actual

function prediction differs between the factors, reflecting their

different biological roles in muscle formation. PRISM correctly

implicates MYF5 in regulating the myosin complex (P < 10�7; 59

sites, binding site FDR = 45%; human), MEF2A in broader regula-

tion of contractile fiber (P < 10�12; 128 sites, binding site FDR =

47%; human), and MYOD1 in broad regulation of striated muscle

tissue development (P < 10�22; 236 sites, binding site FDR = 50%;

mouse). These different functional roles have all been validated

experimentally (Supplemental Table 13). PRISM also offers dif-

ferent perturbation predictions. For example, it predicts that both

MYOG (P < 10�24; 146 sites, binding site FDR = 37%) and MYF6

(P < 10�10; 110 sites, binding site FDR = 50%) disruption results in

general abnormal muscle development. Both predictions have

been validated in mouse (Supplemental Table 13). Furthermore,

in humans, MYF6 mutations have been associated with Becker

muscular dystrophy (Kerst et al. 2000). For MEF2A, PRISM pre-

dicts that disruption results specifically in abnormal cardiac

output (P < 10�5; 47 sites, binding site FDR = 47%). Indeed, Mef2a

knockout mice suffer from severe heart phenotypes resulting in

sudden death associated with heart failure and cardiac arrest

(Naya et al. 2002).

Table 3. PRISM’s filtering of GREAT’s raw transcription factor function predictions

Stage 1: GREAT on
binding site predictions

Stage 2: Top
significant GREAT terms

Stage 3: PRISM
terms (via blacklisting)

Obtained = GREAT Dropped Kept Dropped Kept = PRISM
PRISM vs. GREAT on

binding site predictions

hg18 Number of TF-term
associations

31,946 24,417 7529 5871 1658 GREAT predictions kept 5.2%

TF-term FDR 50.5% 50.8% 49.5% 58.8% 16.4% FDR improvement 308%
Closed loop % 3.3% 2.7% 5.3% 3.7% 10.9% Fraction loops

improvement
329%

mm9 Number of TF-term
associations

67,755 55,241 12,514 11,341 1173 GREAT predictions kept 1.7%

TF-term FDR 59.3% 55.9% 74.4% 80.3% 17.8% FDR improvement 333%
Closed loop % 2.7% 2.2% 4.8% 4.0% 12.4% Fraction loops

improvement
455%

In stage 1, statistics are provided for running GREAT on all motifs, without any correction. These predictions are filtered once in stage 2 for top en-
richments per TF, term specificity, and increased statistical stringency. In stage 3, multiple hypothesis testing correction is applied, using GREAT en-
richments for motifs shuffles, to generate a blacklist of ontology terms to exclude (see Fig. 3A; Methods). For human (hg18) and mouse (mm9), the first
row shows the number of predictions obtained, dropped, and retained at the different stages. The second row provides an estimate of the false discovery
rate for each of the intermediate sets. The third row provides the fraction of function predictions that can be computationally validated from the ontology
terms associated with the regulating factor (called ‘‘closed loops’’).
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Objective experimental support for PRISM biological role
predictions

The same ontologies used by PRISM to infer biological roles of

a transcription factor from its predicted binding sites can some-

times be used to directly confirm a role prediction in an objective,

unbiased manner (and thus further support our mostly novel

binding site predictions). Because PRISM makes its predictions

based solely on the annotations of the predicted target genes, the

ontologies themselves can provide such support when the tran-

scription factor itself is tagged with the same function that PRISM

identifies as enriched among its downstream target genes. For ex-

ample, the PRISM prediction that GLI2 is involved in ‘‘skeletal

system development’’ (because a surprisingly high number of its

predicted target genes are labeled as such) is confirmed by the Gene

Ontology, which tags GLI2 itself with the same term and provides

a supporting reference (Mo et al. 1997).

This objective test was used to optimize PRISM’s design. We

have performed an extensive search in parameter space, varying

multiple values and design choices (see Methods). The approach

we describe here obtains an optimum between computational

validation rate and prediction breadth. Indeed, in the unfiltered

set of human GREAT predictions, only 3.3% of predictions can

be confirmed computationally, a validation rate that improves

3.3-fold in the PRISM subset. Similarly, for the unfiltered mouse

GREAT predictions, only 2.7% can be validated computationally,

improving 4.5-fold in the PRISM subset (Table 3). In total, 180

(11%) of the 1658 human-based predictions of biological roles for

transcription factors and 145 (12%) of the 1173 mouse-based

predictions are confirmed this way (Supplemental Tables 11, 12).

The number of observed confirmations is highly significant (P <

2 3 10�5, Z-score = 77.2), because no more than 16 matches (1%)

were observed in 50,000 simulations that apply a transcription

factor’s annotations to its shuffled motifs (Fig. 3D).

Distal binding sites contribute greatly to the PRISM approach.

With only proximal binding sites (�5 kb to +1 kb from TSS), PRISM

in human only predicts 50 (3.6-fold less) biological roles that are

confirmed by the ontologies (Fig. 3D), and only 23 (6.3-fold less)

mouse predictions confirmed by the ontologies.

While direct ontology support can confirm function pre-

dictions, the lack of such support does not imply an incorrect

prediction. For example, as discussed above, PRISM predicts that

SRF regulates genes that compose the ‘‘actin cytoskeleton.’’ Although

SRF is known as the master regulator of the actin cytoskeleton

(Miano et al. 2007), it acts in the nucleus and is not involved in

building the cytoskeleton itself; thus, it is appropriately not an-

notated with the Gene Ontology Cellular Component term ‘‘actin

cytoskeleton.’’ Other missing confirmations are due to the incom-

pleteness of annotation. For example, PRISM predicts 91 GATA6

binding sites near 23 genes whose mutations lead to abnormal

pancreas development (P < 10�12; binding site FDR = 43%). While

GATA6 currently lacks the same annotation, a very recent study

Figure 3. PRISM transcription factor and binding site function predictions. (A) PRISM combines excess conservation binding site prediction (Fig. 1) with
GREAT function prediction from proximal and distal sites into a novel statistical framework to arrive at thousands of transcription factor (TF) function
predictions, at a false discovery rate of 16%. Numbers are summed over human and mouse (see text). (B) Distribution of PRISM human TF function
prediction across the major DNA binding families. (C ) Most of the binding sites that support PRISM predictions—including high confidence confirmed
predictions—are distal from putative target genes. (D) PRISM predictions are highly enriched for support by previous literature. The GREAT ontologies tag
the transcription factor itself with the function predicted by PRISM as enriched among its target genes 180 (11%) times, Z-score = 77, P < 1/50,000
simulation runs (red); 3.6-fold enriched over using only proximal binding sites.
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identified inactivating mutations in GATA6 as the most common

cause of pancreatic agenesis in humans (Allen et al. 2011). Simi-

larly, other unconfirmed PRISM predictions may well represent

accurate novel predictions.

Overlap of PRISM annotated binding site predictions
with ChIP-seq

To evaluate the accuracy and comprehensiveness of individual

PRISM binding site predictions, we examined the overlap of

binding site predictions with ChIP-seq peaks for four transcription

factors with literature-confirmed PRISM biological function pre-

dictions. For all four factors, a single ChIP-seq experiment in a

single context confirms a considerable fraction of the predicted

sites: from 7% for CRX (mouse) to 56% for REST (human). Im-

portantly, this represents a lower bound on the accuracy of bind-

ing site prediction, because other ChIP-seq experiments in the

same or different contexts likely will support even more binding

sites (Fig. 4A).

From all the binding site predictions, PRISM annotates a sub-

set with specific biological roles. The overlap with ChIP-seq for the

annotated subset is significantly larger than for the full set of

predictions: >25% for CRX and SRF (mouse), and >60% for REST

and GABPA (human). Again, this provides a lower bound on ac-

curacy. It demonstrates that the accuracy of the PRISM-annotated

subset of the binding site predictions is often much better than

estimated for the full set of predictions (Fig. 4A).

To evaluate the comprehensiveness of PRISM, we examined

which fraction of the ChIP-seq peaks for a transcription factor

is identified by a PRISM binding site prediction. Interestingly, a

number of ChIP-seq peaks for each of the four examined factors

lack a match to the transcription factor motif in the genome of the

assayed species, ranging from 66% of SRF ChIP-seq peaks to 19% of

GABPA peaks. Of the peaks with a motif match in the assayed

species, PRISM hits between 5.3% (for SRF) and 69% (for REST) of

the experimentally identified peaks. The comprehensiveness sig-

nificantly improves when examining only those ChIP-seq peaks in

the regulatory domains of genes with a relevant biological func-

tion. For instance, 16.8% of the SRF peaks near actin cytoskeleton

genes are identified by PRISM, compared with 5.3% of all peaks

(3.2-fold increase). For REST, PRISM identifies >83% of the ChIP-

seq peaks near neurotransmitter transport genes. Thus, while

PRISM does not identify every ChIP-seq binding site, it does dis-

cover a sizeable fraction, particularly when considering the most

confident ChIP-seq peaks that are connected to a specific biological

role (Fig. 4B).

Enhancer assays support a role for MYF6 in pancreas
as predicted by PRISM

In addition to its known role in muscle development, PRISM pre-

dicts a role for myogenic factor 6 (MYF6) in pancreas development

(P-value = 1.67 3 10�10; 85 binding sites; binding site FDR = 46%).

MYF6 is indeed expressed in the pancreas (Kutlu et al. 2009), but to

our knowledge no role in pancreas development has yet been

characterized. To examine whether the predicted MYF6 target en-

hancers drive activity and are responsive to MYF6 in pancreas cells,

15 elements were tested in luciferase enhancer assays in the mPAC

cell line, which is derived from pancreatic ductal cells.

Six of the 15 tested elements function as enhancers (luciferase

activity $2 3 empty vector) in the pancreatic cell line (Fig. 5A). All

six of the positive elements respond significantly when MYF6

is ectopically expressed via cDNA cotransfection. Two other ele-

ments (elt4, which putatively regulates HES1, and elt13, which

putatively regulates INSM1) are not enhancers in the standard

mPAC cell line but do drive activity in response to ectopically

expressed MYF6 (Fig. 5A).

Enhancer assays support the accuracy of PRISM predictions

Four other transcription factor to function predictions were tested

using luciferase enhancer assays. Specifically, we examined 20

putative targets of RUNX1 in lung inflammation (P-value = 2.71 3

10�15; 153 binding sites; binding site FDR = 50%) using NHBE cells,

Figure 4. Overlap of PRISM binding site predictions with ChIP-seq. PRISM binding site predictions for CRX (m = mouse), GABPA (h = human), REST
(human), and SRF (mouse) were overlapped with ChIP-seq binding sites for the same four factors. Overlap was observed both for the full set of binding
site predictions and a subset annotated by PRISM in a particular functional role (‘‘sensory perception of light stimulus’’ for CRX, ‘‘translation’’ for GABPA,
‘‘neurotransmitter transport’’ for REST, and ‘‘actin cytoskeleton’’ for SRF). (A) Percent of PRISM binding site predictions hit by a ChIP-seq peak. (B) Percent
of ChIP-seq peaks hit by a PRISM binding site prediction. Only ChIP-seq peaks with a match to the transcription factor motif in the reference species were
considered (CRX: 74%; GABPA: 81%; REST: 60%; SRF: 34%).
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14 targets of STAT1 in regulation of angiogenesis (P-value = 1.22 3

10�10; 96 binding sites; binding site FDR = 49%) using HUVEC

cells, eight targets of MYF6 in abnormal muscle development

(P-value = 3.27 3 10�11; 110 binding sites; binding site FDR =

50%) using UaSMC cells, and 10 targets of MEF2A in myofibril

(P-value = 1.31 3 10�12; 122 binding sites; binding site FDR =

49%) using UaSMC cells. The majority of the enhancers predicted

by PRISM to drive activity are responsive to the predicted tran-

scription factor in the appropriate context. Across all examined

elements, 67% successfully drive activity and are responsive to

the predicted transcription factor (Fig. 5B).

Discussion
As we (Table 2) and others have shown, TF binding is cell type and

condition dependent. Here we develop PRISM, a novel approach to

predict broad TF functions directly from the genome. It is impor-

tant to stress that PRISM does not attempt to predict TF occupancy

in any particular context (i.e., to offer an alternative to ChIP-seq).

It is clear that our understanding of the rules that govern gene

regulation is not sufficient (e.g., Fig. 4). Rather, we show that cross-

species conserved binding site prediction has become powerful

enough to allow us to obtain a subset of binding sites for the pre-

dicted factor that is accurate enough and large enough to allow us

to correctly predict transcription factor functions.

The general approach has been applied successfully in the

past (Das et al. 2006; Down et al. 2007; Sinha et al. 2008). Our main

contributions here are:

1. Unprecedented scope—we use more than 300 different motifs

and test them against a vast body of gene function annotation,

far more vast than has ever been done before. Hundreds of ad-

ditional motifs will soon become available, and the body of

gene function annotation is constantly on the rise.

2. Distal binding sites are accounted for—distal binding sites make

the majority of observed and predicted binding events (Fig. 2;

McLean et al. 2010). They contribute markedly toward our

ability to make accurate TF function predictions (Fig. 3D). Using

the GREAT test, we let them pull their full weight, whereas other

screens before have discarded all but proximal promoter events

alone.

3. We develop a rigorous, nontrivial, and purposefully conserva-

tive framework to ensure the quality of our TF function pre-

diction. We improve conserved binding site prediction, we use

a harsh null model of shuffled versions of our motifs, and we

exclude function predictions that arise from our null.

The results we obtain are in line with our expectations: Our

conserved binding site predictions have a relatively high FDR

(60%). The FDR, however, markedly improves to 40% when one

considers only the subset over which we make TF function pre-

dictions, supported by our experimental results (Fig. 5). Most im-

portantly for the goal at hand, our TF function prediction FDR of

16% is appealingly low.

Our rigorous pruning leaves in PRISM only 5.2% of the hu-

man transcription factor function predictions that GREAT makes

from conserved binding site predictions. This harsh pruning,

however, markedly improves by a factor of more than 3 both our

Figure 5. Enhancer assays support the accuracy of PRISM predictions. (A) Fifteen predicted MYF6 targets that PRISM implicates in pancreas de-
velopment (estimated binding site FDR = 46%) were tested for enhancer activity and responsiveness to MYF6 in mPAC cells, which are derived from
pancreatic ductal cells. Firefly luciferase to Renilla luciferase ratios were normalized to empty vector. Error bars show standard error of the mean over three
replicates. (*) A significant (unpaired t-test, P-value < 0.05) response to MYF6 cotransfection (for 8/15 elements = 53%). (B) Predicted PRISM targets were
tested across four cell lines matched in context to the PRISM prediction. Across all sets, 67% of the targets respond significantly to the transcription factor
predicted by PRISM.
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FDR and the fraction of predictions we can validate computa-

tionally from the annotations of the regulating TF (Table 3). To

learn more about the nature of the ontology terms that PRISM

blacklists, we used a set of conserved nonexonic genomic elements

(CNEs). If we pick 10,000 random subsets of CNEs and create a

blacklist from them the same way done in PRISM from motif

shuffles, we obtain 2279 terms to blacklist (with E-value > 1). One

thousand seven hundred thirty-three (76%) of these make up a full

70% of PRISM’s shuffled motifs–based blacklist. This suggests that

the majority of PRISM’s blacklist derives from the nonrandom

distribution of CNEs, well known to be rich in binding sites and

their predictions.

Vertebrate transcription regulation is proving to be a complex

affair (Bernstein et al. 2012). Large empty gene deserts are now

appreciated to be packed with conserved noncoding and active cis-

regulatory sequence. Transcription factors thought to form narrow

cascades, directly binding a handful of targets, are found to bind

thousands of loci in a single context, some conserved, others not,

many with no obvious effect on their target genes in perturbation

experiments. Adding to this emerging picture, our own analysis

suggests that the transcription factors themselves are among the

most densely regulated gene families in the mammalian genome.

Here we provide windows to this complex system by designing a

comprehensive framework for binding site and transcription factor

function prediction for a wide range of human and mouse tran-

scription factors and offering them to the community for further

exploration. With the recent advent of high-throughput genome

editing technologies, PRISM makes a particularly timely contri-

bution ( Joung and Sander 2012; Pennisi 2012).

Methods

Multiple genome alignments and phylogenetic tree
All comparative genomic analyses with a human reference used
the human-anchored MULTIZ alignment of 44 vertebrates avail-
able from UCSC for the hg18 assembly along with the corre-
sponding phylogenetic tree and branch lengths (Kent et al. 2002).
Mouse analyses used an extension of the mm9-based MULTIZ
alignment of 30 vertebrates from UCSC that includes the same 44
species as the human alignment. Only the eutherian mammals
were considered for binding site prediction, and exon and repeat
regions were ignored using UCSC annotations. Similar UCSC
hg18-based MULTIZ alignments of 17 and 28 vertebrates were
used for comparison to evaluate trends in multiple alignments as
new species are added.

Transcription factor motif library curation

To obtain a nonredundant set of high-quality motifs, we combined
publicly available motifs from UniPROBE (Newburger and Bulyk
2009), JASPAR (Bryne et al. 2008), and TransFac public version 7.0
(Matys et al. 2006). We associated each motif with the gene or
genes it describes. Because of high redundancy between and within
the different resources and low sample sizes for older entries, we
clustered all motifs for a given gene, and used semiautomated
curation to identify the highest-quality motif(s) for each factor.
Among highly similar motifs for the same gene, we favored motifs
derived from larger sample sizes, and higher information content
respecting general expectations from related family members. This
reduced our library from 816 to a high-quality nonredundant
subset of 332 motifs, sampling all major DNA binding domains
(Fig. 2A; Supplemental Fig. 5).

Single genome transcription factor binding site prediction

We predicted binding sites in a single genome or region using
position weight matrix models of transcription factor binding
specificity. Position frequency matrices (fi,j) were converted to
position weight matrices (PWMs) (p[i,j]) by weighting each col-
umn by its information content (Kel et al. 2003).

Information content of column i: IC(i) = 2 + Sj2(A,C,G,T ) fi,j � log2 fi,j
Weight of base j in column i: p[i,j] = IC(i) � fi,j

Position weight matrix (motif) sequence scores were nor-
malized by dividing by the maximum attainable score. Sequences
with a score of at least 0.8 (i.e., matching at least 80% of the
possible information content) were considered matches to the
motif.

Motif shuffling

For each transcription factor motif, we generated up to 10 null
model motifs by shuffling its columns. In shuffling, we preserved
adjacent CpG columns, ensured that the shuffles did not resemble
any known transcription factor motif or each other, and main-
tained the ‘‘information content profile’’ (by only swapping high/
low information columns with other columns in the same class
defining 0.7 bits as the minimum information of a ‘‘high’’ column)
(Supplemental Fig. 6).

We defined the similarity of two motifs in a functional
manner as the fraction of binding site predictions that overlap. We
predicted binding sites with the two factors (see above) over
a subset of human genomic gene deserts likely depleted for func-
tional binding events (Ovcharenko et al. 2005). For each offset, i, at
which the two motifs overlap, we counted the number of over-
lapping predictions, picked the highest, and normalized:

Similarity motif A, motif Bð Þ

¼
max

i
# times motif A and motif B overlap at offset ið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# of predictions for motif A 3 # of predictions for motif B

p :

In generating shuffled motifs, a similarity threshold of 0.2 was
used to reject motifs that resemble known transcription factor
motifs or other shuffles of the same motif. This process resulted in
2857 shuffles for the 332 motifs (Supplemental Fig. 7).

Robust binding site prediction across a multiple alignment

The inclusion of more species in a comparative analysis improves
detection of conserved regions (Margulies et al. 2006), but it also
fragments multiple alignments into smaller blocks (Supplemen-
tal Fig. 1). The fragmentation separates nearby genomic bases in
alignment space, falsely splitting or distancing binding sites across
alignment blocks (Supplemental Fig. 2). To quantify the effect
of alignment fragmentation on prediction sensitivity, we consid-
ered the subset of binding site predictions confirmed by overlap
with an ENCODE ChIP-seq peak from Supplemental Table 2 (see
below). In a 17-way multiple alignment, 11% of confirmed binding
site predictions would be lost due to alignment fragmentation
without corrective measures, with the loss rate increasing to 16.7%
in a 44-way alignment, and projected to grow linearly to nearly
30% of confirmed predictions in a forthcoming alignment of
100 species (Supplemental Fig. 3).

To overcome this artifact and recover all lost predictions, we
padded alignment blocks with 30 bp (longer than the longest
analyzed motif) of adjacent sequence from the genomes of all
aligned species, collapsed binding site predictions to their single
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start coordinate, and placed them on their respective genome
(Supplemental Fig. 2A). To robustly predict conserved binding
sites, the distance between motif matches was defined as the
maximum of the distance measured in the reference and non-
reference species genomic coordinates, with the multiple align-
ment used only to map start positions back to the genome (Sup-
plemental Fig. 2B). We associated motif matches at a distance of
up to 20 bp upstream or downstream, previously shown to be op-
timal for providing robustness to biological or artifactual binding
site shifting (Kheradpour et al. 2007).

After associating binding sites in reference and all aligning
species, we calculated for every binding site: (1) the number of
species with a matching binding site prediction; (2) the total
branch length (BL) of the tree over which the binding site is con-
served (Kheradpour et al. 2007); and (3) the weighted Bayesian
branch length (BBL), which weights phylogenetic distance between
species with the binding site match probability (or quality) in each
species. BBL was previously shown to outperform BL for motif
conservation score and is extensively discussed in Xie et al. (2009).

Efficient conserved binding site prediction

To predict binding sites, we slide a cursor column-by-column in the
multiple alignment, scoring every reference position with all mo-
tifs and retaining all reference binding site predictions in a win-
dow. Given the objective to predict binding sites in the reference
genome, one may avoid scoring sequences in an aligning species
if the reference does not contain a corresponding binding site
nearby, within the allowed local misalignment window (Supple-
mental Fig. 4A).

Implementing this optimization eliminated the need to pre-
dict at 90.4% of aligning positions (Supplemental Fig. 4B), reduc-
ing the prediction computation time of the human set from 822 h
to 131 h (6.3-fold speed-up) on a cluster of Dell PowerEdge 1950
computers with 2.66 GHz Intel Xeon processors and 16 GB RAM
(Supplemental Fig. 4C).

Excess conservation score

The excess conservation framework (Fig. 1A) rescores every motif
binding site prediction according to a null distribution of scores of
shuffled versions of the motif in genomic windows of 100 bp of
similar conservation level. Formally:

Excess conservation score ¼ �log10(Probability over

fthe distribution of all shuffled motif scores in 100bp

genomic windows of similar conservationg that

(shuffled motif score $ observed real motif score)):

To compute it, we partition the reference genome into ge-
nomic windows of similar conservation: First, every base in the
reference genome is given a weighted ‘‘% identity’’ score from 0%
(found only in the reference species) to 100% (same base across the
eutherian phylogeny) by calculating the total branch length over
which the reference base pair is matched in the multiple alignment
as a fraction of the complete branch length in the phylogeny. We
then smooth the single position values by averaging over a 100-bp
window centered on it, and group into 1% bins.

Next, for every motif m, we generate a set of shuffles Mm (as
above). We predict over the reference genome using all shuffled
motifs and bin the scores for shuffled motifs into frequency his-
tograms according to the genomic conservation bins just described
(Supplemental Fig. 8). We then go back, conceptually, through the
reference genome and predict using the motif itself. Every pre-

diction has a certain motif score and is done in a genomic 100-bp
neighborhood of certain conservation. We use the frequency
curves for that particular genomic neighborhood value to derive
the empirical P-value of observing the motif score in that con-
servation neighborhood. The excess conservation score is �log10

of this P-value (see formula above).
Note that the excess conservation framework can be applied

to any motif scoring method. Here it is applied to the Bayesian
branch length (BBL) score (above). As anticipated, when the same
motif is equally conserved in two different genomic locations, its
excess conservation score is higher in less conserved genomic
windows (Fig. 1B,C; Supplemental Fig. 8A). In addition, when two
different motifs are equally conserved in equally conserved geno-
mic windows, the motif with higher information content has a
higher excess conservation score, reflecting the higher specificity
of its shuffles (Supplemental Fig. 8B).

Binding site predictions in the reference genome were re-
tained and ranked by excess conservation score, if they were sup-
ported by at least four additional species, with a branch length (BL)
score of at least two substitutions per site and an excess conser-
vation score of at least 1.3 (i.e., the P-value of the observed motif
score in similarly conserved windows # 0.05).

Evaluating accuracy of binding site prediction using
ChIP-seq data

We used the UCSC Table Browser to download transcription fac-
tors ChIP-seq peaks (binding sites) assayed in human cells by
the ENCODE Consortium (Bernstein et al. 2012). When multiple
ChIP-seq experiments or replicates were available for the same
factor, we selected the one with the largest number of peaks,
yielding 56 distinct transcription factor sets. All 47 transcription
factors for which we had a motif in our library were used (Sup-
plemental Table 2).

The accuracy of binding site prediction before and after the
excess conservation adjustment is summarized by area under the
curve of precision-recall curves (Supplemental Table 1). We con-
sidered a binding site to overlap a ChIP-seq peak if at least one base
pair overlapped. The conservation neighborhood for ChIP-seq
peaks in Figure 1D is measured at the peak center.

To evaluate the overlap for functionally annotated binding
sites (Fig. 4), four ChIP-seq sets from appropriate functional con-
texts were identified: CRX in mouse retina (Corbo et al. 2010),
GABPA in human epithelial cells (Bernstein et al. 2012), REST in
human Jurkat cells (Valouev et al. 2008), and SRF in mouse car-
diomyocytes (He et al. 2011). To evaluate sensitivity (fraction of
ChIP-seq peaks hit by a binding site prediction), only the ChIP-seq
peaks with a match to the motif in the reference species (PWM
threshold = 0.8) were considered.

Identifying binding site overlap with GWAS SNPs

The NHGRI GWAS catalog of disease-associated SNPs (Hindorff
et al. 2009) was obtained from the UCSC Genome Browser
‘‘gwasCatalog’’ track (hg18 assembly). All PRISM binding site pre-
dictions that overlap the SNP by at least one base pair were iden-
tified (Table 1; Supplemental Table 5). The association of ESR1
(ER-alpha) (ER-a) with rs909116 is through a predicted binding
site for the paralogous factor ESRRA (ERR-alpha) (ERR-a) (protein
similarity BLASTP E-value <10�45). Statistical enrichment of over-
lap of binding site predictions with GWAS SNPs was calculated
using a one-tailed Fisher’s exact test: dbSNP build 130 has
14,985,544 single nucleotide SNPs; the NHGRI GWAS catalog
associates 3776 of these SNPs with a phenotype; PRISM binding
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site predictions overlap 32,069 SNPs of which 15 are connected to
a phenotype.

PRISM en masse transcription factor function prediction

PRISM function predictions were obtained in three stages (Fig. 3A):
In stage 1 (Table 3) for each of our 332 transcription factor motifs,
the top 5000 excess conservation binding site predictions in hu-
man and mouse were analyzed using GREAT v1.7 (McLean et al.
2010). Binding sites were associated with target genes using the
GREAT default ‘‘Basal plus extension’’ association rule with default
distances of 5 kb upstream, 1 kb downstream, and up to 1 Mb
extension, or up to the next gene. We used the default GREAT
filters for significant terms: region-based fold enrichment $2,
and a region-based and gene-based false discovery rate (FDR)
Q-value #0.05, with the additional requirement that at least five
genes with the term were hit. Analysis was done over nine GREAT
ontologies—the three Gene Ontology domains (Ashburner et al.
2000), Mouse Phenotypes (Blake et al. 2009), PANTHER Pathway
(Mi et al. 2007), Pathway Commons (Cerami et al. 2006), BioCyc
Pathway (Caspi et al. 2008), TreeFam (Ruan et al. 2008), and HGNC
Gene Families (Supplemental Table 10; Bruford et al. 2008).

In stage 2 (Table 3), we pruned our results to focus attention
on the top enrichments. We limited to the top 20 terms per on-
tology for each motif, ignored broad terms annotated to more
than 500 genes, and required an uncorrected region-based GREAT
P-value # 10�5.

In stage 3 (Table 3), to provide multiple testing correction for
running GREAT 332 times per genome, we used our shuffled mo-
tifs. We separately repeated the entire GREATanalysis with all 2857
shuffled motifs. For each term, we then computed its Expected
value (E-value), or number of times it would appear (by chance) in
332 runs of shuffled motifs:

Eterm ¼ ðFraction of 2;857 shuffled motifs for which

the term is significantÞ 3 332:

When Eterm > 1, the term was removed from the predicted
enrichments for real motifs. This resulted in blacklisting 9% of
the 27,956 human ontology terms and 13% of the 26,656 mouse
ontology terms (Supplemental Fig. 9), resulting in the human and
mouse sets reported in Figure 3B and Supplemental Figures 10
and 11.

To estimate the false discovery rate (Table 3), we compared the
number of PRISM enrichments for real and shuffled transcription
factor motifs. We applied the same PRISM pipeline to shuffled
motifs as to real motifs. To avoid unfairly having a motif contribute
to blacklisting its own terms, each shuffled motif was excluded
when calculating its Eterm values. To calculate FDR, we assume that
(i) the number of false positive enrichments is the same for real and
shuffled motifs and (ii) all enrichments for shuffled motifs are
false:

(i) FPreal = FPshuffle

(ii) FPshuffle = Pshuffle

! (iii) FPreal = Pshuffle

(iv) FDR = FPreal/Preal = Pshuffle/Preal

For human, the library motifs average 4.99 associations per
motif (Preal = 4.99), while the shuffled motifs average 0.74 associ-
ations (Pshuffle = 0.82), for an FDR of 0.82/4.99 = 16.4%. For mouse,
the library motifs average 3.53 associations per motif (Preal = 3.53),
and the shuffled motifs average 0.63 (Pshuffle = 0.63) for an FDR
of 17.8%. Similar computation was performed to compute the FDR
of intermediate sets in Table 3.

To evaluate PRISM with only proximal binding sites (Fig. 3D),
we analyzed the set of top binding site predictions for each motif
with GREAT v1.7 using only basal regulatory domains (5 kb up-
stream of and 1 kb downstream from the TSS). Shuffled motifs were
used to calculate proximal-specific Expected (E) values for terms,
which were then filtered as explained above.

To rank target genes, we created a GREAT ontology with each
gene as its own term. Genes were ranked by the region-based bi-
nomial P-value, thus prioritizing genes with an unexpectedly high
number of binding sites in the regulatory domain given the size of
the assigned domain.

To unify human and mouse predictions, we first manually
verified all mappings of motifs to human and mouse transcription
factors. We then mapped orthologous genes and binding sites
between species. Human and mouse orthologous target genes
were defined as top BLASTP hits from the UCSC Table Browser
hg18.mmBlastTab table, collapsing transcripts into loci through
UCSC gene clusters (Kent et al. 2002). Binding site predictions were
considered orthologous if they were identified as nearest matches
in the multiple alignment in binding site prediction (see above).

Optimality of PRISM parameters

The PRISM method requires multiple parameter and threshold
choices for binding site prediction and then inference of TF func-
tion. To optimize our approach, we evaluate multiple parameter
and design choice combinations using the objective measure of
the number of PRISM function predictions (derived from target
gene annotations) confirmed by the ontologies (from an identical
annotation for the regulating TF itself ) (see Fig. 3D). We optimized
parameter values using coordinate descent (in which one param-
eter is varied with all others fixed, iterating through the different
parameters), starting from different initial parameter settings as
seed. To test our design choices, we also varied the ways in which
certain operations were performed, including an information
content versus log likelihood interpretation of PWMs, passing a
fixed number of binding sites to GREAT versus passing a variable
number of sites meeting a uniform FDR threshold, defining the
E-value for the functional enrichments as the fraction observed
in any shuffles or as the fraction observed in shuffles that had
a P-value at least as significant as the one observed in the real data
set, the choice of top 20 terms per ontology before or after applying
the E-value filter, changing the order in which our filters are ap-
plied and more. The approach and parameter settings we describe
maximize the fraction of annotations with direct ontology sup-
port, from the large number of alternatives tested (data not shown).
Note that this approach does not explicitly optimize the FDR of
TF–term associations; thus, the TF function FDR provides an inde-
pendent measure of the quality of the selected parameters.

Enhancer assays

Cell line/primary cell culture

The mPAC cell line was grown in Dulbecco’s Modified Eagle’s
Medium (DMEM), supplemented with 10% Fetal Bovine Serum
(FBS; Life Technologies). Normal Human Bronchial/Tracheal Ep-
ithelial Cells (NHBE; Lonza Walkersville, Inc.) were grown in
Clonetics Bronchial/Tracheal Epithelial Growth Medium (BEGM).
Normal Human Umbilical Vein Endothelial Cells (HUVEC; Lonza
Walkersville, Inc.) were grown in Clonetics Endothelial Growth
Medium (EGM; Lonza Walkersville, Inc.). Human Umbilical artery
Smooth Muscle Cells (UaSMC; Lonza Walkersville, Inc.) were
grown in Clonetics Smooth Muscle Growth Medium (SmGM;
Lonza Walkersville, Inc.).

Wenger et al.

902 Genome Research
www.genome.org



Plasmids

MYF6 (EMSV-MRF4 (puro), rat myf6) was a gift of Michael Rudnicki
(Sabourin and Rudnicki 2000) (Addgene plasmid 14713). RUNX1
(pCMV5-AML1B [human runx1]) was a gift of Scott Hiebert (Meyers
et al. 1995) (Addgene plasmid 12426). STAT1 (Stat1 alpha Flag pRc/
CMV [human stat1 alpha]) was a gift of Jim Darnell (Horvath et al.
1995) (Addgene plasmid 8691). MEF2A (pCGN-MEF2A [human
mef2a]) was a gift of Ron Prywes (Han and Prywes 1995) (Addgene
plasmid 32958).

Cloning

The firefly luciferase reporter vector pGL4.23 (Promega) was mod-
ified for ligation independent cloning (Du et al. 2011) by cloning
the annealed oligos:

LIC fwd site: 59- cGCTCTTCGGGATGGAGGGATATCCACCTTAC
CCGAAGAGCa-39

LIC rev site: 59-agcttGCTCTTCGGGTAAGGTGGATATCCCTCCA
TCCCGAAGAGCggtac-39

into the KpnI and HindIII sites of the pGL4.23 vector. The vector
was prepped by digesting with EcoRV and Nt.BspQI (New England
Biolabs). Human genomic DNA (Clonetech) was amplified using
target-specific primers with the sequence ggatggaggatc on the
forward primer 59 end and ggtaaggtggatc on the reverse primer 59

end. Primers were synthesized by Elim Biopharm. Inserts were
treated with T4 DNA polymerase in the presence of 10 mM GTP,
annealed to the treated vector, and transformed according to
published methods (Du et al. 2011). The primers used for cloning
are listed in Supplemental Table 14.

Transfections and luciferase assay

Cells were cultured to 80%–90% confluence and transfected using
Lipofectomine LTX and PLUS reagent according to the manufac-
turer’s instructions (Life Technologies). Transfections were done
in a 96-well format using a 1-mL LTX:250 ng plasmid ratio. The
plasmids transfected consisted of 200 ng of reporter construct
and 50 ng of TF expression plasmid or control plasmid pCAG-
DsRED (a gift of Connie Cepko) (Matsuda and Cepko 2004)
(Addgene plasmid 11151). Media was changed 4–6 h after trans-
fection, and luciferase assays were done 24 h after transfection.
Luciferase assays were done using a DLR 100 kit (Promega) ac-
cording to the manufacturer’s instructions and read using a Promega
Glomax luminometer.

Data access
PRISM predictions for the human and mouse genomes are avail-
able at http://PRISM.stanford.edu. The PRISM portal offers an
interface to explore our predictions from the perspective of tran-
scription factors, biological roles, target genes, or target binding
sites/regions (Supplemental Fig. 13). PRISM integrates with GREAT
(McLean et al. 2010) and the UCSC Genome Browser (Kent et al.
2002).
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