
Modeling temporal relationships in large scale
clinical associations
David A Hanauer,1 Naren Ramakrishnan2

▸ Additional data are published
online only. To view these files
please visit the journal online
(http://dx.doi.org/10.1136/
amiajnl-2012-001117).
1Department of Pediatrics,
University of Michigan Medical
School, Ann Arbor, Michigan,
USA
2Department of Computer
Science, Virginia Tech,
Blacksburg, Virginia, USA

Correspondence to
Dr David A Hanauer,
Department of Pediatrics,
University of Michigan Medical
School, 5312 CC, SPC 5940,
1500 E Medical Center Dr, Ann
Arbor, MI 48109-5940, USA;
hanauer@umich.edu

Received 18 May 2012
Accepted 31 August 2012
Published Online First
27 September 2012

ABSTRACT
Objective We describe an approach for modeling
temporal relationships in a large scale association
analysis of electronic health record data. The addition of
temporal information can inform hypothesis generation
and help to explain the relationships. We applied this
approach on a dataset containing 41.2 million time-
stamped International Classification of Diseases, Ninth
Revision (ICD-9) codes from 1.6 million patients.
Methods We performed two independent analyses
including a pairwise association analysis using a χ2 test
and a temporal analysis using a binomial test. Data were
visualized using network diagrams and reviewed for
clinical significance.
Results We found nearly 400 000 highly associated
pairs of ICD-9 codes with varying numbers of strong
temporal associations ranging from ≥1 day to ≥10 years
apart. Most of the findings were not considered clinically
novel, although some, such as an association between
Helicobacter pylori infection and diabetes, have recently
been reported in the literature. The temporal analysis in
our large cohort, however, revealed that diabetes usually
preceded the diagnoses of H pylori, raising questions
about possible cause and effect.
Discussion Such analyses have significant limitations,
some of which are due to known problems with ICD-9
codes and others to potentially incomplete data even
at a health system level. Nevertheless, large scale
association analyses with temporal modeling can help
provide a mechanism for novel discovery in support of
hypothesis generation.
Conclusions Temporal relationships can provide an
additional layer of meaning in identifying and interpreting
clinical associations.

INTRODUCTION
One of the most notable aspects of the ongoing
adoption of electronic health records (EHRs) is the
huge amount of clinical information entered by
hundreds, or even thousands, of clinical care provi-
ders. By analyzing these large datasets it is possible
to discover clinically relevant associations that
may not have been noticed by individual clinicians
but might become apparent only when data are
aggregated on a broad scale.
Reports of clinical associations have appeared for

decades, but only recently have these discoveries
been derived from mining EHR data on a large
scale. These studies have included various data
sources such as International Classification of
Diseases, Ninth Revision (ICD-9) codes, free text
problems in a problem list, medications, and even
data from clinical reports extracted via natural lan-
guage processing.1–14

BACKGROUND
Previously, we reported an association analysis that
was conducted with 1.5 million free text ‘problems’
(ie, diagnoses) from 327 000 patients in an EHR.5

We demonstrated that the approach detected many
well-known relationships but also revealed lesser
known and potentially novel associations. A major
limitation of this analysis was the lack of temporal
information, which made it difficult to hypothesize
about potential cause and effect. However, various
data mining approaches have taken temporal rela-
tionships into account.7 15–20

In this study we report on an easily implemen-
table approach that accounts for temporality
among pairwise clinical associations. We describe
our method and its application to a large dataset
containing ICD-9 codes. With this approach we
were able to delineate further details about some
of our prior findings with the additional element
of time included for interpretation. We also report
on other findings and compare them to recent
reports in the literature.

METHODS
Empiric dataset
We utilized a de-identified dataset obtained from
the University of Michigan Health System, encom-
passing all specialties, age groups, and patients
seen in the hospital setting as well as multiple
ambulatory outpatient clinics located in south-
eastern Michigan. The dataset can be viewed as tri-
plets of a unique patient identifier (not tied to the
medical record), an ICD-9 code, and a relative time
stamp in units of days. This represented a snap-
shot of our entire health system and included all
patients with an ICD-9 code over a span of two
decades. The first recorded code of each patient
was assigned time 0 with subsequent events
defined as the number of days from that time. The
dataset included approximately 41.2 million time-
stamped ICD-9 codes from 1.62 million unique
patients. The time span for events among patients
ranged from a single day to 22 years. There were
14 499 distinct ICD-9 codes; a total of 991 codes
appeared only once in the entire dataset, while the
most frequently occurring code (‘acute respiratory
infection, unspecified site’, ICD 465.9) appeared in
171 406 distinct patients. Our medical school’s
institutional review board reviewed and approved
this study. Two independent analyses were con-
ducted on this dataset: a pairwise association ana-
lysis and a temporal analysis.

Pairwise association analysis
We first conducted a pairwise association analysis
among the codes in the dataset. The number of
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possible pairs among codes is (n2−n)/2, where n is the number
of distinct codes, yielding 105.1 million combinations.
However, to help us focus on what were likely to be the stron-
gest associations and to reduce the number of results to a more
reasonable amount, we first pruned the dataset by including
only (1) codes that appeared in at least 30 patients; and (2)
code pairs in which at least 10 patients shared the same two
codes. These two steps eliminated 5898 distinct codes and
102.0 million (97%) comparisons. However, this still left 3.07
million unique pairwise associations for computation and
removed only 495 patients from the analysis.

Associations were determined using a Pearson’s χ2 test with
Yates’ continuity correction on 2×2 contingency tables for each
diagnosis pair. Each 2×2 table included the numbers of (i) ‘a’
patients who had occurrences of both code X and code Y,
(ii) ‘b’ patients who had code X but not code Y, (iii) ‘c’ patients
who had code Y but not code X; and (iv) ‘d’ patients who had
neither code X nor code Y in their records. For each code pair
we recorded the p value, χ2 statistic, and the OR (ie, (ad)/(bc)).

Since our goal was exploratory data analysis of diagnosis
pairs rather than hypothesis testing, we did not identify a
threshold for significance or correct for multiple hypothesis
testing. Our goal was to identify associations of interest by
ranking the evaluated pairs. In fact, it is likely that the most
‘significant’ code pairs are the more well-known associations,
whereas the less significant associations might be better start-
ing points for more in-depth clinical analysis. All statistical
tests were conducted using R for OS X V.2.13.2.

Temporal analysis
In addition to computing the measures of association, we inde-
pendently assessed the temporal direction of the association as
follows. Given codes X and Y, for each patient record in which
both codes appeared, we counted the number of times code X
appeared before code Y, or vice versa, using only the initial
instance of each code. Ties were not counted. The counts for
each code pair were then compared using an exact binomial
test in R with a hypothesized probability of success equal to
0.5. Direction was determined by the code that appeared first
more often and the magnitude was represented by the p value
resulting from the binomial test. In order to explore relation-
ships across various time scales from the short to the long
term, the temporal analysis was conducted using five time
frames for differences between each code pair: (1) ≥1 day apart,
(2) 1–30 days apart, (3) ≥1 year apart, (4) ≥5 years apart, and
(5) ≥10 years apart. For example, in instance (4) only time dif-
ferences that were 5 or more years apart between the first
instances of two codes were considered; all time differences
shorter than 5 years were considered ties and were not counted.

Data exploration
The final dataset was reviewed for clinically interesting associa-
tions in a manner comparable to our earlier work.5 Results
were compared to those uncovered in our prior analysis as well
as to other associations recently reported. Various approaches
have been utilized for visualizing association and temporal data
analyses to aid in discovery including network graphs, time-
lines, and even three-dimensional graphs.6 7 11 16 18 21 In the
current study we visualized the results using network graphs
to better understand potential interactions between multiple
nodes. In these graphs a node represents an ICD-9 code and an
edge represents a significant association between two codes.
Arrows represent the temporal relationship with the arrowhead
pointing to the lagged code. Node size, as seen in Figures 1–5,

represents the log of the number of patients with that code in
the dataset, and the node color is based on high-level ICD-9
categories of disease processes. All graphs were created with
Cytoscape V.2.6.322 using a force-directed layout. A script was
written to generate graphs that included nodes based on
various inclusion/exclusion criteria. The χ2 statistic, OR, and
p values were all used as thresholds to determine which nodes
should be included. This allowed for variations in both the
strength of the association and the strength of the temporal
relationship.

RESULTS
Among the 3.07 million unique pairs in our final dataset,
397 717 pairs had a χ2 statistic ≥800, equivalent to an uncor-
rected p value of approximately 1.0×10−176. There were 28 373
pairs with an OR ≥200. With respect to the binomial test per-
formed to determine temporal significance, and using a p value
of ≤1.0×10−30 as a threshold, there were 51 219 pairs using
the ≥1 day apart relationship, 3032 pairs 1–30 days apart,
54 831pairs ≥1 year apart, 48 499 pairs ≥5 years apart, and
17 730 pairs ≥10 years apart. Figures 1–5 display network
graphs constructed from the relationships uncovered in the ana-
lysis using various thresholds for inclusion. These comprise
the strength of the pairwise association as well as the strength
of the temporal relationships using several time ranges.
High-resolution images, as well as interactive Cytoscape files
containing the networks for figures 1–5, are available as an
online supplement. Table 1 displays several interesting clinical
associations, some of which are described below. Some of the
associations were included in the table as a comparison to
results from our previous study of clinical diagnoses in a free
text problem list,5 whereas others were included because they
have recently been reported in the literature and media. In all
cases, ‘interesting’ is defined subjectively by the authors,
although all of the associations reported in table 1 are thought
to be poorly known or unknown in the medical community.
Tables 2–4 display the top 10 associations basedon the χ2 statis-
tic, OR, and temporal relationship p values, respectively.

Figure 6 demonstrates the temporal nature of the data with a
timeline visualization of three codes with respect to chronic
fatigue syndrome (CFS, ICD 780.71). In this example, the tem-
poral associations are determined using the ≥1 day apart
threshold, which is any code not falling on the solid vertical
line, and the ≥5 years apart threshold, which includes any code
that falls beyond the dashed vertical lines. For the ≥1 day
range, intracranial injury (ICD 854.01) predominantly precedes
CFS (p=2.82×10−20), whereas dysphagia (ICD 787.20) pre-
dominantly follows CFS (p=6.84×10−19). Voice and resonance
disorder (ICD 784.49) does not demonstrate any notable tem-
poral relationship to CFS (p=0.21). For the ≥5 year date range,
48 patients had an intracranial injury that preceded CFS by 5
or more years but none had an intracranial injury that followed
CFS by 5 or more years (p=7.10×10−15). Likewise, 69 cases of
dysphagia occurred ≥5 years after the diagnosis of CFS but no
cases preceded CFS by ≥5 years (p=3.39×10−21). Voice and res-
onance disorders still showed no significant temporal relation-
ship, with 35 patients having been diagnosed with CFS 5 or
more years before the voice disorder and 37 patients being
diagnosed with the voice disorder 5 or more years before the
CFS (p=0.91). The ‘traditional’ association analysis had shown
that, among these four codes, CFS was most strongly asso-
ciated with the voice disorders (χ2=887.4, p=5.27×10−195),
followed by dysphagia (χ2=748.0, p=1.09×10−164), and then
intracranial injuries (χ2=29.7, p=4.96×10−8).
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In our prior analysis of free text problems, we found an asso-
ciation between shingles (ie, herpes zoster reactivation) and
hypothyroidism. In the current analysis, we also found several
similar associations including a temporal component with
hypothyroidism preceding the shingles, the strongest of which
is reported in table 1, row 1. The association was strongest
with a minimum 5-year interval between the codes, meaning
that the onset of the hypothyroidism preceded the shingles by
at least 5 years. The temporal association was still present with
a 10-year interval but was not as strong (table 1, row 2).

We compared a subset of the results from our previous ana-
lysis of free text diagnoses in a problem list5 to the associations
uncovered in the current analysis. Unlike our previous findings,
we could not find a strong association between tricuspid insuf-
ficiency (ICD 397.0) and ‘tobacco use disorder ’ (ICD 305.1)
(table 1). Additionally, we could not find an association
between tricuspid insufficiency and ‘personal history of tobacco
use’ (ICD V15.81). We did still find an association between
smoking and acute appendicitis, but when temporality was
taken into account over a period of 5 or more years, the appen-
dicitis diagnoses preceded the smoking diagnoses by a factor of
5-to-1. Similarly, amyotrophic lateral sclerosis (ICD 335.20)
was not significantly associated with smoking, contrary to
what we had found previously.

We previously reported an intriguing association between cat
bites and depression. At the time it was unclear how this
finding might be explained, since temporal information was
lacking (eg, perhaps people become depressed when bitten by
their cats). There is no specific ICD code for cat bite, but ICD
E906.3, used for various animal bites but not dog bites, is

typically used. In the current analysis there was a very strong
association between depression (ICD 311) and animal bites
(ICD E906.3), with a significant temporal relationship noted
where the depression preceded the bite with time frames of
≥1 day, ≥1 year, and ≥5 years apart. In comparison, a specific
ICD code does exist for dog bites (ICD E906.0). An association
was found between dog bites and depression, but the associ-
ation was much weaker and there was no statistically signifi-
cant temporal relationship between the two.

The raw numbers for the potential cat bite/depression associ-
ation show that there were 68 718 patients with depression
and 800 patients with animal bites; 193 (24.1%) of those with
an animal bite also had depression, whereas the prevalence of
major depressive disorder in the adult US population is 6.7%.23

Among the 193 patients, 137 (71.0%) had a diagnosis of depres-
sion before a diagnosis of the animal bite, 54 had the animal
bite diagnosis preceding the depression diagnosis, and two
patients had both diagnoses added on the same day. Ten (5.2%)
of these patients had at least one suicide attempt as recorded
using ICD code E950.X (X represents any of the sub-codes
including E950.1, E950.2, etc). Of these 10 patients with a
suicide attempt, three had an animal bite which preceded both
the depression and the suicide attempt.

Recent reports have suggested an association between gastric
ulcers caused by H pylori and insulin resistance,24 a precursor to
diabetes, and elevated hemoglobin A1c levels,25 a marker of dia-
betes, and it has been suggested that preventing this infection
may prevent the onset of diabetes.26 There is no specific ICD
code for elevated A1c, but there are codes for diabetes. In our
dataset we found an association between gastric ulcers and

Figure 1 Network graph showing high-level view of significant associations, without accounting for temporal relationships, using a threshold for
inclusion of χ2≥800.0 and OR≥200.0. This graph includes 6455 nodes and 28 362 edges. Clusters of similar colors (ICD-9 categories) can be seen
here; 66.5% of all pairs in this figure are between nodes of the same color/category. ICD-9, International Classification of Diseases, Ninth Revision.
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diabetes; however, the temporal relationships did not support
the causality. The two most strongly associated pairs were
for acute ulcers which predominantly showed diabetes pre-
ceding the ulcers (table 1, rows 10 and 11). Among the 27 code
pairs of diabetes (ICD 250.X) and chronic gastric ulcers (ICD
531.4–531.7), most were in the direction of diabetes→ulcer with
the exception of one somewhat weak association showing the
reverse direction (table 1, row 12). Furthermore, among the
seven associations specifically between H pylori (ICD 041.86)
and diabetes (250.X), all were either insignificantly temporally
associated or significant only from diabetes→H pylori.

There were 757 associations in our final dataset related to
H pylori. Among the top associations, nearly all were for gastric
related issues which is what one would expect. One association
stood out, however, as being clinically different from the rest:
hyperlipidemia, ranked 22 in terms of strength of the association
and 28 in terms of strength of the temporality, with the direc-
tion pointing from hyperlipidemia→H pylori. This relationship
was present even over a 10-year span (table 1, rows 15–18).

Indeed, there have been recent reports of this association, but
they seem to suggest that the eradication of H pylori may lead to
hyperlipdemia.27 28

Another recently reported association is that between dia-
betes and bladder cancer with the suggestion that diabetes may
predispose individuals to develop bladder cancer.29 In our ana-
lysis we did find a strong association between the two (table 1,
row 19), but the majority of cases were those in which the
bladder cancer was diagnosed before the diabetes. Other inter-
esting associations are also shown in table 1.

DISCUSSION
In this empirical study we have shown the feasibility of per-
forming an association analysis with temporality taken into
account using a large dataset obtained from an EHR. By
varying the time scales for the temporal relationships, we
observed both long term and short term associations. Such
non-hypothesis driven approaches have been criticized in the
past for lacking reliable and significant findings.30 31 However,

Figure 2 (A) Network graph using the same criteria as in figure 1, but also including a temporal threshold for inclusion of p<1.0×10−30 and a
time range of ≥1 day apart between code pairs. This reduced network contains 877 nodes and 874 edges. (B) A subset of the graph from panel A
showing 32 nodes and 46 edges. At this level of magnification it becomes possible to see the arrows pointing from the initial nodes to the
subsequent (temporally) nodes. Directed edges here (and in future graphs) should be interpreted only individually, not as longer chains of cascades.
For example, patients with nodes a and b are not necessarily the same patients who have nodes b and c.
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these approaches can be a first step toward revealing novel rela-
tionships among data that are captured as a part of routine
clinical operations that may only become evident when aggre-
gated over large numbers of patients. Further, while not
hypothesis driven, these findings can be used to help generate
hypotheses that might warrant further exploration or testing
using controlled studies.

With such a large and varied dataset it may be difficult to
assign true ‘significance’ to an association and p values should
be interpreted with caution. However, we used these values
simply as filtering parameters to reduce the data so that they
could reasonably be explored. More important is the assignment

of ‘clinical significance’ or ‘novelty’ to an association. This
remains an ongoing challenge. It is clear from the data presented
in tables 2–4 that those associations with the highest rankings
are not of great value for novel discovery, and it will be necessary
to explore ‘weaker ’ associations if the goal is to find something
new. Sophisticated approaches have been developed to detect
novel relationships that might be missed with traditional associ-
ation analyses,32 and automated measures of ‘interest’ have also
been applied.13 33 However, even these approaches would still
likely suffer from an inability to automatically separate the
many clinically known associations from those that are still
unknown without using an external data source for comparison.

Figure 3 Subset of network graph using the same threshold for criteria as in figure 2 except with a time frame for events between two nodes set
at ≥5 years apart. The entire graph contains 191 nodes and 177 edges. The view shown here contains 19 nodes and 21 edges. The names of nodes
are shown as well as the ICD-9 code in parentheses. ICD-9, International Classification of Diseases, Ninth Revision.

Figure 4 Subset of network graph
using the same threshold for criteria as
in figure 2 except with a time frame for
events between two nodes set at
1–30 days apart. Thus, any relationship
>30 days apart would be excluded.
The entire graph contains 255 nodes
and 203 edges. The view shown here
contains nine nodes and five edges.
The names of nodes are shown as well
as the ICD-9 code in parentheses.
ICD-9, International Classification of
Diseases, Ninth Revision.
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Prior studies have linked clinical data with external sources
including MEDLINE and Wikipedia, suggesting that this
approach might add valuable information.3 6

Many related codes tended to be clustered together such as
250.1, 250.2, and 250.3, and the sometimes small differences
between them may not be important for this type of analysis.
One option to simplify the search space would be to collapse
the codes based on the simple hierarchy within ICD-9. Thus
these codes might be combined as simply 250.X. Collapsing data
to simplify analyses of network diagrams has been done before,6

and various approaches have been used for clustering ICD codes
into higher-level categories, including the use of software pro-
vided by the Agency for Healthcare Research and Quality.34–36

A challenge to this approach with ICD codes, however, is that
some codes themselves actually include temporal concepts such
as ‘initial episode’ and ‘subsequent encounter,’ or ‘acute’ and
‘chronic.’ As is often the case, interpreting results still requires
thoughtful consideration, regardless of a p value or OR.

The association between animal bites (presumably primarily
cat bites) and depression remains interesting. This association
was reported in our prior analysis of free text problems where
cat bites were specifically mentioned, and this appears to be
corroborated in our current dataset. Examination of the tem-
poral information suggests that depression often precedes the
animal bite. This may be plausible if cats tend to bite their
owners when ignored, which is just what might happen to
someone in a dysthymic state due to depression. Even more
important is what might be done with this knowledge in
terms of screening. For example, it may be prudent for health-
care providers to inquire about depression in patients who
present with an animal/cat bite, as this may be a marker for
depression that might otherwise be missed.

Our approach has limitations, but also raises important con-
siderations for future work. First, while we included a large
number of patients and observations, the level of detail for
each patient was sparse. ICD-9 codes can hardly be considered
representative of an entire patient, as they are primarily created

for billing/reimbursement, not clinical care. As a result, some
diagnoses that might be entered into a clinical problem list
might not end up being billed as an ICD-9 code if other more
reimbursable diagnoses were also present, and this might
explain why some associations we previously found with a free
text problem list were not also present in our larger dataset
using billing codes. The addition of other time-stamped data
from the EHR such as medications and procedures could also
add value,13 as this can provide patient-level clinical details that
are not present in administrative datasets.37 One study even
linked clinical phenotypic data from questionnaires to patients’
genomes.10 Demographic data including race, gender, and age
could also be useful.38

It is well known that ICD-9 codes can be inaccurate and do
not necessarily represent a patient’s true diagnoses. This
inaccuracy includes diabetes ICD-9 codes,39 and our results
related to diabetes should be interpreted in that context.
Additionally, ICD-9 codes often are not specific and some diag-
noses that we had previously analyzed with our free text
problem list could not reasonably be re-checked using the
ICD-9 codes. Examples include granuloma annulare which can
be included under ICD 695.89, a code for non-specific ery-
thematous skin conditions, and primary sclerosing cholangitis
which has a non-specific ICD code of 576.1 but which also
includes other conditions involving inflammation of the bile
ducts. Likewise, while a specific code for dog bites exists, there
is not a similar code for cat bites, making interpretation of our
findings limited. The granularity issue may be alleviated once
the US switches from ICD-9 to ICD-10 in the coming years.
However, this change will introduce its own complexity and
computational challenges with the 150 000 or more codes
resulting in nearly 12 billion possible pairwise comparisons.
Our health system recently switched from a free text to a
coded problem list, so in a few years we may have collected
enough data for a similar analysis using a coded,
clinically-oriented problem list instead. But limitations will
continue to persist due to differences in what clinicians think

Figure 5 Subset of network graph that was constructed using the following parameters for inclusion: χ2≥300, OR≥100, temporal relationship
p value ≤1.0×10−20, and time difference between codes is ≥10 years apart. The overall network contains 113 nodes and 100 edges. The portion
shown here contains 19 nodes and 19 edges.
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is relevant for inclusion in a problem list40 and issues of data
completeness.41 42

The first instance of a time-stamped code appearing in the
medical record does not necessarily imply that the underlying

event/diagnosis initially occurred at that time. At large tertiary
care centers such as ours, many patients arrive with a pre-
existing diagnosis or initial clinical presentation occurring else-
where. Thus, even though we did not find a strong temporal

Table 1 Interesting clinical associations between pairs of ICD-9 codes
Initial code (A)→subsequent code (B)

Time
frame Description (code A) Description (code B)

Association
χ2

Association p
value

Association
OR

Temporal p
value

c Acquired hypothyroidism (244.9) Herpes zoster without complication
(053.9)

4686.9 <5×10−324 7.6 7.3×10−16

d Acquired hypothyroidism (244.9) Herpes zoster without complication
(053.9)

4686.9 <5×10−324 7.6 1.6×10−7

a Tricuspid insufficiency (397.0) Tobacco use disorder (305.1) 0.2 0.7 1.1 0.5
a Acute appendicitis (540.9) Tobacco use disorder (305.1) 266.4 6.9×10−60 3.2 1.4×10−10

a Tobacco use disorder (305.1) Amyotrophic lateral sclerosis (335.20) 1.6 0.2 0.7 0.5
a Depressive disorder (311) Animal bite, including cats (E906.3) 771.3 9.4×10−170 7.2 1.7×10−9

b Depressive disorder (311) Animal bite, including cats (E906.3) 771.3 9.4×10−170 7.2 2.3×10−8

c Depressive disorder (311) Animal bite, including cats (E906.3) 771.3 9.4×10−170 7.2 3.1×10−4

a Depressive disorder (311) Dog bite (E906.0) 170.2 6.7×10−39 2.7 0.88
a Diabetes, no complications (250.00) Gastric ulcer, acute or chronic (531.90) 1800.0 <5×10−324 6.3 3.4×10−11

a Diabetes, no complications (250.00) Gastric ulcer, acute (531.3) 1334.3 3.9×10−292 7.7 1.7×10−13

a Chronic gastric ulcer with perforation
(531.6)

Diabetes, uncontrolled (250.02) 110.9 6.4×10−26 5.8 8.4×10−6

a Diabetes, uncontrolled (250.02) Helicobacter pylori (041.86) 303.3 6.4×10−68 7.5 0.01
a Diabetes mellitus (250) H pylori (041.86) 1378.3 1.0×10−24 3.8 2.9×10−6

a Hyperlipidemia (272.4) H pylori (041.86) 941.7 8.6×10−207 7.2 1.2×10−7

b Hyperlipidemia (272.4) H pylori (041.86) 941.7 8.6×10−207 7.2 4.1×10−8

c Hyperlipidemia (272.4) H pylori (041.86) 941.7 8.6×10−207 7.2 9.9×10−8

d Hyperlipidemia (272.4) H pylori (041.86) 941.7 8.6×10−207 7.2 9.8×10−4

a Malignant neoplasm of bladder (188.9) Diabetes, no complications (250.00) 906.5 3.7×10−199 3.6 1.5×10−4

a Lumbago/low back pain (724.2) Insomnia (780.52) 35750.2 <5×10−324 10.1 7.3×10−80

a Malignant neoplasm of colon (153.9) Osteopenia (733.90) 400.3 4.7×10−89 2.3 0.01
a Guillain-Barre syndrome (357.0) Acute renal failure (584.9) 300.3 2.9×10−67 5.6 0.1
a Guillain-Barre syndrome (357.0) Chronic kidney disease (585.9) 35.6 2.4×10−9 4.1 2.7×10−4

a Malignant neoplasm of esophagus
(150.9)

Gastroesophageal reflux disease
(530.81)

500.0 9.3×10−111 2.8 0.02

* Henoch-Schonlein purpura (287.0) Intussusception (560.0) 962.4 2.7×10−211 33.7 1
c Agoraphobia with panic disorder

(300.21)
Mammogram microcalcifications
(793.81)

87.4 8.8×10−21 4.5 5.2×10−4

All temporal relationships in the table are shown going from code A (earlier) to code B (later), except where otherwise noted. The associations presented here are intended to be starting
points for exploratory data analysis, not confirmed associations from hypothesis testing.
Temporal relationship reported for (a) ≥1 day apart, (b) ≥1 year apart, (c) ≥5 years apart, and (d) ≥10 years apart.
*No temporal relationship existed.
ICD-9, International Classification of Diseases, Ninth Revision.

Table 2 Top 10 ICD-9 code pairs based on the association χ2 statistic, with a time frame of ≥1 day apart
Initial code (A)→subsequent code (B)

Description (code A) Description (code B)
Association
χ2

Association
p value

Association
OR

Temporal
p value

Nodular lymphoma, intra-abdominal lymph nodes
(202.03)

Nodular lymphoma, intrapelvic lymph nodes
(202.06)

1216635.9 <5×10−324 152507.5 2.1×10−3

Poisoning by antimalarial drugs (961.4) Adverse effect of antimalarial drug (E931.4) 1184098.3 <5×10−324 364158.1 3.1×10−15

Hodgkin’s paragranuloma, intra-abdominal lymph
nodes (201.03)

Hodgkin’s paragranuloma, intrapelvic lymph
nodes (201.06)

1154416.3 <5×10−324 694315.3 0.02

Screening for malignant neoplasm of cervix
(V76.2)

Routine gynecological exam (V72.31) 1060924.6 <5×10−324 945.9 4.9×10−324

Hodgkin’s paragranuloma, intrathoracic lymph
nodes (201.02)

Hodgkin’s paragranuloma, intrapelvic lymph
nodes (201.06)

1050856.0 <5×10−324 291291.9 0.13

Polio vaccination (V04.0) Need for MMR vaccination (V06.4) 987770.8 <5×10−324 649.6 4.9×10−324

Hodgkin’s paragranuloma, intra-abdominal lymph
nodes (201.03)

Hodgkin’s paragranuloma, intrathoracic lymph
nodes (201.02)

965736.3 <5×10−324 120966.3 1.0

Kidney transplant (V42.0) Complication of kidney transplant (996.81) 927810.6 <5×10−324 4385.3 3.9×10−154

Supervision, other normal pregnancy (V22.1) Routine postpartum follow-up (V24.2) 916123.1 <5×10−324 663.5 4.9×10−324

Need for MMR vaccination (V06.4) Need for varicella vaccination (V05.4) 907463.5 <5×10−324 444.3 4.9×10−324

ICD-9, International Classification of Diseases, Ninth Revision.
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relationship between diabetes and bladder cancer, it may be
because many patients first come to our health system through
the cancer center for further treatment after being diagnosed
with bladder cancer elsewhere. As a result, the bladder cancer
would likely be coded before other secondary diagnoses such as
diabetes. In this particular relationship the causality may
also be due to certain medications rather than the diabetes
itself,43 but we did not include medications in our analysis.
Nevertheless, that many health systems lack a ‘complete
picture’ of all their patients is well known, and health informa-
tion exchanges may play a role in resolving this issue.44

Our analysis included all patients in our health system with
ICD codes and thus is not subject to bias as a result of includ-
ing only a sample of the population. However, it still only
represents the experiences, and potential coding irregularities,
of a single institution. What we found may not be corroborated
by the findings of others, or vice versa. The following is a case
in point: a recent report of clinical associations found that
Kawasaki disease (ICD 446.1) was associated with autism (ICD
299.0),6 but we did not find a similar association among our
large set of patients. In our set there were 736 patients with
Kawasaki disease and 3275 patients with autism (ICD codes
299.0, 299.00, 299.01); only four patients had both conditions

(χ2 p=0.10). Given that the prevalence of autism has been
reported to be approximately 1.1%,45 the number of patients
with Kawasaki disease who also had autism is actually less
than we might expect by chance. Association analyses may
become more powerful and reliable as data from multiple insti-
tutions are included, potentially as part of the envisioned
‘learning health system’ in which such data might flow freely
for discovery.46

Furthermore, including all patients in the analyses without
dividing the population across clinically logical segments
could also have influenced our findings. For example, prostate
cancer only occurs in males, but the baseline population from
which we constructed our 2×2 tables was presumably about
half female, and also included many thousands of children.
Similar sub-analyses could include patients from only one
clinic at a time, since it may become easier to identify signifi-
cant associations by grouping them according to clinic attend-
ance or even distinguishing those who came locally from
within the state or those who came via referrals for treatment
of a rare disease. It also is important to note that even rich
EHR data may not include important confounders that
could impact the meaningful interpretation of findings.38

For example, the conclusions about animal bites should be

Table 3 Top 10 ICD-9 code pairs based on the association OR, with a time frame of ≥1 day apart
Initial code (A)→subsequent code (B)

Description (code A) Description (code B)
Association
χ2

Association
p value

Association
OR

Temporal
p value

Malignant neoplasm of female breast (174.9) Breast reconstruction following mastectomy
(V51.0)

2358.2 <5×10−324 Infinity* 3.0×10−8

Other malignant lymphoma (202.8) Large cell lymphoma of head/face/neck
(200.71)

5418.1 <5×10−324 Infinity* 5.5×10−10

Essential hypertension (401.9) Hypertensive heart and chronic kidney disease
(404.11)

626.4 3.02×10−138 Infinity* 3.62×10−7

Cardiac dysrhythmia (427.9) Anterior wall acute myocardial infarction
(410.1)

336.7 3.30×10−75 Infinity* 0.04

Cardiac dysrhythmia (427.9) Inferior wall acute myocardial infarction (410.4) 436.0 7.98×10−97 Infinity* 2.6×10−3

Primary cardiomyopathy (425.4) Peripartum cardiomyopathy (674.5) 2815.9 <5×10−324 Infinity* 8.68×10−7

History of malignant breast cancer (V10.3) Breast reconstruction following mastectomy
(V51.0)

7044.4 <5×10−324 Infinity* 1.86×10−9

Hodgkin’s paragranuloma, intra-abdominal lymph
nodes (201.03)

Hodgkin’s paragranuloma, intrapelvic lymph
nodes (201.06)

1154416.3 <5×10−324 694315.3 0.02

Drowning and nonfatal submersion (994.1) Accidental drowning and submersion (E910.8) 379000.0 <5×10−324 518415.4 0.03
Poisoning by antimalarial drugs (961.4) Adverse effect of antimalarial drug (E931.4) 1184098.3 <5×10−324 364158.1 3.11×10−15

*This pair of codes only appeared together in each patient in which they were listed.
ICD-9, International Classification of Diseases, Ninth Revision.

Table 4 Top 10 ICD-9 code pairs based on temporal p value (≥1 day apart)
Initial code (A)→subsequent code (B)

Description (code A) Description (code B)
Association
χ2

Association
p value

Association
OR

Temporal
p value

Previous c-section, antepartum (654.23) Previous c-section, delivered (654.21) 643843.5 <5×10−324 2281.5 <5×10−324

Bladder cancer (188.9) History of bladder cancer (V10.51) 554337.8 <5×10−324 6004.6 <5×10−324

Normal delivery (650) Delivery of single liveborn (V27.0) 551713.8 <5×10−324 253.9 <5×10−324

Unspecified breast disorder (611.9) Screening for unspecified condition (V82.9) 443371.9 <5×10−324 442.1 <5×10−324

Second degree perineal laceration, delivered
(664.11)

Routine postpartum follow-up (V24.2) 388083.8 <5×10−324 330.8 <5×10−324

Unspecified neoplasm of eyelid (173.1) Unspecified disorder of eyelid (374.89) 385374.2 <5×10−324 1074.2 <5×10−324

Malignant neoplasm of female breast (174.9) History of malignant breast cancer (V10.3) 375502.6 <5×10−324 549.9 <5×10−324

Allergic rhinitis due to pollen (477.0) Allergic rhinitis due to animal hair (477.2) 368401.3 <5×10−324 705.2 <5×10−324

Chronic kidney disease (585) Complication of kidney transplant (996.81) 367000.7 <5×10−324 554.1 <5×10−324

Symptoms associated with female genital
organs (625.8)

Abnormal pap smear and cervical human
papillomavirus (795.0)

287914.0 <5×10−324 202.3 <5×10−324

ICD-9, International Classification of Diseases, Ninth Revision.
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interpreted in the context of the prevalence of animal owner-
ship in the overall study population.

Even though two codes may be strongly associated and tem-
porally correlated, these relationships still do not prove causation.
In many cases one may simply precede the other as patients age.
Figure 5 shows strong associations between two codes over a
10-year period, including myopia (ICD 367.1)→astigmatism (ICD
367.20). An association between myopia and astigmatism is
known,47 and in at least one study of children it was shown that
astigmatism often preceded myopia.48 However, our dataset does
not contain the age of the patients so we are unable to report on
age-dependent differences regarding the development of these
two conditions. Similarly, in table 2, polio vaccination (ICD
V04.0) preceded MMR vaccination (ICD V06.4). Since the polio
vaccine is first given at age 2 months whereas MMR is not given
until 12 months, such a temporal relationship is expected.

The network graphs themselves should be interpreted with
caution. Because only pairwise associations were calculated,
any network with more than two interconnected nodes may
represent an agglomeration of multiple patients with non-
overlapping issues. Thus, even though the pattern A→B→C
may be observed, it is possible that patients with pattern A→B
are not the same patients who have pattern B→C (figure 1B).
Approaches do exist that consider these longer episodes among
a group of patients.20

It is also important to understand how codes might be used
over time. Figure 5 shows supervision of a normal pregnancy
(ICD V22.1) preceding a labor and delivery code for advanced
maternal age (ICD 659.63) by 10 years or more. Clearly, these
were not the same pregnancies. This spurious association
demonstrates that care must always be taken in interpreting
the results. It is possible that some of our associations were
actually found in a mix of children and elderly patients, two
populations that can sometimes have higher rates of similar
diagnoses, ranging, for example, from pneumococcal bacterial
infections to fractures. While we do not know of such spurious
associations occurring in our dataset, it remains possible
without knowing other details about the patients such as their

age. The ‘Yule-Simpson paradox’, in which conclusions made
from population-level aggregated data can conflict with conclu-
sions made from the same data analyzed separately as sub-
populations, is an important methodological consideration that
our broadly collected dataset is not adequate to address.49

Other temporal relationships observed were likely due to
coding changes. For example, a very strong association was
found between ‘gynecological examination’ (ICD V72.3) and
‘routine gynecological examination’ (ICD V72.31), and the tem-
poral relationship was from V72.3→V72.31 (p<5×10−324).
This is almost certainly due to the fact that in the year 2005
code V72.3 was expanded into sub-codes and was thus replaced
by V72.31 for routine exams.50

To further explore the relationship between the results from
the separate analyses we conducted, we constructed an empir-
ical q-q plot (available as an online supplement) comparing the
ordinal quartiles of p values of our temporal associations
against the standard pairwise associations. This confirmed that
the top temporal associations captured qualitatively different
information than the top standard associations. In particular,
the temporal associations further ‘scatter ’ and rank order the
highly significant pairwise associations. Thus, the top signifi-
cant temporal associations are predictive of the pairwise asso-
ciations but not vice versa. Therefore one application of our
methodology is as an approach to further prune the space of
initially discovered associations to take into account temporal
information. Finally, we performed a Kolmogorov-Smirnov test
and confirmed the rejection of the null hypothesis that the
temporal association quartiles and standard association quar-
tiles are drawn from the same distribution.

CONCLUSION
Despite the limitations, we believe that the approach presented
here could provide benefit to those trying to elucidate novel
associations from EHR data and could lead to new discoveries
or additional confirmatory research. Furthermore, incorporating
non-EHR data would represent yet another step towards large
scale phenome-wide association studies (PheWAS).51

Our goal in this paper has been to present an exploratory
data analysis technique for extracting temporal associations
with applications to massive volumes of data in EHR. We have
demonstrated that including temporal constraints in a trad-
itional association analysis can reveal patterns of potential
interest. Our technique could potentially be utilized in a
hypothesis testing framework by incorporating reference popu-
lations that control for underlying variables, by separating caus-
ation structures from mere temporal sequentiality, by designing
new information-theoretic criteria that separate novel patterns
from ‘expected’ patterns, and by setting controls for multiple
hypothesis testing (eg, using q values). Designing such a com-
prehensive framework is an object of future study.
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Figure 6 Timeline visualization of three codes with respect to chronic
fatigue syndrome (ICD 780.71). Time zero (solid vertical line) represents
the occurrence of code 780.71, and each dot represents a single
patient’s first occurrence of one of the other three codes with respect
to 780.71. The dashed vertical lines represent the 5-year time window
for longer term temporal associations. Any dot that falls within the
dashed lines would not be counted for the ≥5-year interval, although it
would be considered for the ≥1-day interval as long as it did not fall
exactly on time zero.

340 J Am Med Inform Assoc 2013;20:332–341. doi:10.1136/amiajnl-2012-001117

Research and applications



REFERENCES
1. Cao H, Hripcsak G, Markatou M. A statistical methodology for analyzing

co-occurrence data from a large sample. J Biomed Inform 2007;40:343–52.
2. Cao H, Markatou M, Melton GB, et al. Mining a clinical data warehouse to discover

disease-finding associations using co-occurrence statistics. AMIA Annu Symp Proc
2005:106–10.

3. Chen ES, Hripcsak G, Xu H, et al. Automated acquisition of disease drug
knowledge from biomedical and clinical documents: an initial study. J Am Med
Inform Assoc 2008;15:87–98.

4. Doddi S, Marathe A, Ravi SS, et al. Discovery of association rules in medical data.
Med Inform Internet Med 2001;26:25–33.

5. Hanauer DA, Rhodes DR, Chinnaiyan AM. Exploring clinical associations using
‘-omics’ based enrichment analyses. PLoS One 2009;4:e5203.

6. Holmes AB, Hawson A, Liu F, et al. Discovering disease associations by integrating
electronic clinical data and medical literature. PLoS One 2011;6:e21132.

7. Hripcsak G, Albers DJ, Perotte A. Exploiting time in electronic health record
correlations. J Am Med Inform Assoc 2011;18(Suppl 1):i109–15.

8. Mullins IM, Siadaty MS, Lyman J, et al. Data mining and clinical data repositories:
insights from a 667,000 patient data set. Comput Biol Med 2006;36:1351–77.

9. Prather JC, Lobach DF, Goodwin LK, et al. Medical data mining: knowledge
discovery in a clinical data warehouse. Proc AMIA Annu Fall Symp 1997:101–5.

10. Tung JY, Do CB, Hinds DA, et al. Efficient replication of over 180 genetic
associations with self-reported medical data. PLoS One 2011;6:e23473.

11. Wang TD, Plaisant C, Quinn AJ, et al. Aligning Temporal Data by Sentinel Events:
Discovering Patterns in Electronic Health Records. Chi 2008: 26th Annual Chi
Conference on Human Factors in Computing Systems Vols 1 and 2, Conference
Proceedings 2008:457–66.

12. Wang X, Hripcsak G, Markatou M, et al. Active computerized pharmacovigilance
using natural language processing, statistics, and electronic health records:
a feasibility study. J Am Med Inform Assoc 2009;16:328–37.

13. Wright A, Chen ES, Maloney FL. An automated technique for identifying
associations between medications, laboratory results and problems. J Biomed
Inform 2010;43:891–901.

14. Yang J, Logan J. A data mining and survey study on diseases associated with
paraesophageal hernia. AMIA Annu Symp Proc 2006:829–33.

15. Batal I, Sacchi L, Bellazzi R, et al. A temporal abstraction framework for classifying
clinical temporal data. AMIA Annu Symp Proc 2009;2009:29–33.

16. Klimov D, Shahar Y. A framework for intelligent visualization of multiple
time-oriented medical records. AMIA Annu Symp Proc 2005:405–9.

17. Klimov D, Shahar Y. Intelligent querying and exploration of multiple time-oriented
medical records. Stud Health Technol Inform 2007;129(Pt 2):1314–18.

18. Klimov D, Shahar Y, Taieb-Maimon M. Intelligent interactive visual exploration of
temporal associations among multiple time-oriented patient records. Methods Inf
Med 2009;48:254–62.

19. Moskovitch R, Shahar Y. Medical temporal-knowledge discovery via temporal
abstraction. AMIA Annu Symp Proc 2009;2009:452–6.

20. Patnaik D, Butler P, Ramakrishnan N, et al. Experiences with mining temporal event
sequences from electronic medical records. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining (KDD
2011). 2011:360–8.

21. Chittaro L, Combi C, Trapasso G. Data mining on temporal data: a visual approach
and its clinical application to hemodialysis. J Visual Lang Comput 2003;14:591–620.

22. Cline MS, Smoot M, Cerami E, et al. Integration of biological networks and gene
expression data using Cytoscape. Nat Protoc 2007;2:2366–82.

23. Kessler RC, Chiu WT, Demler O, et al. Prevalence, severity, and comorbidity of
12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch
Gen Psychiatry 2005;62:617–27.

24. Polyzos SA, Kountouras J, Zavos C, et al. The association between Helicobacter
pylori infection and insulin resistance: a systematic review. Helicobacter
2011;16:79–88.

25. Chen Y, Blaser MJ. Association between gastric Helicobacter pylori colonization and
glycated hemoglobin levels. J Infect Dis 2012;205:1195–202.

26. Jeon CY, Haan MN, Cheng C, et al. Helicobacter pylori infection is associated with
an increased rate of diabetes. Diabetes Care 2012;35:520–5.

27. Fujiwara Y, Higuchi K, Arafa UA, et al. Long-term effect of Helicobacter pylori
eradication on quality of life, body mass index, and newly developed diseases

in Japanese patients with peptic ulcer disease. Hepatogastroenterology
2002;49:1298–302.

28. Kamada T, Hata J, Kusunoki H, et al. Eradication of Helicobacter pylori increases
the incidence of hyperlipidaemia and obesity in peptic ulcer patients. Dig Liver Dis
2005;37:39–43.

29. MacKenzie T, Zens MS, Ferrara A, et al. Diabetes and risk of bladder cancer:
evidence from a case-control study in New England. Cancer 2011;117:1552–6.

30. Allen JF. Bioinformatics and discovery: induction beckons again. Bioessays
2001;23:104–07.

31. Kell DB, Oliver SG. Here is the evidence, now what is the hypothesis? The
complementary roles of inductive and hypothesis-driven science in the post-genomic
era. Bioessays 2004;26:99–105.

32. Reshef DN, Reshef YA, Finucane HK, et al. Detecting novel associations in large
data sets. Science 2011;334:1518–24.

33. Tan P, Kumar V, Srivastava J. Selecting the right interestingness measure for
association patterns. In Proceedings of the 8th International Conference on
Knowledge Discovery and Data Mining (KDD 2002) 2002:32–41.

34. Linden A, Biuso TJ, Allada G, et al. Consensus development and application of
ICD-9-CM codes for defining chronic illnesses and their complications. Dis Manag
Health Outcomes 2007;15:315–22.

35. Rassekh SR, Lorenzi M, Lee L, et al. Reclassification of ICD-9 Codes into
Meaningful Categories for Oncology Survivorship Research. J Cancer Epidemiol
2010;2010 doi:10.1155/2010/569517.

36. Clinical Classifications Software (CCS) for ICD-9-CM, 2012. http://www.
hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp (accessed 24 Jul 2012).

37. Schneeweiss S, Seeger JD, Smith SR. Methods for developing and analyzing
clinically rich data for patient-centered outcomes research: an overview.
Pharmacoepidemiol Drug Saf 2012;21(Suppl 2):1–5.

38. Schneeweiss S, Gagne JJ, Glynn RJ, et al. Assessing the comparative
effectiveness of newly marketed medications: methodological challenges and
implications for drug development. Clin Pharmacol Ther 2011;90:777–90.

39. Rhodes ET, Laffel LM, Gonzalez TV, et al. Accuracy of administrative coding for
type 2 diabetes in children, adolescents, and young adults. Diabetes Care
2007;30:141–3.

40. Zhou X, Zheng K, Ackerman MS, et al. Cooperative documentation: the patient
problem list as a nexus in electronic health records. In: Proceedings of the ACM
2012 Conference on Computer Supported Cooperative Work (CSCW '12).
2012:911–20. doi: 10.1145/2145204.2145340.

41. Szeto HC, Coleman RK, Gholami P, et al. Accuracy of computerized outpatient
diagnoses in a Veterans Affairs general medicine clinic. Am J Manag Care
2002;8:37–43.

42. Williams C, Mosley-Williams A, McDonald C. Accuracy of provider generated
computerized problem lists in the Veterans Administration. AMIA Annu Symp Proc
2007:1155.

43. Tseng CH. Pioglitazone and bladder cancer in human studies: is it diabetes itself,
diabetes drugs, flawed analyses or different ethnicities? J Formos Med Assoc
2012;111:123–31.

44. Edwards A, Hollin I, Barry J, et al. Barriers to cross–institutional health information
exchange: a literature review. J Healthc Inf Manag 2010;24:22–34.

45. Report from the CDC Morbidity and Mortality Weekly Report (MMWR).
Prevalence of autism spectrum disorders–Autism and developmental disabilities
monitoring network, 14 sites, United States, 2008. MMWR Surveill Summ 2012;61:
1–19.

46. Friedman CP, Wong AK, Blumenthal D. Achieving a nationwide learning health
system. Sci Transl Med 2010;2:57cm29–7cm29.

47. Kaye SB, Patterson A. Association between total astigmatism and myopia.
J Cataract Refract Surg 1997;23:1496–502.

48. Fulton AB, Hansen RM, Petersen RA. The relation of myopia and astigmatism in
developing eyes. Ophthalmology 1982;89:298–302.

49. Pearl J. Causality: models, reasoning, and inference. Cambridge, New York, UK:
Cambridge University Press, 2000.

50. DiSantostefano J. Eligibility and frequency requirements of the initial preventive
physical exam. J Nurse Pract 2006;2:122–24.

51. Denny JC, Ritchie MD, Basford MA, et al. PheWAS: demonstrating the feasibility
of a phenome-wide scan to discover gene-disease associations. Bioinformatics
2010;26:1205–10.

J Am Med Inform Assoc 2013;20:332–341. doi:10.1136/amiajnl-2012-001117 341

Research and applications

http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

