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Chaperone-like activity of the AAAþ
proteins Rvb1 and Rvb2 in the
assembly of various complexes

Nardin Nano and Walid A. Houry

Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8

Rvb1 and Rvb2 are highly conserved and essential eukaryotic AAAþ pro-

teins linked to a wide range of cellular processes. AAAþ proteins are

ATPases associated with diverse cellular activities and are characterized

by the presence of one or more AAAþ domains. These domains have

the canonical Walker A and Walker B nucleotide binding and hydrolysis

motifs. Rvb1 and Rvb2 have been found to be part of critical cellular com-

plexes: the histone acetyltransferase Tip60 complex, chromatin remodelling

complexes Ino80 and SWR-C, and the telomerase complex. In addition,

Rvb1 and Rvb2 are components of the R2TP complex that was identified

by our group and was determined to be involved in the maturation of

box C/D small nucleolar ribonucleoprotein (snoRNP) complexes. Further-

more, the Rvbs have been associated with mitotic spindle assembly, as well

as phosphatidylinositol 3-kinase-related protein kinase (PIKK) signalling.

This review sheds light on the potential role of the Rvbs as chaperones

in the assembly and remodelling of these critical complexes.
1. What are Rvb1 and Rvb2?
Rvb1 and its paralogue Rvb2, with 43 per cent sequence identity and 65 per

cent sequence similarity to each other (for the human proteins), belong to the

AAAþ (adenosine triphosphases associated with diverse cellular activities)

superfamily of ATPases. This class of ATPases is present in all kingdoms of

life and is divided into numerous groups, clades and families based on struc-

tural and sequence analyses [1–3]. AAAþ proteins usually form hexameric

ring structures and are characterized by the presence of the AAAþ module,

which contains the highly conserved Walker A and Walker B motifs responsible

for nucleotide binding and hydrolysis, respectively [4].

Rvb1 and Rvb2 are known under diverse names such as Pontin/Reptin,

TIP49/TIP48, RuvBL1/RuvBL2 and ECP54/ECP51, respectively, reflecting

their appearance in many cellular protein complexes and their discovery by

unrelated approaches in multiple organisms [5–9]. In this review, we refer to

these two proteins as Rvb1 and Rvb2.
2. Discovery and roles of Rvb1 and Rvb2
Rvb1 was originally discovered in 1997 as part of a complex with the TATA-

binding protein (TBP) in rat [10]. Rvb1 and Rvb2 were found in complex

with the large RNA polymerase II holoenzyme oligomer in 1998 [11], and, sub-

sequently, Rvb2 was identified as an interacting partner of Rvb1 in human cells

in 1999 [12]. Rvb1 and Rvb2 share limited sequence similarity (approx. 30%) to

the bacterial RuvB helicase [13,14]. RuvB drives the branch migration and res-

olution of the Holliday junction in complex with RuvA and RuvC during

homologous recombination and DNA repair [15]. This sequence similarity

suggested that the Rvbs might have helicase activity using ATP binding and

hydrolysis, since the deletion of RVB1 and RVB2 genes in Saccharomyces
cerevisiae was complemented by the overexpression of the bacterial RuvAB
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Figure 1. Overview of Rvb1/2 function. Rvb1 and Rvb2 function in the assembly of multiple cellular complexes/processes. They are involved in the assembly of
mitotic spindles, telomerase complex, box C/D snoRNPs, chromatin remodelling complexes, and PIKKs. They also exhibit other roles/functions in processes such as
transcription, transformation and apoptosis by interacting with factors including b-catenin, c-Myc, Hint1 and TBP. TERT, telomerase reverse transcriptase.
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complex [16] and since Rvb1 was found to be associated with

the human replication protein (RP)A3 [11]. Indeed, the

purified proteins exhibit weak helicase activity [12,17].

The RVB1 and RVB2 genes were found to be essential for

viability in all model organisms examined so far, including

S. cerevisiase [11], Drosophila melanogaster [8] and Caenorhabdi-
tis elegans [18], and are speculated to be also essential in

mammalian cells. Since their discovery, the Rvbs have been

found to be associated with many cellular pathways [19],

including chromatin remodelling [9,20–23], transcription

regulation [9,24], ribonuleoprotein complex biogenesis

[25–29], mitotic assembly [30–32], telomerase complex

assembly [33], RNA polymerase II assembly [26,34] and

phosphatidylinositol 3-kinase-related protein kinase (PIKK)

signalling [29] (figure 1).
3. The structure of Rvb1 and Rvb2
Based on the X-ray structure of human Rvb1 [18], the Rvb

sequence can be divided into three domains (figure 2a,b):

(i) an N-terminal aba subdomain of the AAAþ domain,
(ii) a 170 amino acid-insertion domain unique to the Rvbs

among the AAAþ proteins which mediates DNA/RNA bind-

ing and shows similarity to the ssDNA binding domain of

the replication factor replication protein A (RPA), and (iii) an

all a subdomain of the AAAþ domain. In the AAAþ
domain (figure 2a,b), the Walker A and Walker B motifs are

responsible for ATP binding and hydrolysis, respectively,

while sensor I and sensor II motifs sense whether the protein

is bound to di- or tri-phosphates. The arginine finger (Arg-

finger) of one subunit extends into the ATPase site of the

neighbouring subunit and allows coordination of ATP

hydrolysis between the subunits in the hexamer [3].

The crystal structure of human Rvb1 has been solved as a

hexamer [18] (figure 2b), however, the homohexamer was

found to be inactive as a helicase and ATPase, suggesting that

this might not be the physiologically relevant complex. There

is no crystal structure of Rvb2 alone; however, more recently,

the crystal structure of the human Rvb1–Rvb2 complex,

with truncation of the insertion domain in both proteins, was

solved [35] (figure 2c). The complex was found to be a dodeca-

mer composed of two hetero-hexameric rings with alternating

Rvb1 and Rvb2 monomers [35]. The study showed that the
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Figure 2. Overview of the Rvb1/2 structure. (a) Bar graph of the domain organization of human Rvb1. In red is the N-terminal aba subdomain of the AAAþ domain,
in blue is the C-terminal all a subdomain of the AAAþ domain, and in yellow is the insertion domain. Conserved motifs with the AAAþ domain are also highlighted:
WA, Walker A; WB, Walker B; SI, Sensor I; SII, sensor II; R-finger, arginine finger. (b) Crystal structure of human Rvb1 monomer on the left-hand side. Side and top view
of human Rvb1 hexamer are shown on the right-hand side. The colour scheme used is the same as the one in (a). (c) Top and side views of the crystal structure of
dodecameric human Rvb1/2 complex with truncation in part of Domain II. Human Rvb1 monomers are shown in green and human Rvb2 monomers are shown in pink.
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truncated version of the complex exhibits an enhanced ATPase

and helicase activity compared with the wild-type (WT) com-

plex, thus, suggesting that the insertion domain functions as a

regulator of the activity of the complex.

Using multiple biophysical techniques including analyti-

cal ultracentrifugation, size exclusion chromatography, mass

spectrometry and electron microscopy, it has been found

that human Rvb1 and Rvb2 can form various oligomeric

states that are modulated by the insertion domain [36,37].

The oligomeric state of yeast Rvb1 and Rvb2 was also

found to be modulated by the presence of a tag at the N-ter-

minus [17,38,39]. These observations seem to indicate that the

Rvbs are capable of forming different oligomeric states

depending on the complex or cellular process in which they

are involved and that other proteins and cofactors might
modulate the oligomeric state and, consequently, the activity

of the Rvbs.
4. Chaperone-like activity of the Rvbs
Several studies have demonstrated a role of the Rvbs in the

assembly of various complexes in different organisms

suggesting that they might have a chaperone-like activity.

The low abundance of Rvb1 and Rvb2 in eukaryotic cells rela-

tive to other components of several complexes which they are

part of suggests that the Rvbs are not permanently associated

with each complex, therefore providing further support for a

general chaperone-like activity of the Rvbs rather than a

defined catalytic activity within each complex [40]. In order



rstb.royalsocietypu

4
to understand the exact role of the Rvbs in each process/

complex, many studies mutated different domains/motifs

in the Rvbs and assessed their effects on the activity of the

complexes or on the processes being studied. Table 1 sum-

marizes the main reported mutations and their effects as

relevant to this review. The chaperone-like activity of the

Rvbs in different complexes is further discussed below.
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5. Role of Rvb1 and Rvb2 in the assembly of
chromatin remodelling complexes

Organisms use DNA as their genetic substance, therefore,

DNA-related processes such as transcription, recombination,

replication and repair are very critical. The eukaryotic DNA

is packaged into chromatin in the nucleus. Nucleosomes

form the fundamental repeating units of eukaryotic chromatin.

The canonical nucleosome includes about 147 base pairs of

DNA wrapped in approximately two superhelical turns

around a histone octamer composed of two histone H2A–

H2B heterodimers and a histone (H3–H4)2 heterotetramer

[49]. Non-canonical nucleosomes have one or more histone

variants (e.g. H2A.Z) replacing the canonical histones [49].

The compaction of DNA into a smaller volume is critical for

the regulation of the above-mentioned DNA-related

processes; however, it also impedes DNA transcription, repli-

cation and repair. Several chromatin remodelling complexes

modulate these processes by using one of the following mech-

anisms to facilitate the access of proteins/cofactors to the

underlying DNA: (i) using the energy of ATP hydrolysis to

slide nucleosomes along the DNA, (ii) adding or removing

covalent modifications on the tails of the histones in the

nucleosome core or (iii) exchanging canonical histones with

histone variants [50,51]. Over the last few years, several studies

revealed that Rvb1 and Rvb2 are associated with various chro-

matin remodelling complexes such as the Ino80 complex in

S. cerevisiae, Homo sapiens and D. melanogaster [9,20,21], the

SWR-C complex in S. cerevisiae [52], and its homologous

SRCAP in H. sapiens [53–56], and the Tip60 complex in

H. sapiens and D. melanogaster [53,57–59] (figure 1).

(a) The Ino80 complex
The multisubunit Ino80 complex is very well studied and was

first purified from yeast by immunoprecipitation [20]. This

complex is involved in transcription regulation, replication

and repair of DNA double strand breaks by catalysing ATP-

dependent mobilization of nucleosomes along the DNA

[20,21]. The core subunits of the Ino80 complex are common

between yeast and human: the SNF2 family helicase Ino80,

which is the catalytic subunit of the complex, Rvb1, Rvb2,

Act1, Ino80 subunit (Ies)2 and Ies6 [52], and the actin-related

proteins Arp4, Arp5 and Arp8. In addition, the yeast and

human Ino80 complexes have their own distinct set of

additional subunits. Both yeast and human Ino80 complexes

exhibit ATP-dependent nucleosome remodelling activity and

DNA and nucleosome-activated ATPase activity [21].

In yeast, considerable overlap was found between genes

regulated by Ino80 protein and those regulated by Rvb1 and

Rvb2 [9]. The promoters of those genes were found to be

associated with the Ino80 protein but not with Rvb1 or Rvb2

[9]. The Ino80 complex has ATPase activity ascribed largely

to the Ino80 protein rather than the Rvbs since mutating the
ATP-binding site of the Ino80 protein results in significant

reduction in the ATPase activity of the complex without affect-

ing the subunit composition of the complex [9]. However, loss

of the Rvbs leads to the loss of Arp5 protein from the complex,

and, consequently, the loss of the chromatin remodelling

activity of the Ino80 complex [45]. The association between

Arp5 and the Rvbs requires ATP but not the ATPase activity

of the Rvbs [45]. Recently, Chen et al. [60] showed that in

human Ino80 complex, Rvb1 and Rvb2 together with Arp5,

Ies2 and Ies6 associate with an insertion region within the

ATPase domain of the Ino80 protein (figure 3a).

The Ino80 complex in yeast causes the proximal eviction

of nucleosomes surrounding double strand breaks [52]. The

Rvb proteins were found to be recruited to the homothallic

switching (HO) endonuclease-induced DNA double-strand

break along with Arp8, Arp5 and Ino80 protein [52]. This

recruitment of the Ino80 complex was dependent upon the

phosphorylation of the histone variant H2AX. Deletion of

Arp4 and Nhp10 (two subunits of the Ino80 complex)

caused a reduction in the recruitment of the complex, includ-

ing the Rvbs, to the double strand breaks, therefore

suggesting that these two proteins are necessary for the rec-

ognition of the phosphorylated histones and for the

interaction of the Ino80 complex with the double strand

break [52]. The exact role of the Rvbs in this recruitment pro-

cess is yet to be determined. It can be speculated that the

Rvbs are required to recruit the rest of the Ino80 subunits

to the double strand breaks to form a functional complex.

(b) SWR/SRCAP complex
The Swi/Snf2-related (SWR) complex in yeast, also known as

the Snf2-related CREBBP activator protein (SRCAP) complex

in mammalian cells, is yet another chromatin remodelling com-

plex that contains both Rvb1 and Rvb2 as integral subunits.

Both the SWR and SRCAP complexes were found to remodel

chromatin by catalysing the ATP-dependent replacement of

H2A–H2B histone dimers in nucleosomes by dimers contain-

ing the histone variant Htz1 in yeast or H2AZ in mammalian

cells [54,55,61]. This mechanism is essential in a range of

cellular processes, such as transcriptional regulation, chromo-

some segregation, cell cycle progression and DNA damage

response. The catalytic subunit of the complex is the Swr1/

SRCAP protein, which is an SNF2 helicase. Rvb1, Rvb2, Act1,

Arp4, Arp6 and Yaf9/GAS41 are shared subunits between

the SWR complex in yeast and the SRCAP complex in mamma-

lian cells [20,52,56]. The SWR/SRCAP complex shares several

subunits with the Ino80 complex, namely Act1, Arp4, Rvb1

and Rvb2. In yeast, it was shown that the ATPase domain of

the Swr1 protein binds Rvb1, Rvb2, Arp6, Swc2, Swc3 and

Swc6 [62] (figure 3a), reflecting yet another similarity with

the Ino80 complex. The exact function of the Rvbs in the

SWR/SRCAP complex remains unexplored. However, given

the significant similarity between the SWR complex and the

Ino80 complex, it can be speculated that the Rvb proteins per-

form a role in the assembly of the SWR complex by binding

and recruiting a subunit integral for the activity of the complex,

just as they recruit Arp5 to the Ino80 complex [45].

(c) Tip60 complex
This complex, which is a histone acetyltransferase (HAT) found

in both human and fly cells, remodels chromatin by acetylating

histones converting chromatin to euchromatin, which is a
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relaxed, transcriptionally active DNA [59,63]. It has been shown

that this complex also acetylates proteins such as the ataxia tel-

angiectasia mutated (ATM) protein kinase after DNA damage,

therefore activating ATM [64]. The Tip60 complex is involved in

transcription, DNA repair and apoptosis [65]. The catalytic

subunit in the complex is Tip60 (Tat interactive protein 60).

The complex has Rvb1 and Rvb2 as its integral subunits. The

Tip60 complex shares several subunits with the SWR complex

and several other subunits with the NuA4 (Nucleosomal

Acetyltransferase of H4) complex, which is an acetyltransferase

complex found in yeast but that does not contain Rvb1 or Rvb2,

suggesting that the Tip60 complex is a fusion of those two com-

plexes [53]. Esa1 in yeast, which is the orthologue of the Tip60

protein in mammals, is the catalytic subunit of the NuA4 com-

plex. Eaf1, a subunit found in the NuA4 complex, is the

orthologue of the mammalian p400/domino protein found in

the Tip60 complex; however, Eaf1 lacks the ATPase domain

found in p400/domino protein [53,57]. The absence of Rvb1

and Rvb2 in the NuA4 complex may be because of the absence

of the ATPase domain in Eaf1 since Rvb1 and Rvb2 were shown

to interact with the ATPase domain of p400/domino [53]

(figure 3a), similarly to the way they interact with the ATPase

domain of the Ino80 protein.

As mentioned above, Tip60 is involved in DNA damage

repair. DNA damage causes histone variant H2AX to be

phosphorylated by ATM and ATR protein kinases. The phos-

pho-H2AX acts as a marker that recruits other proteins to the

sites of DNA damage to amplify the damage signal and

repair the damage [52,63]. HAT activity of Tip60 is required

to acetylate H4 before the phospho-H2AX can be remodelled

and dephosphorylated in DNA damage response [63]. It has

been shown that depletion of either Rvb1 or Tip60 causes an

increase in the phosphorylated H2AX and that the Rvbs are

required for the HAT activity of the Tip60 complex,

suggesting that Rvb1 is required for the assembly of the

Tip60 complex [63].

The role of Rvb1 is also linked to apoptosis through

Tip60. Tip60 is required for the acetylation of p53, and the

acetylation of p53 is required for its binding to promoters

of proapoptotic genes [66]. In another example, Feng et al
[44] showed that the stable expression of the Walker B

mutant of Rvb1 blocked the expression of endogenous b-cate-

nin/T-cell factor (TCF) target genes, which is because of

inhibition of histone acetylation of b-catenin/TCF target

gene sequences, thus suggesting that Rvb1 exerts its effect

through Tip60 [44]. Also, Rvb1, along with Tip60, binds to

and acetylates histones at the promoter of KAI1, which is a

metastasis suppressor gene, resulting in the induction of the

expression of KAI1 [67].
6. Role of Rvb1 and Rvb2 in box C/D snoRNP
biogenesis

In an attempt to identify the interactors of yeast Hsp90, which

is a ubiquitous molecular chaperone that is essential in many

signalling pathways, our group conducted systematic

genome-wide screens and found Rvb1 and Rvb2 to be com-

ponents of a complex interacting with Hsp90 that we

termed the R2TP complex [68]. In yeast, this complex consists

of two Hsp90 interactors, which we identified and termed

Tah1 (tetratricopeptide repeat (TPR)-containing protein

associated with Hsp90) and Pih1 (protein interacting with
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Hsp90), and the two AAAþ helicases Rvb1 and Rvb2 [68],

hence the name R2TP. Tah1, which was uncharacterized at

the time and whose structure we solved recently [69], consists

of two TPR motifs and a C-terminal helix. Tah1 was found to

bind to the MEEVD peptide corresponding to the C-terminus

of Hsp90, while the C-terminus of Tah1 binds to the C-termi-

nus of Pih1 [69]. Pih1, also uncharacterized at the time, is a
40 kDa protein which was found to be unstable on its own,

and stable upon binding to the C-terminus of Tah1 [69].

The R2TP complex is highly conserved in eukaryotes. In

humans, R2TP contains Rvb1, Rvb2, RPAP3 (protein equival-

ent to Tah1 although not similar) and PIH1D1 (Pih1

orthologue) [26]. The R2TP complex has been implicated in

small nucleolar ribonucleoprotein (snoRNP) assembly and
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pre-ribosomal RNA processing in human and yeast cells

[26,27]. The complex also plays essential roles in apoptosis,

PIKK signalling [29] and RNA polymerase II assembly [70].

snoRNP complexes are made up of either box C/D or box

H/ACA small nucleolar RNAs (snoRNAs) complexed with

proteins. snoRNPs are involved in cleavage and modification

of small nuclear RNA (snRNA), ribosomal RNA (rRNA) and

tRNAs [71]. Box C/D snoRNPs catalyse ribose 20-O methyl-

ation of pre-ribosomal RNA (pre-rRNA), while box H/

ACA snoRNPs mediate pseudo-uridylation of pre-rRNA

[28]. Mature box C/D snoRNAs in eukaryotes are associated

with four common core proteins: 15.5K (Snu13 in yeast),

NOP56, NOP58 and the methyltransferase fibrillarin (Nop1

in yeast) [28]. The core box C/D proteins bind a conserved

sequence termed the box C/D motif that folds into a stem-

internal loop-stem structure known as a k-turn (figure 3b).

15.5K, an RNA binding protein, binds directly to the k-turn

to recruit the other core proteins [72–74]. The assembly of

the complete complex is essential for the nucleolar localiz-

ation of the complex [74]. Several proteins are required for

this assembly, including the R2TP complex, as well as,

NUFIP, TAF9 and BCD1 [28,41,75,76] (figure 3b). It has

been shown that Rvb1 and Rvb2 weakly interact with

NOP56, NOP58 and fibrillarin, and that the presence of

ATP stimulates the interaction of Rvb1 and Rvb2 with

15.5K [28]. Rvb1 and Rvb2 appear to bridge the interaction

between 15.5K and both NOP56 and NOP58 proteins [28].

In both yeast [27,41] and mammalian cells [28], depletion of

the Rvbs results in the mislocalization of the snoRNP core

proteins. The data to date indicate that the Rvb proteins

play an important role in the assembly and remodelling of

the snoRNP complex during biogenesis (figure 3b) mainly

as components of the R2TP complex.
7. Role of Rvb1 and Rvb2 in PIKK signalling
Recent studies revealed that Rvb1 and Rvb2 are common reg-

ulators of all phosphatidylinositol 3-kinase-related protein

kinase (PIKK) members [77]. PIKKs are serine–threonine

protein kinases with catalytic domains homologous to those

of phosphatidylinositol 3-kinases. PIKKs regulate DNA

damage responses, nutrient-dependent signalling, and non-

sense-mediated mRNA decay (NMD) [77]. The PIKK family

includes DNA-PKcs (DNA-dependent protein kinase cata-

lytic subunit), ATM and ATR (ATM- and Rad3-related),

which are collectively responsible for signalling the presence

of DNA damage [77]. They phosphorylate proteins that have

roles in regulation of cell cycle progression, DNA repair,

apoptosis and cellular senescence [77]. The PIKK family

also includes SMG-1 (suppressor with morphological effect

on genitalia 1), mTOR (mammalian target of rapamycin)

and TRRAP (transformation/transcription domain-associ-

ated protein) in mammals [77]. SMG-1 is an essential factor

of NMD and TRRAP regulates transcription as a subunit of

HAT complexes [78]. SMG-1 and TRRAP are also involved

in DNA damage signalling and repair [78]. A multiprotein

complex called SMG1C, which is composed of SMG-1,

SMG-8 and SMG-9, is essential for NMD. SMG1C detects

and degrades mRNAs to prevent the production of poten-

tially harmful premature proteins [29]. mTOR regulates

nutrient-dependent signalling.
Knockdown of human Rvb1 or Rvb2 has been shown to

lead to decreased phosphorylation of direct downstream

effectors of ATM, ATR, mTOR and SMG-1, and also to

decreased abundance of mRNA and proteins for ATM,

ATR, DNA-PKcs, TRRAP and mTOR but not the abundance

of other kinases [29]. WT Rvb1 or Rvb2 were able to rescue

the reduced PIKK abundance, however, ATPase-deficient

mutants failed to rescue the reduced abundance, indicating

that the ATPase activities of both Rvb1 and Rvb2 are required

to control the abundance of PIKKs [29]. It was also revealed

that human Rvb1 and Rvb2 are required for SMG-1-mediated

Upf1 phosphorylation, which occurs on a spliced mRNP in

the cytoplasm, and that the phosphorylation was dependent

on the ATPase activity of Rvb1. This phosphorylation is

induced by remodelling of the mRNA surveillance complex

that involves first the formation of the SURF complex,

which is composed of SMG1, UPF1, eRF1 and eRF3, on a

ribosome recognizing premature termination codon(s) and

then the formation of the decay-inducing (DECID) complex

on an mRNP. Immunoprecipitation experiments suggested

that the Rvb1/2 complex associates with SURF playing a

role in the remodelling of the surveillance complex and,

thus, in forming a DECID complex [29].

In addition, human Rvb1/2, as part of the R2TP complex,

plays a role in the assembly and stabilization of the PIKKs.

This stability and assembly is achieved when the R2TP-

Hsp90/Prefoldin-like complex interacts with PIKKs via the

Tel2 complex (also known as the TTT complex), which is com-

posed of Tel2, Tti1 and Tti2 [78]. A recent study in yeast linked

the Tel2 complex and Asa1p to PIKKs [79].
8. Role of Rvb1 and Rvb2 in telomerase complex
assembly

Telomeres are repetitive nucleotide sequences located at the

ends of chromosomes, capping and protecting them from

degradation and recombinogenic activities. They are un-repli-

cated and lost during cell division owing to the ‘end

replication problem’ exhibited during DNA replication, and

are replenished by the telomerase [80]. The end replication

problem is a problem the DNA polymerase runs into because

the leading strand in the double-stranded DNA can be repli-

cated to the very end, but the lagging strand cannot. The

polymerase needs RNA primers to replicate the lagging

strand DNA; however, use of the RNA primer is not possible

at the end of the DNA because there is nothing for the

primer to bind to, therefore, the last section of the lagging

strand cannot be synthesized. Thus, after several cycles of

replication, the DNA would continue to get smaller.

Telomerase is a multisubunit RNP complex that adds

DNA repeats to telomeres. The complex is composed of the

catalytic subunit TERT (telomerase reverse transcriptase),

TERC (telomerase RNA component) and the TERC-binding

protein dyskerin [33]. In humans, Rvb1 and Rvb2 were ident-

ified as subunits of the telomerase complex, and they were

found to be required for telomerase assembly/biogenesis

through maintaining the telomerase RNA stability [33]. It

was demonstrated that Rvb1 directly interacts with TERT,

recruiting Rvb2 and bridging its interaction to the TERT com-

plex. It was also shown that Rvb1 and Rvb2 interact with

dyskerin [33]. Depletion of Rvb1 and Rvb2 caused a loss of

TERC and dyskerin from the complex suggesting that
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dyskerin bridges the interaction between the Rvb proteins

and TERC [33]. The Walker B mutant of Rvb1 could not

rescue TERC and dyskerin loss from the complex, thus indi-

cating that Rvb1 and Rvb2 are essential for telomerase

activity and for TERC and dyskerin accumulation through a

mechanism that requires ATPase activity [33]. Rvb proteins

seem to help bring together TERT, dyskerin and TERC and

remodel the TERT–Rvb1–Rvb2 complex into a mature

TERT–TERC–dyskerin complex [33] (figure 3c).

In addition to their role in the assembly of the telomerase

complex, Rvb1 and Rvb2 seem to be also involved in the tran-

scription of TERT [81]. Knocking down Rvb1 or its partner

Rvb2 using siRNA in gastric and cervical cancer cells led to

significant decreases in TERT mRNA. In addition, human

Rvb2 depletion resulted in a significant decrease in the

activity of TERT promoter that is dependent on c-MYC

[81]. Therefore, TERT transcription requires the constitutive

expression of Rvb2 and its cooperation with c-MYC.

In yeast, the Rvbs are also subunits of what is called the

ASTRA complex [79,82]. ASTRA (ASsembly of Tel, Rvb,

and Atm-like kinase) complex is composed of Tra1 (TRRAP

homolog), Rvb1, Rvb2, Tel2 (telomere binding protein),

Tti1p, Tti2p and Asa1p (a WD-repeat-containing protein).

The ASTRA complex is poorly studied, but it is proposed

to play a role in telomeric maintenance and its components

(Tti1p, Tti2p, Tel2 and Asa1p) have been shown to be

linked to PIKKs as mentioned previously. The role of the

Rvbs within this complex is not yet characterized.
9. Role of Rvb1 and Rvb2 in mitotic spindle
assembly

Several studies reported the involvement of Rvb1 and Rvb2

in mitosis. Human Rvb1 was found to copurify with tubulin

isolated from U937 cells [30]. Furthermore, human Rvb1 was

found to colocalize with tubulin at the centrosome and at the

mitotic spindle in addition to being present in the nucleus.

Using an in vitro tubulin assembly assay, it was demonstrated

that Rvb1 is involved in the formation of microtubules [30].

Subsequently, another study showed that Rvb2 associates

with the centrosome and the mitotic spindle [31]. However,

it was demonstrated that, unlike Rvb1, Rvb2 localizes to the

midzone during telophase and to the midbody during cyto-

kinesis [31]. In 2008, Ducat et al. [32] demonstrated that

depletion of Rvb1 using siRNA causes a defect in spindle

assembly in Drosophila and mammalian cell lines. The same

result was observed when depleting Rvb1 in Xenopus egg

extracts. Moreover, Rvb1 and Rvb2 were found to interact

with the g-tubulin ring complex in Xenopus, which is

involved in nucleating spindle formation, suggesting that

both Rvb proteins are involved in mitotic spindle assembly.
10. Role of Rvb1 and Rvb2 in cancer
In mammalian cells, Rvb1 and Rvb2, separately and together,

were found to have a crucial role in pathways linked closely

to cancer. Several studies have shown that both Rvb1 and

Rvb2 are overexpressed in 80 per cent of colon cancer

specimens. Rvb2 is found to be overexpressed in human

hepatocellular carcinoma cells, while Rvb1 transcript levels

are found to be increased in non-small cell lung cancer [83].
The transcription of both genes is deregulated in several can-

cers such as liver, bladder and melanoma. In addition, it has

been demonstrated that decreasing the expression of Rvb1 or

Rvb2 results in reduced tumor cell growth and increased

apoptosis in vitro and that decreasing Rvb2 expression results

in growth arrest of established tumours in xenograft

experiments in mice [83].

The roles of the Rvbs associated with modulating cellular

transformation, signalling, apoptosis and response to DNA

damage is mediated through their interaction with a multi-

tude of proteins such as the tumor suppressor protein

Hint1 and the transcription factors b-catenin, c-Myc, E2F

(only Rvb1) and ATF2 (only Rvb2) [6–9].
11. Role of Rvb1 and Rvb2 in transcription
regulation

Rvb1 and Rvb2 can function together but in several cases have

also been shown to function independently and to exhibit

antagonistic effects on the regulation of transcription of several

target genes. Rvb1 and Rvb2 interact with b-catenin, which is a

major player in Wnt signalling that affects TCF-mediated tran-

scription [8]. In the nucleus, stable unphosphorylated b-catenin

binds to the TCF family of transcription factors and increases

the expression of downstream genes (e.g. c-Myc, ITF-2 and

Cox-2) [44]. Rvb1 and Rvb2 have opposing effects on b-cate-

nin-TCF transcriptional activity. Rvb1 increases the

transcriptional activation of target genes, while Rvb2 represses

the b-catenin/TCF transactivation complex and thus decreases

the transcription of downstream genes [8]. The Walker B

mutant of Rvb1 was found to block b-catenin-mediated tran-

scription of TCF-dependent genes owing to inhibition of

acetylation of histones near b-catenin target gene sequences

suggesting that Rvb1/Tip60 mediates the regulation of this

transcription [44]. On the other hand, Rvb2 represses gene acti-

vation mediated by b-catenin and TCF through its interaction

with histone deacetylase HDAC1 and 2, and corepressor TLE

(transducin-like enhancer) [8]. In another example, Rvb1/

Tip60 are recruited on the promoter of the KAI1 (a metastasis

suppressor which inhibits metastasis by promoting cell

adhesion) gene as a co-activator complex, while Rvb2/b-cate-

nin act as a co-repressor of the transcription which recruits

HDAC1 as well [84]. In addition, Hint1 (histidine triad nucleo-

tide-binding protein 1), which acts as a co-regulator of b-

catenin-TCF-mediated transcription, was shown to bind to the

insertion domain in Rvb1 and Rvb2 [85]. It was demonstrated

that Hint1 prevents formation of hetero and homo complexes

of the Rvbs, but not the interaction between the Rvb proteins

with b-catenin. Hint1 was found to be a regulator of the

Rvbs/Wnt-catenin signalling pathway since its overexpression

was found to modulate Rvbs/b-catenin regulated genes.

Rvb1 and Rvb2 were found to bind to and regulate the

function of the transcription factor c-Myc [7] (table 1). c-Myc,

which is involved in oncogenic transformation, apoptosis

and stimulation of cell proliferation, contains two conserved

regions: Myc homology box I (MBI) and MBII, with the

latter being the region where both Rvb1 and Rvb2 bind. The

Walker B mutant form of Rvb1 was found to inhibit c-Myc

oncogenic activity but did not inhibit cellular growth indicat-

ing that Rvb1 is essential for c-Myc-mediated oncogenic

transformation [7].
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12. Concluding remarks
Rvb1 and Rvb2 are involved in various cellular complexes and

processes in different organisms. They exhibit different roles

and functions specific to the processes in which they are

involved. Besides being ATPases that provide energy for several

processes and helicases with potential DNA/RNA unwinding

activity, many studies have shown that the Rvbs seem to act

as chaperones. They have been found to recruit proteins/

DNA/RNA to their respective complexes and to remodel

these complexes by bridging the interactions between the differ-

ent components within the complex. Hence, we propose that

the Rvbs are potential chaperones for the assembly and matu-

ration of protein–protein and protein–DNA/RNA complexes.

However, further studies need to be conducted to determine

the exact role of the Rvbs in the assembly of these complexes.
Note added in proof
While this review was in preparation for publication, the

crystal structure of human Rvb2 with truncation in part of

Domain II was published by Petukhov et al. [86] and the

cryo-electron microscopy structures of human double-ring

Rvb1-Rvb2 complexes were published by López-Perrote

et al. [87]. In addition, the role of human Rvbs (through the

R2TP complex) in H/ACA RNP biogenesis was established

by Machado-Pinilla et al. [88]
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