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The family of the mammalian small heat-shock proteins consists of 10

members (sHSPs/HSPBs: HSPB1–HSPB10) that all share a highly conserved

C-terminal alpha-crystallin domain, important for the modulation of both

their structural and functional properties. HSPB proteins are biochemically

classified as molecular chaperones and participate in protein quality control,

preventing the aggregation of unfolded or misfolded proteins and/or assist-

ing in their degradation. Thus, several members of the HSPB family have

been suggested to be protective in a number of neurodegenerative and neu-

romuscular diseases that are characterized by protein misfolding. However,

the pro-refolding, anti-aggregation or pro-degradative properties of the var-

ious members of the HSPB family differ largely, thereby influencing their

efficacy and protective functions. Such diversity depends on several factors,

including biochemical and physical properties of the unfolded/misfolded

client, the expression levels and the subcellular localization of both the cha-

perone and the client proteins. Furthermore, although some HSPB members

are inefficient at inhibiting protein aggregation, they can still exert neuropro-

tective effects by other, as yet unidentified, manners; e.g. by maintaining the

proper cellular redox state or/and by preventing the activation of the apop-

totic cascade. Here, we will focus our attention on how the differences in the

activities of the HSPB proteins can influence neurodegenerative and neuro-

muscular disorders characterized by accumulation of aggregate-prone

proteins. Understanding their mechanism of action may allow us to target

a specific member in a specific cell type/disease for therapeutic purposes.
1. Introduction
The family of the mammalian small heat-shock proteins, also called the HSPB

proteins, consists of 10 members (HSPB1–HSPB10, see alternative names of

each member in table 1), all of a relatively low molecular weight (MW, ranging

from 15 to 45 kDa) and sharing some structural similarities, like a highly con-

served C-terminal alpha-crystallin domain (ACD, [52]). This ACD plays an

important role in the modulation of both structural and functional properties

of the HSPBs. Indeed, monomers of the HSPB proteins associate (partially via

their ACDs) into dimers that are thought to act as basic units/building blocks,

capable of generating oligomers ranging from ca 200 to 600 kDa [49,53]. The

various HSPB monomers can form both homo- and hetero-dimers as well as
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homo- and hetero-oligomeric complexes [54,55]. The dynamic

association/dissociation of the oligomers has been suggested

to be key to the function of the HSPB proteins and is often regu-

lated by their phosphorylation state [49,56]. HSPB proteins are

biochemically classified as molecular chaperones and partici-

pate in protein quality control; in fact, several HSPB family

members have been shown to be able to bind to (partially)

unfolded or to misfolded, aggregation-prone proteins [57] pre-

venting their aggregation. In conjunction with ATP-dependent

chaperones (e.g. HSP70s/HSPAs), the HSPB-bound clients can

either be refolded or degraded; the mechanisms for either refold-

ing or degradation is not fully understood, but may depend both

on the state of the client and on the specific HSPB member that is

bound to it (see later).

The chaperone activity of small HSPs has been discovered

and explored mainly in cell-free experiments with purified

proteins [58–60] and it accounts for, for example, the role

that HSPB4 plays in maintaining eye transparency [26].

Whether this chaperone function is also underlying other cel-

lular functions of HSPB members is less clear. For example,

some HSPBs members (e.g. HSPB1 and HSPB5) have the

capability to modulate the assembly and stabilization of

cytoskeleton components, such as actin and intermediate fila-

ments [22,37,38,41,61–64], but how far these actions rely on

their chaperone activity is unknown. It is also not clear

whether other HSPB family members serve in cytoskeletal

protection or whether different cytoskeletal and contractile

elements may require different HSPB members. Other func-

tional endpoints that have been shown to be affected by

HSPB members include the maintenance of proper cellular

redox state, protecting cells from oxidative stress conditions

(HSPB1, [65]), a general anti-apoptotic function (HSPB1,

[66,67]) and a role in skeletal muscle cell differentiation

(HSPB2 and HSPB3, [25]). The biochemical mechanisms

underlying these different cellular effects of the various

HSPB members are often still elusive and not always directly

linked to the in vitro-defined chaperone-like activities.

Several HSPB family members have been suggested to be

protective in a number of neurodegenerative and neuromus-

cular diseases that are characterized by protein aggregation

and axonal transport defects. This directly relates back to

the two most postulated actions of these HSPBs: their chaper-

one action and cytoskeletal stabilizing function, respectively.

On the other hand, mutations in some members of the HSPB

family (namely, HSPB1, HSPB3, HSPB4, HSPB5 and HSPB8)

have been associated with neurological and muscular alter-

ations, suggesting that loss of their function as general

chaperones or/and cytoskeletal protectors is crucial for main-

taining neuronal and muscular cell function and viability.

Here, we will discuss the implication of HSPB proteins in

neurodegenerative and neuromuscular diseases, focusing

our attention on how the differences in the HSPB activities

influence their protective functions.
2. The role of HSPBs in neurodegenerative and
neuromuscular diseases

(a) Some HSPBs are upregulated in
neurodegenerative diseases

The formation and accumulation of insoluble aggregates

containing misfolded/mutated proteins is a pathological
hallmark of many neurodegenerative and neuromuscular dis-

orders with late onset, including amyotrophic lateral sclerosis

(ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD),

polyglutamine (polyQ) diseases (e.g. Huntington disease

(HD), spinal and bulbar muscular atrophy (SBMA), etc.),

and Creutzfeldt–Jacob disease (CJD). These diseases include

both sporadic and genetically inherited forms. Some inheri-

ted forms are linked to mutations in a specific protein that

misfolds and/or is prone to aggregation. Notably, often

the proteinaceous aggregates are found in the corresponding

degenerated tissues. Protein aggregation is a multi-step

nucleation-dependent process starting from the oligo merization

of the self-associating misfolded protein, which generates pre-

fibrillar aggregates (detergent-soluble). Pre-fibrillar aggregates

can subsequently generate fibrillar structures (detergent-inso-

luble). During this aggregation process, the mutated protein

interacts with and entraps different intracellular components.

These include several HSPs (including several HSPB mem-

bers; [68]), components of the proteasome system, elements

involved in vesicular transport and transcription factors.

Sequestration of HSPs and proteasomal components may

reflect their failure to degrade the misfolded proteins as well

as their failure to prevent their aggregation or their unsuccess-

ful attempts to disaggregate the inclusions. As a consequence,

the HSPs might be diverted away from their normal functions.

Similarly, entrapping of vesicular transport components and

transcription factors may lead to their reduced activities in

essential neuronal processes. Finally, aggregates might phys-

ically impair cellular processes (e.g. axonal transport) [69].

Probably, a combination of these events contributes to disease

progression and, therefore, aggregation has long been con-

sidered the key pathogenic mechanism. Nevertheless, the

precise role of aggregates in neuronal cell death and disease

progression is still largely debated. Several studies have

suggested that not all forms of aggregates may be toxic

[70–72]. In fact, large (amyloidic) aggregates that entrap

these various key cellular elements have been found to be

protective in certain systems and under certain conditions

[70–75]. It has thus been proposed that smaller (amorphic)

oligomeric and/or heteromeric species are more toxic as

they are capable of freely moving around in the cellular

milieu and perturb various neuronal functions. Besides the

aforementioned effects of large aggregates (e.g. impairment

of cellular proteostasis, alterations of the degradative systems,

disruption of axonal transport, dysregulation of the transcrip-

tion of specific genes), this could also include, for instance

direct effects on membrane integrity and/or synaptic func-

tioning [70,73,76,77]. However, irrespective of the presumed

differential toxicity attributed to these different aggregates,

it is clear that any factor/approach able to decrease mutated

protein accumulation, to prevent the initiation of their aggre-

gation or to facilitate the clearance of (early) aggregates will

greatly contribute to restore (or maintain) the normal neur-

onal proteostasis and function, thus slowing down disease

progression. This potentially can be achieved by boosting

specific molecular chaperones/HSPs (e.g. HSP70s/HSPAs

and HSP40s/DNAJs and some sHSPs/HSPBs), which will

avoid or attenuate protein aggregation, or by stimulating

the degradative pathways (i.e. autophagy), which will help

to clear the aggregates. The efficacy of both approaches has

been experimentally demonstrated using cellular and/or

animal models of aggregate diseases (e.g. polyQ diseases,

AD and PD) [19,43,46,78–91].
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Here, we will focus on boosting the activity of the HSPB

proteins as a potential approach to counteract protein toxicity

in neurodegenerative diseases, keeping in mind that not all

HSPB family members share the same functional properties

[1,92]. Therefore, the putative protective efficacy of the

10 members may largely differ depending on the specific

protein causing the aggregation disease.

In addition, the various members present very different

tissue/cell-specific distribution. In basal conditions, only

some HSPB family members are expressed in the central ner-

vous system (CNS) and very few in neurons (some are mainly

confined in glial components of the CNS; table 1). However,

misfolded protein expression and the consequent cell stress

during neurodegeneration might trigger both the overexpres-

sion of some HSPBs already present in target cells or of

HSPBs normally silent in neurons (table 1). Thus even the

HSPBs normally absent in the brain might become players

in the intracellular response to mutant misfolded protein neu-

rotoxicity [92]. Regarding the specific pattern of expression of

the HSPB family members, HSPB2 and HSPB3 are mainly

expressed in the skeletal muscle cells [25], while HSPB9 and

HSPB10 are only found in testis [52]. HSPB7 was originally

termed cvHSP and indeed is highly expressed in cardiac

tissue, although it is also expressed at lower levels in several

other tissues, including the brain [1,92]. HSPB6 is constitu-

tively and highly expressed in smooth, cardiac and skeletal

muscles and plays a role in muscle function [93]. The other

members (HSPB1, HSPB5 and HSPB8) are highly expressed

in muscle tissues, but are also expressed in many other

tissues, including in the CNS, with peculiar cell-type-

dependent differences in expression (table 1). For example,

while HSPB1 is highly expressed in peripheral sensory

neurons [94], HSPB8 is highly expressed in motor neurons

[17,33,43,44,95]. As it will be discussed later, some members

of the HSPB family can prevent aggregation of (some) dis-

ease-associated mutant proteins and that is though to be

protective in neuronal cells. Thus, HSPB upregulation (both

at the level of neuronal and glial cells) might represent a pro-

tective cellular response to neuronal damage. However, it is

also possible that this over-induction occurs as a consequence

of neuronal stress, without an active participation to the pro-

tective processes. While the presence of HSPB1 and HSPB5 in

ballooned neurons (e.g. in AD, CJD, etc.) could suggest that

they interact with aggregates in neurons (either actively

engaged in protein quality control here or reflecting failed

function or being trapped here), the upregulation of the

same proteins in astrocytes is more difficult to understand.

But several lines of evidence suggest that misfolded proteins

may act in a non-cell autonomous way. For example, the pri-

mary toxicity can be exerted on the glial (and microglia) cells

surrounding affected neurons, which may thus also be

indirectly affected via release of neurotoxic factors from glia

or reduced removal of neurotoxic agents by the glia, i.e.

through an altered dialogue between these cells [96,97].

Indeed, recent evidence suggests that astrocytes, together

with other glial cells (especially microglia), participate in

the maintenance of the extracellular milieu containing

debris and aggregates from dying neurons. A comparable

non-cell autonomous mechanism may play a role in motor

neuron diseases, involving interactions between motor neur-

ons and the target muscle cells [98] in which muscle

denervation from motor neurons rather than being causative

to muscle degeneration also may result as consequence of
initial muscle damage/death [99,100]. It can be hypothesized

that HSPB8, for example, somehow is involved in this pro-

cess: in anterior horn spinal cord of ALS mice, HSPB8 is

highly induced not only in motor neuron (at very high

levels in this primary target of mutant protein toxicity), but

also in the glial cells (at lower levels) of the affected regions

[43], and in muscle tissues (at the highest levels; P. Rusmini,

V. Crippa, E. Giorgetti, A. Boncoraglio, R. Cristofani, A.

Poletti 2013, unpublished data). Studies should therefore

not only focus on elucidating the role of HSPBs in individual

populations of cells, but also look at cell non-autonomous

and cell–cell interactions.

Finally, low or even a complete lack of constitutive and

induced expression in target cells of individual HSPB members

that did reveal protective power in cell models of disease

should not be a reason to imply that these members cannot

exert protective functions in disease. Obviously, such members

are not part of the canonic intrinsic (neuronal/glial/muscular)

response to the diseased protein, but could be still considered

potential therapeutic targets if one were able to induce them

by pharmacological means, with the specific aim to assist

mutant neurotoxic protein clearance.
3. Refolding and anti-aggregation are distinct
properties of the HSPBs

As previously mentioned, a number of neurodegenerative

diseases are characterized by the progressive accumulation

of aggregation-prone proteins. Upregulation of specific mem-

bers of the HSPB family could slow down or completely

inhibit the aggregation process in cell models [43,46–

48,92,95,101], with significant differences among the 10

HSPB family members. In particular, using mutated polyQ-

containing proteins (e.g. huntingtin and ataxin-3) we

showed that HSPB6, HSPB7, HSPB8 and HSPB9 overexpres-

sion inhibited protein aggregation and protected against its

mediated toxicity, while overexpression of all the other mem-

bers had no effect [1]. Curiously, HSPB6, HSPB7, HSPB8 and

HSPB9 could not efficiently facilitate the refolding of

denatured substrates (e.g. heat-denatured firefly luciferase),

but rather were linked to protein degradation by either the

proteasomal or the autophagic systems (table 1; see also

later, [1,46]). Inversely, the strongly heat-stress-regulated

HSPB1, HSPB4 and HSPB5 members, which were found to

be very efficient in facilitating the refolding of heat-denatured

substrates, both in cells and in vitro, showed poor anti-aggre-

gation effects against polyQ proteins (table 1) [1]. These data

suggest that the different HSPB members may either have

different client specificity and/or have a different impact on

client processing.

Despite the lack of anti-polyQ aggregation activity, HSPB1

and HSPB5 showed some protective effects in some cell models

of polyQ disease. As HSPB1 and HSPB5 can increase the resist-

ance of the cytoskeletal network [22,37,38,41,62–64] and are

upregulated both in ballooned neurons and astrocytes

[9,27,28], one may speculate that they protect axonal transport

and vesicular trafficking against disruption by the protein

aggregates and thus delay the consequences of aggregation,

without affecting aggregate formation as such. Yet, when

directly comparing the cytoprotective effects of, for example,

HSPB5 to that of HSPB7 in cell models, we found HSPB5

protection was marginal ([1], figure 1c).
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Consistent with the cellular data, the three most potent sup-

pressors of polyQ aggregation (HSPB7, HSPB8 and HSPB9)

also reduced polyQ-mediated eye degeneration in a Drosophila
melanogaster in vivo model [1,101] (M. P. Zijlstra, B. Kanon,

H. H. Kampinga 2011, unpublished data; figure 1). These

latter three HSPB members have been implied in polyQ degra-

dation via the proteasome (HSPB9: M. P. Zijlstra, B. Kanon,

H. H. Kampinga 2011, unpublished data), by supporting

autophagic clearance of polyQ aggregates [1] or by enhancing

autophagic flux [43,46,95,101,102], see below).
4. Anti-aggregation activity of HSPBs:
stimulating degradative pathways

As mentioned earlier, HSPB7, HSPB8 and HSPB9 seem to

have the potential to trigger (or facilitate) proteasomal and/

or autophagic degradation of certain misfolded proteins.

Among these HSPB members, HSPB8 is probably the most

studied in this context. Overexpression of HSPB8 efficiently

prevents aggregation of different polyQ-containing proteins

(huntingtin, ataxin-3 and androgen receptor (AR), responsible

for HD, spinocerebellar ataxia type 3 (SCA3) and SBMA,

respectively) [1,47,101], as well as SOD1 (protein responsi-

ble for ALS) and various truncated forms of TDP-43s

(associated with both ALS and frontotemporal dementia

(FTD; table 1)) [43,95].

Figure 2 illustrates this for the mutant ARpolyQ that causes

SBMA. Overexpression of HSPB8 in SBMA motor neurons

leads to a substantial decrease in mutant ARpolyQ aggregates

(IF, figure 2a) and large insoluble species (filter retardation

assay, FRA; figure 2b,c), which in this disease are triggered by

the AR ligand testosterone. Several data indicate that this

anti-aggregation activity of HSPB8 is caused by a facilitation

of autophagy-mediated degradation of the mutated proteins

or their (initial) aggregates. In this process, HSPB8 collaborates

with BAG3 [46] and HSPA8 (Hsc70) and CHIP [43,104]. Indeed,

as shown in figure 2, the anti-aggregation effects of HSPB8 were

greatly reduced in the presence of the autophagy inhibitors

3-methyladenine (3-MA) or bafilomycin (figure 2c).

Differently from many other members of the HSPB family

(e.g. HSPB1 and HSPB7), HSPB8 forms a stable complex with

the HSPA8 (Hsc70) co-chaperone BAG3, which may explain
why HSPB8 is so efficient in autophagy-mediated degradation

of misfolded polyQ substrates. We previously showed that not

only HSPB8 stability, but also its anti-aggregation and pro-

degradative functions, depend on its association with BAG3,

whose knock-down prevented HSPB8 from exerting its protec-

tive role [46]. Also, within the complex, BAG3, but not HSPB8,

is responsible for the stimulation of autophagy [46]. This

suggests that HSPB8 might play a role in the recognition and

delivery of the cargo, via BAG3, to the autophagosomes for

degradation. In addition, we found that HSPB8 (in complex

with BAG3), besides participating in autophagy-mediated

degradation of misfolded proteins, is also involved in the trans-

lational shut-down mediated by the induced phosphorylation of

eIF2 alpha that occurs during proteotoxic stress. Interestingly,

induction of phospho-eIF2 alpha, which we observed upon over-

expression of HSPB8, BAG3 or of the complex, leads to both

protein synthesis inhibition (which decreases the total load of

proteins to be refolded or degraded) and autophagy stimulation

(which clears the aggregated proteins accumulating during pro-

teotoxic stress) [48]. While in vitro translation experiments indeed

have revealed that HSPB8 can cause translational shut-down,

precise insight into how HSPB8 can modulate translation upon

stress is still missing. Similarly, future studies will be needed to

reveal the precise role of HSPB8 in the complex and if and

how client recognition and targeting to autophagy is coupled

to its action on translation.
5. The anti-aggregation power of HSPBs
depends on several factors

The aggregation propensity of misfolded proteins depends on

several factors, including the exposition of hydrophobic residues,

the alteration of specific conformed domains, the capability to

generate beta-plated sheets, and so on. These factors may affect

the kinetics of aggregation, the biophysical nature of aggregates

that are ultimately formed (e.g. insolubility and reversibility) and

also the location inside the cells where these proteins may

accumulate [105]. All of these may obviously also affect the pos-

sibilities of diverse HSPBs to interact and deal with these various

proteins before or after they have aggregated. Even for appar-

ently similar clients like the proteolytic polyQ-containing

fragments, the length of the polyQ stretch and the kinetics of
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aggregation (the longer the polyQ repeat, the faster the aggrega-

tion [1]) were found to impede the possibility of the various

HSPB members to suppress aggregation. While HSPB8 and

HSPB9 were equally (or even a bit more) effective compared

with HSPB7 on huntingtin fragments with relatively short expan-

sions (43Q, figure 1 [1]) only HSPB7 was efficient in suppressing

aggregation of the longest expansions tested (119Q; see [1]). For

HSPB8, similar observations were made in our previous findings

showing that HSPB8 efficiently decreases both soluble and inso-

luble levels of huntingtin fragments with relatively short

expansions (43Q; [46,47]), but has no effect on long expansions

(Q119; [1]). We also tested the selective effect of HSPB8 on ARpo-

lyQ containing a stretch of different size (Q46 versus Q112), both

being in the pathological range (even if no SBMA patients with

Q112 have been described so far). The two types of ARpolyQs
have a marked difference in their aggregation power, in

response to the AR ligand [72,73]. While HSPB8 almost com-

pletely counteracts AR.Q46 aggregation, induced by

testosterone, its effects on AR.Q112 are much lower, since

there is only a relatively small decrease in the total amount of

insoluble ARpolyQ (figure 2b).

These differences in the efficiency of HSPB7, on the one

hand, and HSPB8 and HSPB9, on the other hand, to prevent

aggregation of polyQ proteins with different expansion sizes

clearly suggests that their modes of action to deal with these

disease-related proteins must be largely different. HSPB8 and

also HSPB9 (M. P. Zijlstra, B. Kanon, H. H. Kampinga 2011,

unpublished data) seem to act by lowering the level of soluble

species (non-aggregated or/and early aggregate intermediates)

apparently maintaining these substrates in a state competent
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for degradation, thus disposing of them before they form large,

insoluble species. In the case of HSPB8, the lowered levels of

soluble mutant polyQ proteins might be due, at least in part,

to its effects on eIF2 alpha phosphorylation and translational

attenuation [48]. Also, HSPB8, together with the co-chaperone

BAG3, the chaperone HSP70 and the ubiquitine-ligase

CHIP, works through stimulating autophagic degradation

[43,46,48,106], thus also taking care of early nucleating species.

Concerning HSPB9, it was found to stimulate proteasomal

degradation (M. P. Zijlstra, B. Kanon, H. H. Kampinga 2011,

unpublished data), which may lower the number of nucleating

species of the polyQ proteins; however, when nucleation is

initiated, which occurs more readily with longer polyQs,

HSPB9 might become ineffective. Since HSPB9 is only

expressed in testis, HSPB9 upregulation should not play a

role in neurodegenerative diseases. However, as stated

before, it is important to underline that pharmacologically

induced upregulation of specific members of the HSPB

family (normally not expressed or upregulated) in a specific

neuronal cell type might still result in protection, therefore

representing a good therapeutic approach. For those HSPB

members that are already expressed in target cells, drugs

may be designed that stimulate their (chaperone-like) activity,

e.g. by acting on the phosphorylation or oligomeric status of

the HSPB members. Alternatively, or in case HSPB members

are not already expressed in the target cells, analysis on

expression regulation of the various HSPB members combined

with drug screens using reporter constructs may identify

routes towards boosting or inducing expression of individual

disease-ameliorating members.

HSPB6, which only effectively suppresses shorter polyQs

[1,107], also plays a role in modulating autophagy [108]. By con-

trast, HSPB7 does not change the rate of proteasomal degradation

and does not increases the autophagic flux; rather, it appears to

prevent early aggregates from nucleating into inclusions with

sizes that are too large to be handled by the autophagic machin-

ery, probably by marking these early seeds, which enables their

shuttling into the autophagosomes [1,57,109,110]. This HSPB7

action thus does not rely on the speed of seed formation but

rather on the rate at which these seeds grow (and thus is less

dependent on the size of the expansion).

Another aspect that might influence the efficacy of the

diverse HSPBs to prevent mutated protein aggregation is rep-

resented by specific physical properties of the mutant protein
and aggregate itself. Indeed, the effects of HSPB members on

different aggregation-causing mutants seem to differ widely

(table 1). It has been shown that, while polyQ proteins form

aggregates with a core that is inaccessible to nascent proteins,

mutated SOD1 (G85R/G93A), associated with ALS, forms a

porous aggregate, through which nascent proteins can diffuse

[110]. As stated above, we have already shown that overexpres-

sion of HSPB8 efficiently prevented the aggregation and

facilitated the autophagy-mediated degradation of mutated

SOD1 and of various mutated forms of TDP43, which is associ-

ated with both ALS and FTD [43] (figure 3a). When we

compared the HSPB8 activity to that of other HSPB family

members with anti-aggregation activity towards mutated

polyQ proteins, namely HSPB6, HSPB7 and HSPB9, none of

these blocked the aggregation of the truncated mutant form

of TDP43 (TDP43 DC; figure 3b: HSPB1-5-6-7-9; table 1).

HSPB1 and HSPB5, which mainly showed pro-refolding

activity, were also unable to prevent aggregation of TDP43

DC (figure 3b). HSPB9 seems to have a mild effect on TDP-43

DC. Why HSPB6 and HSPB7 showed no anti-aggregation

activity towards TDP43 DC, while being very active towards

mutated polyQ proteins [1,107] (table 1), is still unclear and

will be investigated in the future.

Finally, another factor that can explain the differential

efficacy of the various members of the HSPB proteins in

inhibiting protein aggregation is the stage at which they act.

As previously mentioned, many neurodegenerative diseases,

including AD, polyQ diseases and PD, are characterized

by the accumulation of fibrillar proteinaceous aggregates in

specific neuronal types [111–117]. The formation of these

fibrillar aggregates consists of a multi-step process involving

a nucleation step and the subsequent elongation of the fibrils

[118]. Interestingly, it has been shown that some HSPBs can

only prevent protein aggregation at a specific stage. For

example, HSPB5, which showed very high refolding capacity

in cells and in vitro but no anti-aggregation activity towards

mutated polyQ proteins [1], inhibits fibrillar aggregate for-

mation of mutated alpha-synuclein, associated with PD,

only at early stages. HSPB5 binds to partially folded mono-

mers of mutated alpha-synuclein, thereby preventing

mature fibril formation and shifting the equilibrium to

monomer fibrils, which can be easily disposed/degraded

[35,119,120]. A similar mechanism has been shown for

ataxin-3. HSPB5 can significantly inhibit the first stage of
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ataxin-3 aggregation [121], by directly interacting with the

Josephin domain of ataxin-3, which has an intrinsic tendency

to aggregate and form fibrils [122]; however, HSPB5 is inef-

fective on already formed SDS-insoluble fibrils of mutated

ataxin-3. All together, these data strongly suggest that

HSPB5 acts as a chaperone specifically towards growing

fibrils at an early stage and may have only limited protective

powers because it cannot block protein aggregation at later

stages and does not seem to target its bound substrate to

the proteolytic pathways. They also suggest that, in order to

be efficient in inhibiting protein aggregation, upregulation

of HSPB5 should either take place at a very early stage of dis-

ease or occur concomitantly with the upregulation of other

chaperones able to bind to and target intermediate species

and/or fibrils to degradation.
ocB
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6. Subcellular localization of the aggregate-
prone species and HSPBs

Finally, subcellular localization can influence the efficiency of

the various members of the HSPB family in inhibiting the

aggregation of a specific misfolded substrate involved in neuro-

degenerative diseases. In fact, while the ubiquitin proteasome

system is present and active both in the nucleus and in the cyto-

plasm, autophagy (which can be facilitated by some HSPB

members; see earlier) is confined to the cytoplasm [123,124].

HSPB8 and HSPB6, which mainly rely on autophagy, are

expected to mainly act on cytoplasmic aggregating proteins.

Indeed, HSPB8 could only efficiently block the aggregation

and facilitate the autophagy-mediated clearance of ARQ46,

which is located in the cytosol, but had very limited effect on

ARQ112, which is aggregating inside the nucleus. Considering

that the cytoplasmic retention of a mutated form of AR contain-

ing a Q112 tract ameliorates disease via autophagy [125],

strategies that allow keeping the mutated proteins in the cyto-

sol, where several HSPBs (and other molecular chaperones)

can participate directly or indirectly in their targeting to the

autophagosomes for degradation, will slow-down disease

progression. Whether some HSPBs can also participate in

modulating the shuttling of the mutated proteins from the

nucleus to the cytoplasm and whether this may contribute to

their protective effects is still unknown.
7. HSPB-mediated protection can also be
independent of anti-aggregation/pro-
refolding activities and/or autophagy
facilitation

HSPB1, which shows good refolding capacity, had no anti-

aggregation activity in cells against mutated huntingtin,

both with short and long polyQ stretches [1] (table 1). How-

ever, overexpression of HSPB1 could inhibit the aggregation

of mutated SOD1 [20] (table 1) and could also prevent the

toxicity mediated by several polyQ-containing proteins [19].

This may depend on the different physical properties of the

aggregating substrates (e.g. immobile versus mobile aggre-

gates), as stated before, although so far no experimental

proof supporting such a hypothesis exists. However, in the

case of HSPB1, the protective effects may also be due to

other specific functions, which are not related to refolding
or inhibition of aggregation, but rather to its ability to prevent

the activation of APAF-1 by the cytochrome C released from

the mitochondria, that will trigger the apoptotic caspase

cascade, as well as on its anti-oxidants effects [67]. In fact,

overexpression of HSPB1 exerts a protective effect and signifi-

cantly decreases cell death in cellular models of HD,

characterized by high oxidative stress, by maintaining the

redox state of the cell without showing effects on aggregation

[19]. Moreover, in neuronal-like cells, HSPB1 could also pro-

tect against the toxicity mediated by mutated ataxin-3,

associated with SCA3, where increased oxidative stress has

been suggested to play a role in disease pathogenesis, again

without effects on aggregates. Interestingly, overexpression

of mutated ataxin-3 correlated with a reduction in the

expression levels of HSPB1, suggesting that a decrease in

the function of HSPB1 (not directly related to effects on the

diseased protein as such) may play a role in disease pro-

gression. Such a decrease in HSPB1 expression has also

been documented in other forms of SCA diseases, like

SCA7 [126,127] and in transgenic mice models of SCA-17

[128]. This would imply that re-introduction of HSPB1 can

compensate for such a loss of function of HSPB1 as a factor

contributing to disease progression. However, data in HD

mice did not reveal such an effect [129], suggesting that

this may not apply to all polyQ diseases.
8. Conclusions and perspectives
Although similar in terms of primary sequence, the various

members of the mammalian HSPB family are differentially

expressed in tissues and cells, have different abilities to

form homo- and hetero-oligomers, show other non-HSPB

partner interactions and display different functions. The

tissue-selective expression pattern of the members probably

reflects a highly specific need of a given HSPB to assure

proper function and viability of that cell type/tissue, and a

particular HSPB may exert a protective function in a specific

cell type. Some functional redundancy does exist between the

various members, as evidenced by findings that several HSPB

members can handle the same (un- or misfolded) protein

equally (e.g. assist their (re)folding). However, HSPB members

posses different affinity and specificity for clients and may

handle the same client differently (e.g. routing them to protea-

somal or autophagosomal degradation). Thus, depending on

their client specificity and mechanism of action, only upre-

gulation of specific HSPB members would exert protective

functions against neurodegeneration. Moreover, impaired

HSPB function may harm certain tissues more than others

and explain why certain HSPB mutants have been linked to

tissue-specific (e.g. motor neurons and muscle cells) dege-

neration. In addition, the same HSPB may have different

biochemical activities: depending on their oligomeric status,

they may independently function as chaperones for soluble

proteins, as stabilizers/chaperones for cytoskeletal elements,

or as modifiers of the cellular redox state. As a consequence

of these properties, the same HSPB member may protect

more or less efficiently and certain HSPB members may be

better targets than others.

In general, a better understanding of the client specifi-

city and functional diversity of the various HSPBs will be

required in order to target a specific member or functionality

thereof for therapeutic purposes.



rstb.royalsociet

10
This study is supported by Marie Curie International Reintegration
grant (PIRG-03-GA-2008-230908, to S.C.), Prinses Beatrix Fonds/
Dutch Huntington Association (WAR09-23, to S.C. and H.H.K.),
Association Française contre les Myopathies Trampoline grant
(2010, to S.C.), Rita Levi Montalcini Prize (2011, to S.C.), Telethon,
Italy (GGP06063 and GGP07063 to A.P.), Fondazione CARIPLO
(2008-2307, to A.P.), ARISLA, Italy (ALS_HSPB8, to A.P. and S.C.),
Italian Ministry of Labour, Health and Social Affairs (2007-36;
2008-15), Regione Lombardia (to A.P.) and convenzione Fondazione
Mondino/UNIMI (to A.P.), Fondation Thierry Latran, France (FLT
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