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3Federal University of Viçosa, Viçosa, MG 36570-000, Brazil
4School of Geography, University of Leeds, Leeds LS2 9JT, UK
5Organismic and Evolutional Biology Department, Harvard University, 26 Oxford Street, Cambridge,
MA 02138, USA
6Federal Institute of Santa Catarina, Av. Mauro Ramos, 950 Centro 88020-302, Florianopolis,
Santa Catarina, Brazil
7Ecology and Evolutionary Biology Department, The University of Arizona, PO Box 210158b, Tucson,
AR 85721, USA
8CGIAR Consortium, Agropolis International, Avenue Agropolis, 34394 Montpellier Cedex 5, France
9School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive,
Atlanta, GA 30332, USA

A mosaic of protected areas, including indigenous lands, sustainable-use pro-

duction forests and reserves and strictly protected forests is the cornerstone of

conservation in the Amazon, with almost 50 per cent of the region now

protected. However, recent research indicates that isolation from direct defor-

estation or degradation may not be sufficient to maintain the ecological

integrity of Amazon forests over the next several decades. Large-scale changes

in fire and drought regimes occurring as a result of deforestation and green-

house gas increases may result in forest degradation, regardless of protected

status. How severe or widespread these feedbacks will be is uncertain, but

the arc of deforestation in south–southeastern Amazonia appears to be par-

ticularly vulnerable owing to high current deforestation rates and ecological

sensitivity to climate change. Maintaining forest ecosystem integrity may

require significant strengthening of forest conservation on private property,

which can in part be accomplished by leveraging existing policy mechanisms.
1. Introduction
The forests of the Amazon Basin (figure 1) are part of the world’s largest block

of humid tropical forests. These forests provide important ecosystem services

such as high biodiversity, climate regulation, carbon storage [3,4], a livelihood

for millions of people [5] and, increasingly, agricultural products. The possi-

bility of large-scale disruption of Amazonian ecosystems has received much

scientific and policy attention in the past 30 years [6–8]. National and inter-

national efforts aimed at conserving Amazon forests and their ecosystem

services have depended heavily but not solely on the development and expan-

sion of protected areas (e.g. the Áreas Protegidas da Amazônia programme:

http://www.mma.gov.br/port/sca/arpa/). These protected areas, in combi-

nation with federal actions to strengthen and enforce laws governing local

deforestation and forest-degradation processes on private lands, have effec-

tively conserved a significant portion of the Amazon’s forests [2,9] (figure 1).

It is becoming clear that the long-term integrity of Amazon forests, includ-

ing those currently under protection, depends on factors other than our ability

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2012.0155&domain=pdf&date_stamp=2013-04-22
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Figure 1. Amazon Basin land cover. Fractional tree cover for the year 2010 [1] is shown in shades from light green (least) to medium green (most). Protected areas
are shown in dark green (adapted from Soares-Filho et al. [2]). Areas of the basin south and east of the white-toothed line are in the arc of deforestation and are
referred to in the text as south – southeastern (SSE) Amazon.
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to influence and mitigate the direct impacts of deforestation,

forest degradation and resource exploitation. Externally

derived climate changes and regionally driven feedbacks

between deforestation and climate may disrupt ecosystem

integrity in the coming decades, regardless of protected

status. The south–southeastern (SSE) Amazon region

appears to be particularly sensitive to these forces because

of the combination of large-scale historical deforestation

and its geographical position in a climatological and ecologi-

cal transition zone.

In this article, we (i) review the current status of scientific

understanding concerning the likely impact of deforestation

and global warming on the future climate of SSE Amazonia

and the associated impacts on vegetation, (ii) provide an

overview of the policy instruments currently available for

conservation of SSE Amazonian forests and (iii) make rec-

ommendations for research priorities to support better

environmental understanding and inform conservation and

mitigation strategies.
2. Current status of scientific understanding
(a) Forest – climate feedbacks
Human-induced changes in land cover and greenhouse gas

(GHG) and aerosol concentrations are likely to have a strong

influence on the climate of the Amazon Basin. Although

there are significant unknowns regarding the spatial and tem-

poral scales of the climatic responses to external and internal

forcing, there are several key elements that are relatively

well known.
(i) Deforestation has a significant influence on regional climate
Deforestation causes important changes in the energy and

water balance of the Amazon. Pasturelands and croplands

(e.g. soya beans and corn) have a higher albedo and decreased

water demand, evapotranspiration, canopy interception and

atmospheric turbulence [10,11] compared with the forests

they replace. Lathuillière et al. [10] found that forests in the

state of Mato Grosso contributed about 50 km3 per year of eva-

potranspiration to the atmosphere in the year 2000 (equivalent

to 50% of the statewide total). Deforestation reduced that forest

flux rate by approximately 1 km3 per year throughout the

decade. As a result, by 2009, forests were contributing about

40 km3 per year of evapotranspiration in Mato Grosso. Differ-

ences such as these can affect atmospheric circulation and

rainfall in proportion to the scale of deforestation [12–14].

Recent evidence in the SSE Amazon shows that land cover

heterogeneity creates centres of strong atmospheric divergence

and decreased precipitation, which vary in shape and size

depending on the area deforested and prevailing wind direc-

tion [15–20]. This is clearest in Rondônia, Brazil, where

analysis of daily rainfall data suggests that deforestation

since the 1970s has caused an 18 day delay in the onset of

the rainy season [18]. This phenomenon of later onset of the

rainy season since the 1970s may be occurring across much

of SSE Amazonia [21].

Fires, which are closely associated with deforesta-

tion, forest fragmentation and drought intensity, are most

common in the SSE Amazon [22]. The increased atmospheric

aerosol loads produced by fires have been shown to decrease

droplet size, increase cloud height and cloud lifetime and

inhibit rainfall, particularly in the dry season in the SSE
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Figure 2. Change in precipitation as a result of a scenario of deforestation. In a coupled land surface and climate model simulation in which 50% of the
Amazon Basin is deforested (red areas), all areas contained within the white-toothed lines experience a greater than 10% reduction in rainfall. Protected
areas are shown in dark green. Areas simulated to be deforested are derived from one scenario of several presented by Soares-Filho et al. [25]. The
simulated precipitation change values are from Coe et al. [26] and Costa and Pires [19]. The uncertainty of these results is large and individual
global climate models give differing results but the outcome is generally similar; large-scale deforestation decreases rainfall over broad portions of the
Amazon, regardless of a particular region’s protected status.
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Amazon [23,24]. Thus, fires and drought may create a posi-

tive feedback in the SSE Amazon such that drought is more

severe with continued deforestation and climate change.

Although currently observed rainfall reductions owing to

land cover change and aerosol loading appear to be limited to

relatively local deforestation events, numerical model studies

suggest that the reductions driven by large-scale deforesta-

tion will not necessarily be limited to deforested regions.

Atmospheric circulation changes that are likely to accompany

large-scale deforestation may reduce rainfall over large areas,

regardless of whether the underlying land is protected forest

or agriculture (figure 2) [26]. Furthermore, deforestation

occurring outside the Amazon Basin can have a detrimental

effect on forests within the basin. For example, deforestation

in the 2 million km2 savannah environment in southcentral

Brazil, which is mostly outside of the Amazon Basin, may

already be reducing rainfall hundreds of kilometres down-

wind in SSE Amazonia, particularly at the beginning and

end of the dry season [19,26,27].
(ii) Rising greenhouse gas concentrations will lead to
increased temperature and may cause enhanced
drought conditions

Numerical models agree that increasing GHG concentrations

will create a warmer climate in Amazonia, with predicted
mean air temperature increases ranging from 28C to 108C
[6,28]. The range in predicted values is a function of the

sources of uncertainty, including the emissions scenario

assumed, the climate model used, the strength of carbon

cycle feedbacks and whether anthropogenic deforestation is

considered. However, changes are expected to be greatest in

the dry season and where forest disturbance is greatest [6].

SSE Amazonia appears to be the region of the Amazon

most susceptible to decreasing precipitation with changing

climate. Fifty per cent of models taking part in the Intergo-

vernmental Panel on Climate Change Fourth Assessment

Report suggest that a severe decline in dry season rainfall

and increased drought probability are likely in the SSE

Amazon [6,29].

(b) Ecosystem responses
Ground-based forest inventories in the Amazon suggest that

in the past several decades old-growth forests have experi-

enced compositional shifts (e.g. increasing abundance of

lianas) [30,31], increasing rates of recruitment and mortality

[32] and were a net carbon sink before the 2005 drought

[33]. The causes for these observed changes are not clear

but may be related to changes in resource availability such

as the nearly 100 ppm increase in atmospheric CO2 content,

increasing nutrient (N and P) deposition or increasing solar

radiation [34]. An alternative view is that they may be a
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result of changes driven by recovery from past disturbance

events [35]. Future changes in forest dynamics, particularly

via changes to drought seasonality and fire frequency and

intensity, could result in the SSE Amazon becoming a net

carbon source [6,28,32] and thereby alter the carbon balance

of a large part of Brazil.
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(i) Drought significantly alters rainforest structure
and function

Episodic strong droughts can be important contributors to

forest degradation and tree mortality. Rainfall exclusion

experiments in eastern Amazonia [36,37] showed a 20–25%

loss in forest biomass over the first 5–7 years of a prescribed

50 per cent reduction in rainfall [36–38]. Because of the long

dry season, the evergreen forests of the SSE Amazon have

much greater seasonal variability in evapotranspiration

and carbon fluxes and are generally a larger net source

of carbon during drought compared with wetter regions of

the Amazon [39]. Analyses of the impact of the 2005 and

2010 droughts in western and SSE Amazonia suggest a sig-

nificant decrease in leaf area index occurred, and that tree

mortality may have been large enough to reverse the pan-

Amazonian carbon sink, although regional net primary

production was not affected [33,40–42]. Forests of the SSE

Amazon are already close to the climatic limits for tropical

forests and they would be expected to be the most vulnerable

to future climate change. Therefore, an increase in drought

frequency or intensity, which could occur as a function of

increasing GHGs and land cover/use changes, has the poten-

tial to significantly alter forest structure in the SSE Amazon

and the regional carbon balance.
(ii) Fire significantly alters the structure and function of
Amazon rainforests

Fire in Amazonia is mostly of human origin, is positively cor-

related with forest fragmentation and drought frequency, and

leads to significant changes in the structure and function of

Amazonian ecosystems [43–45]. Fires reduce above-ground

live biomass [22,46,47] and cause species composition changes

as a result of differential mortality rates among tree species and

with changes in micro-climate [46–49]. Forest fires may create

positive feedback loops whereby more litter accumulates with

increased mortality and canopy thinning allows greater sun-

light-induced drying of litter, making previously burned

forests more fire-prone [38,50]. A thin canopy may also support

the establishment of invasive C4 grasses from neighbouring

pastures, which can outcompete native vegetation and elevate

forest flammability [44]. Aerosols derived from fires signifi-

cantly decrease incoming solar radiation and photosynthesis

over large portions of the southern Amazon during the dry

season and near-surface ozone levels [51,52]. These atmos-

pheric effects of fires may increase plant stress and contribute

to degradation. The number of fires and the annual area

burned has continued to increase in the SSE Amazon, despite

decreasing rates of deforestation since 2005, consistent

with increased forest edges and several strong droughts

[22,45,53–55]. Through these mechanisms, an increase in fire

frequency and intensity in the future may lead to significant

changes to forest structure in the SSE Amazon.
3. South – southeastern Amazon is a
priority region

At least six factors presented above suggest that the coupled cli-

mate and ecology of SSE Amazon are particularly vulnerable: (i)

total deforested area and current rates of deforestation are

higher here than in any other region of the Amazon Basin

[56]; (ii) SSE Amazonia spans a transition zone between rainfor-

est and savannah environments, making remaining forests

susceptible to relatively small changes in climate [19,57];

(iii) evapotranspiration has decreased significantly over defor-

ested regions [10] and the onset of the rainy season may be

delayed by deforestation [16,18,19]; (iv) total rainfall depends,

in part, on the savannah region upwind [19,27], which is already

highly deforested, is undergoing rapid agricultural expansion,

and has fewer policy controls on deforestation [58]; (v) global

climate model simulations suggest that it is the most sensi-

tive region in the Amazon to global climate change [6]; and

(vi) fires and drought are more frequent and intense in the

SSE Amazon [22] and may increase with changing climate

and land use [28,29,45]. There are potential mitigating factors,

such as increased plant water-use efficiency that could reduce

some drought impacts (discussed in §6). However, the combi-

nation of factors suggests that additional disturbances to land

surface and climate could increase the probability of significant

tree mortality through drought and fire in SSE Amazon.

Conservation of the remaining ecological integrity of

SSE Amazonia will likely require mitigating some of the

current and future human negative influences to avoid poten-

tially detrimental feedbacks on climate and ecosystem

functioning. This needs to be accomplished both via global

reductions of GHG emissions (which we do not address here)

and through reductions in deforestation and fires at regional

and continental scales.
4. Policy mechanisms to encourage
forest conservation

As a result of concerted efforts by policy-makers and non-

governmental organizations at both state and federal levels,

nearly 50 per cent of the remaining Amazon rainforest has

been included in formal protected areas such as indigenous

lands, sustainable-use production forests and reserves, strictly

protected forests, military lands and Private Natural Heritage

Reserves (figure 1) [2]. It is clear that large protected areas are

effective and that expansion of the protected network is an

important conservation strategy for the Amazon Basin [44]. In

the case of the SSE Amazon, most of the large forest blocks are

already in some form of protection. Therefore, in addition to

maintaining protected areas, future efforts to reduce deforesta-

tion or increase forest cover in SSE Amazon would need to be

heavily weighted towards policies and actions focused on

relatively small forest fragments on private property.

There currently exist several policy mechanisms that

have the potential to complement protected areas and land man-

agement strategies, thereby increasing the effectiveness of long-

term forest conservation particularly on private property. Four

such policy tools available for the Amazon Basin are the inter-

national Reducing Emissions from Deforestation and Forest

Degradation (REDDþ) mechanism, national and sub-national

zoning/land-use planning efforts such as Brazil’s Legal
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Amazon Ecological-Economic Macro-Zoning (MacroZEE), the

Brazilian Forest Code and the Brazilian National Policy on

Climate Change.

The international REDDþ mechanism includes conser-

vation, enhancement and sustainable management of forest

carbon stocks, and was adopted under the United Nations Fra-

mework Convention on Climate Change in December 2010.

When fully operational, REDDþ will provide positive policy

and financial incentives to countries that demonstrate

reductions in emissions and/or increases in the removal

of carbon from the atmosphere (i.e. sequestration). Seve-

ral major pilot projects are already in place in Brazil,

and the Brazilian Amazon Fund has begun disbursement

of funds (see [59]) in the Amazon [60]. There are limits to

what may be achieved through REDDþ mechanisms [61] but

they have the potential to energize existing forest conservation

policies such as regional zoning and the Brazilian Forest Code.

At the national and sub-national scales, land-use planning

and zoning programmes are intended to balance the demands

of economic development with conservation goals. One such

example is the MacroZEE (Decree 7378, 1 December 2010),

which provides a policy structure for the legal Amazon

designed to simultaneously maximize conservation and

household and industrial scale economic production as a func-

tion of regional characteristics and needs. For the SSE Amazon,

the emphasis is on fostering: (i) containment of the deforesta-

tion fronts through protected and alternate use areas; (ii)

recovery and reuse of degraded areas; (iii) diversification and

increased productivity where the land is occupied (both

forest and non-forest); and (iv) regulation and innovation

within the agro-industrial complex. Exercises involving stake-

holder participation and land cover simulation in the Xingu

River in Mato Grosso, Brazil suggested that sophisticated

application of state and local level zoning regulations could

simultaneously reduce the pressures on remaining forests,

decrease landscape fragmentation and increase agricultural

output [62]. Options include spatially varying application of

forest code regulations based on the agricultural suitability of

land coupled with policies or incentives that encourage agricul-

tural intensification, such as double cropping and increasing

cattle herd density.

The Brazilian Forest Code has been an enormously in-

fluential form of legislation, and although there have been

long-standing difficulties with enforcement, it has defined a

path forward for including private property in Amazon

forest conservation policy. Despite the recent successful efforts

to weaken the forest code, it is still an important tool for con-

trolling deforestation and encouraging reforestation outside

of protected areas. The efficacy of the Brazilian Forest Code

for the future of SSE Amazonia could be greatly strengthened,

if the policies and regulations guiding land use in savannahs

were harmonized with those for Amazon rainforests. The cur-

rent forest codes require significantly less preservation on

private land in the savannah regions than in the rainforest

regions (i.e. 20% on savannah outside of the legal Amazon

and 35% for savannah within the legal Amazon versus 80%

for rainforest in the Amazon) [58]. As discussed previously,

the climates of these two regions are linked. As a result, the

current forest code requirements in the savannah regions

may be too low to preserve the precipitation benefits the SSE

Amazon receives from the savannah.

Finally, the Brazilian National Policy on Climate Change

(Law 12187, 29 December, 2009) broadly defines the goal of
reducing, by 2020, the Amazon deforestation levels by

80 per cent and cerrado deforestation levels by 40 per cent,

both compared with the 1996–2005 baseline. This legislation

seeks to contribute to the reduction in global GHG emissions

under the United Nations Framework Convention on Climate

Change guidelines. However, it fails to recognize the bio-

physical effects of Amazon and cerrado deforestation on

climate regulation [63] and ecological stability of the pre-

served areas. A revision of this policy, which is due by

2020, to include vegetation–climate feedbacks could help

establish mechanisms to: (i) avoid deforestation in specific

regions; (ii) improve the resilience of the conserved forests

to climate change; and (iii) minimize forest degradation and

subsequent GHG emissions.
5. Actions supporting forest conservation
Given the possibility of increasing dry season length and

drought frequency, practices that control fire may be the high-

est priority for forest conservation in the SSE Amazon. The

increase in fires in the past decade, despite declining defores-

tation rates, indicates the opportunities for expansion of fire

management in this fragmented landscape. Fire-reducing

land management techniques, strict controls on fire permit-

ting, strong enforcement of fire restrictions and firefighting

efforts championed by governmental (e.g. IBAMA, http://

www.ibama.gov.br/) and non-governmental (e.g. Aliança

da Terra, http://www.aliancadaterra.org.br/) organizations

in Brazil have been shown to reduce fire frequency, particu-

larly in Mato Grosso [64,65]. These activities should be

encouraged and expanded in order to partially offset the

effects of increasing landscape fragmentation and drought

frequency [44,45].

Widespread adoption of reduced impact logging (RIL) is

another potentially important practice for maintaining forest

integrity. Relative to conventional logging practices, RIL signifi-

cantly decreases GHG emissions [66] and forest canopy damage

[67]. Avoiding canopy damage reduces fire risk, because a

degraded canopy increases the solar radiation reaching the

forest floor, thereby increasing air temperature, reducing

relative humidity and decreasing litter moisture content [68].
6. Opportunities for future research
There are gaps in our physical and socio-political sciences

knowledge that if addressed have the potential to greatly

increase confidence in our projections of the future ecosystem

trajectories. We recommend the following priority areas for

future research.

(a) Regional climate linkages
The savannah environment appears to be important to the

climate of the SSE Amazon but it remains unknown how

sensitive other portions of the basin are to large-scale interde-

pendencies. The relative importance of particular forests for

maintaining the climatic and hydrologic cycles of the basin

needs to be more systematically investigated. Could a pro-

gressive degradation of forests in the SSE adversely affect

the environment of western Amazonia? What is the likeli-

hood of a threshold response, whereby large portions of the

Amazon change to drought-tolerant vegetation as a result

http://www.ibama.gov.br/
http://www.ibama.gov.br/
http://www.ibama.gov.br/
http://www.aliancadaterra.org.br/
http://www.aliancadaterra.org.br/
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of global climate change and deforestation [28,69]? These

questions need to be addressed with more sophisticated

coupled numerical model applications that include interactive

aspects such as: crops, secondary regrowth, fires, logging and a

changing climate.

(b) Climate – fire interactions and large-scale forest
composition and functioning

A major concern for the coming decades is that fire frequency

and subsequent forest degradation will greatly increase

[6,28]. As we have discussed, research suggests that fire fre-

quency and intensity may increase across much of the SSE

Amazon in the future owing to more frequent drought and

landscape fragmentation [44,45], but our available data

and numerical tools are still limiting. For example, research

clearly shows the importance of fire as a mechanism of tree

mortality and indicates that mortality increases exponentially

with landscape fragmentation and drought [45]. Unfortu-

nately, our understanding of fire-induced tree mortality is

based on a very limited number of studies in seasonally dry for-

ests, whereas the response of tree species in what is currently

the wetter, mostly fire-free portions of the Amazon is still

unclear. Additionally, fire and the subsequent tree mortality

are treated only crudely in most numerical models, generally

in a statistical manner without direct representation of the

underlying physical processes [45]. Focused research, simul-

taneously addressing both the field data and numerical

model gaps, is required for progress on this issue.

(c) Tropical forest species response to increasing
temperature

Leaf-level warming studies in Amazonia suggest that a

temperature increase of 28C can substantially reduce photo-

synthesis [70]. While evidence from outside the tropics

suggests that total ecosystem damage should be limited

because of respiratory and photosynthetic acclimation to

higher temperatures [71], relatively little information is avail-

able for tropical plant species. The temperature dependencies

of photosynthesis and respiration are very large sources of

uncertainty in current predictions of ecosystem response to

future climate [36,72,73] and the extent of future global

warming [74]. Forest structure (e.g. canopy height) and

productivity may also respond directly to the ambient radi-

ation environment in addition to ambient temperature and

precipitation [73]. There is a great need for additional field

and modelling studies in this area.

(d) Biophysical response of tropical forest species to
increasing carbon dioxide

Elevated atmospheric CO2 generally stimulates plant growth

directly through increased photosynthesis and indirectly

through increased water-use efficiency [75]. Global vegetation

models predict large increases in Amazonian forest biomass

with increasing CO2 because this biophysical response is applied

as a constant, and the simulated vegetation does not acclimate to

this forcing [76]. In most climate/vegetation models, this bio-

physical effect compensates for any climate-change-driven loss

of biomass [77,78]. These simulated responses are highly uncer-

tain, because there are no in situ field-based studies on the
strength and persistence of CO2-induced changes to tropical

tree growth rates. In addition, soil nutrient constraints are

poorly known and may significantly affect the nature of any cli-

mate- and CO2-driven change in biome composition [79]. As a

result, predictions of how biomass may change with increasing

CO2 are still highly uncertain.
(e) Regional policy linkages
Deforestation rates within the Amazon Basin have dropped to

historically low levels, in part because of the application and

enforcement of new and existing conservation policies within

the Amazon [9]. Conversely, annual deforestation and expan-

sion of soya bean and pasture in the neighbouring cerrado

environment is still large and now exceeds the deforestation

rate of the Amazon [80]. It is unknown to what degree these

two trends are linked. What are the social and political drivers

of continuing deforestation in the cerrado? Is deforestation in

the cerrado, in part, due to leakage from the Amazon? Could

the strong enforcement of anti-deforestation policies in the

Amazon be driving part of the observed deforestation in the

cerrado? Among industrial growers, is the cerrado viewed

more favourably as a region for expansion? Research exploring

the potential links between decision-making processes and

policy mechanisms in these two regions is needed.
( f ) Social aspects of land cover change
Spatially explicit simulations of land cover change as a func-

tion of socioeconomic drivers have become important tools in

the Amazon for illustrating the potential impact of policy

interventions and describing theoretical future land-use dis-

tributions to maximize ecosystem services (e.g. Dinamica

Ego, http://www.csr.ufmg.br/dinamica/) [25]. However,

little is know about the feedbacks between policy appli-

cations and individual decision-making. For example, can

policies that promote agricultural intensification and defores-

tation reduction result in significant negative feedbacks such

as increasing land prices and greater demand for deforesta-

tion locally and regionally? Continued model development

and application with social science data are needed in order

to represent more sophisticated feedbacks between policies

and land-use decisions.
7. Conclusions
In the past decade, we have developed a much clearer under-

standing of some of the large-scale climate changes and

ecosystem responses associated with human activities in the

Amazon. Evidence suggests that the ecosystem integrity of

remaining forests in SSE Amazon, whether protected or unpro-

tected, may be particularly vulnerable to environmental

disturbances caused by local and regional deforestation and

increasing atmospheric GHG content.

The current network of Amazonian protected areas is exten-

sive and has thus far successfully isolated a large fraction of

the Amazon from significant degradation. Most remaining

large forest blocks in the SSE Amazon are already included in

protected areas, and as a result any new protected areas would

by necessity be small and may over-extend already-stretched

resources and budgets. Key strategies for the immediate future

will be to maintain the physical integrity of existing protected

http://www.csr.ufmg.br/dinamica/
http://www.csr.ufmg.br/dinamica/
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areas, continue and expand the strong enforcement against

degradation such as fires, and strengthen forest conservation on

private properties. The suite of conservation, zoning and funding

mechanisms available in Brazil and the successes so far in redu-

cing deforestation provide optimism. Paths can be found to

devise strategies, provide guidance, and fund and implement sig-

nificant new conservation initiatives particularly on private

property throughout the Amazon and cerrado regions.

Important physical and social science unknowns remain.

They include the biophysical response of forests to changing

CO2, temperature, drought and fire. Unknowns also include
the social and political linkages between differing rates of

deforestation in the cerrado and Amazon. Research focused

on these topics is likely to be valuable for improving and imple-

menting strategies that effectively protect forests, maintain

climate and ecosystem function, and provide a wide array of

development and livelihood opportunities across Amazonia.
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