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Halogenated organic matter buried in marine subsurface sediment may serve
as a source of electron acceptors for anaerobic respiration of subseafloor
microbes. Detection of a diverse array of reductive dehalogenase-homologous
(rdhA) genes suggests that subseafloor organohalide-respiring microbial
communities may play significant ecological roles in the biogeochemical
carbon and halogen cycle in the subseafloor biosphere. We report here the
spatial distribution of dehalogenation activity in the Nankai Trough plate-sub-
duction zone of the northwest Pacific off the Kii Peninsula of Japan. Incubation
experiments with slurries of sediment collected at various depths and locations
showed that degradation of several organohalides tested only occurred in the
shallow sedimentary basin, down to 4.7 metres below the seafloor, despite
detection of rdhA in the deeper sediments. We studied the phylogenetic diver-
sity of the metabolically active microbes in positive enrichment cultures by
extracting RNA, and found that Desulfuromonadales bacteria predominate.
In addition, for the isolation of genes involved in the dehalogenation reaction,
we performed a substrate-induced gene expression screening on DNA extracted
from the enrichment cultures. Diverse DNA fragments were obtained and some
of them showed best BLAST hit to known organohalide respirers such as
Dehalococcoides, whereas no functionally known dehalogenation-related genes
such as rdhA were found, indicating the need to improve the molecular
approach to assess functional genes for organohalide respiration.

1. Introduction

Numerous previous microbiological studies demonstrate that microbes play
important ecological roles in halogen cycles on our planet. Reductive dehalo-
genation mediated by organohalide-respiring microorganisms has been used
in the bioremediation of soil and groundwater contaminated with compounds
such as tetrachloroethene (PCE) and trichloroethene (TCE) [1-3]. Many organo-
halides are used in industrial processes (e.g. PCE is widely used in the dry
cleaning industry), and improper disposal of these chemicals has caused serious
environmental pollutions. There are also many naturally produced organoha-
lides. Gribble [4] reported that at least 4714 organohalides have been identified
from biotic and abiotic natural sources [4]. For example, both PCE and TCE
may also enter the environment through production by various marine algae
and as a result of volcanic emissions. In this context, microbial dehalogenation
is believed to have played an ecological role in the natural halogen cycle,
having arisen through microbial utilization of naturally produced organohalides
before anthropogenic release of these compounds into the environment [3,5,6].

© 2013 The Author(s) Published by the Royal Society. Al rights reserved.
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The marine aquatic environment is the primary source of
naturally occurring organohalides [4]. Microbial reductive
dehalogenation has been experimentally demonstrated in
both marine and estuarine environments [7]. King [8] was the
first to report microbial dehalogenation of 2,4-dibromophenol
produced by animal activity in coastal sediments. Dehalogena-
tion activity and the reductive dehalogenase-homologous
(rdhA) genes, the key functional genes necessary for organoha-
lide respiration, have also been detected in the microbial
community associated with bromophenol-producing marine
sponge Aplysina aerophoba [5]. Brominated compounds actually
serve as growth supporting electron acceptors. Recently, for
example, Dehalococcoides mccartyi strain CBDB1 was shown to
have an even wider dehalogenation potential for brominated
benzenes than for chlorinated benzenes [9]. The molecular eco-
logical and biochemical studies indicate the significance of
enzymatic dehalogenation reactions in marine halogen cycles.

The organohalide-respiring bacteria isolated from marine
and estuarine environments to date are members of the genera
Desulfomonile, Dehalobium and Dehalococcoides. Desulfornonile
limimaris strains DCB-M and DCB-F capable of dechlorinating
3-chlorobenzoate to benzoate were isolated from marine sedi-
ments in Florida [10]. Members of the genera Dehalobium and
Dehalococcoides belong to the class Dehalococcoidetes (subphy-
lum II) within the phylum Chloroflexi [11-13]. Dehalobium
chlorocoercia strain DF-1, isolated from Charleston harbour in
South Carolina, is capable of respiring polychlorinated biphenyls
[14,15]. Dehalococcoides mccartyi strain MB, isolated from San
Francisco Bay, dechlorinates PCE to trans-1,2-dichloroethene
(trans-DCE) [12,16]. All of the organohalide-respiring members
of the phylum Chloroflexi isolated so far are obligate organoha-
lide respirers. A number of molecular ecological studies have
shown that organohalide-respiring Chloroflexi may play signifi-
cant roles in natural dehalogenation processes in estuarine and
tidal flat sediments [1,17-20].

Previous molecular ecological studies of deep subseafloor
sedimentary habitats revealed that 16S rRNA genes derived
from potential dehalogenating bacteria within the Chloroflexi
and Deltaproteobacteria are widely distributed in organic-
rich marine subsurface sediments on the continental margins
[1,21,22]. PCR amplification and sequencing of the rdhA
genes showed that phylogenetically diverse rdhA genes
are widely distributed in the subseafloor sediments of the
Pacific Ocean, such as those located southeast of Peru, in
the eastern equatorial Pacific, the Juan de Fuca Ridge flank
off Oregon, and in the northwest Pacific off the Shimokita
Peninsula and Nankai Trough, down to as far as 358 m
below the seafloor (mbsf) (figure 2; [23]). Dehalogenation of
2,4 ,6-tribromophenol (2,4,6-TBP) and TCE has been detected
in samples of sediment collected from the Nankai Trough,
suggesting that organohalides may serve as possible electron
acceptors for deep subseafloor microbes [23].

In this study, we examined the spatial distribution of deha-
logenation activity in the forearc basin and accretionary wedge
of the Nankai Trough using 10 organohalides as test com-
pounds. Sediment samples were collected by drilling from six
sites during the Integrated Ocean Drilling Program (IODP)
expeditions 315 and 316. Given the significant fraction of func-
tionally uncharacterized genes in subseafloor sedimentary
habitats [24,25], we also performed a screening method, desig-
nated as ‘substrate-induced gene expression (SIGEX) screening’,
to the cultures showing dehalogenating activities for identifi-
cation of genes involved in the dehalogenation activity. The

SIGEX was a method developed for isolating catabolic genes
from metagenomes using the substrate-dependent gene-induc-
tion assay [26,27]. Although we could not retrieve any
dehalogenation-related genes such as rdhA in this study, we
discuss the result of SIGEX screening as applicable information
for studying the samples that have low microbial metabolic
activities such as deep marine subsurface microbes [28,29].

2. Material and methods

(a) Sample collection and cultivation conditions

The site location, water depth and sediment depth of the core
samples collected for use in this study are summarized in
table 1. Core samples were obtained using the deep-sea drilling
vessel Chikyu during the IODP expeditions 315 and 316. Site
C0002 is located in the Kumano forearc basin, whereas sites
C0001, C0004, C0006, C0007 and CO008 are located in the slope
and toe of the accretionary wedge associated with seismogenic
faults (figure 1), and hence the distances from land and water
depths for these sites are far greater than for the Kumano basin
site (table 1). All sediment core samples were collected and
processed as the whole round by shipboard microbiologists,
immediately placed in an anaerobic glove box where they were
placed into oxygen-impermeable bags with AnaeroPack
oxygen-removers (Mitsubishi Gas Chemical, Japan), and then
stored at 4°C until use in experiments.

Sediment slurries for incubation experiments were prepared
in the laboratory on land as described previously [23]. Briefly,
the innermost sediment of the whole-round core was collected
with sterilized spatulas in an anaerobic glove box. The sediment
samples were slurried in anaerobic artificial seawater medium
containing a trace element solution and a vitamin solution with
a modified concentration of vitamin B, [31,32]. Next, slurry
samples were spiked with or without one of the following orga-
nohalides to a final concentration of approximately 100 uM:
2,4,6-TBP, 2,4,6-trichlorophenol (2,4,6-TCP), 2,4,6-triiodophenol
(2,4,6-TIP), TCE, cis-DCE, trans-DCE, carbon tetrachloride,
chloroform, carbon dichloride or dibromomethane. The spiked
samples were statically incubated at 15°C in the dark.

(b) Measurement of dehalogenation activity

During the slurry incubation, chlorophenols, iodophenols, bromo-
phenols and phenol were quantified using high-performance
liquid chromatography with UV detection (Shimadzu, Japan).
Compounds were resolved on a TSKgel ODS-100Z C18 column
(Tosoh, Japan), as described previously [23]. Chromatographic
peaks were identified and quantified based on retention time
and peak area as compared with chromatograms of the following
standards: 2,4,6-TBP, 2,6-dibromophenol, 2,4-dibromophenol,
4-bromophenol (4-BP), 2-bromophenol, 2,4,6-TIP, 2,4,6-TCP and
phenol. Halogenated methanes and ethenes were quantified on a
gas chromatograph (7890A GC System, Agilent Technologies,
Santa Clara, CA, USA) equipped with a DB-624 column (J&W
Scientific, Folsom, CA, USA) and flame ionization detector.

(c) Analysis of the diversity of metabolically active
bacteria in enrichment cultures

After complete dehalogenation was observed, sediment slurry
samples were preserved at —80°C with RNAlater (Ambion,
Austin, TX, USA). A 1.6 ml volume of each frozen sample
was homogenized using a freezer mill (SPEX CertiPrep 6850,
Metuchen, NJ, USA) for eight cycles of 1 min homogenization
at 15-impact frequency per second. The powdered slurry was
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Table 1. Characteristics of sampling sites and results of PCR amplification of dehalogenase-homologous gene (rdh). +, PCR product of expected size was amplified;
—, PR product of expected size was not amplified; n.t., not tested. The data of PCR-detection of rdh in site C0002 were used from our previous study [23].
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Figure 1. Geographical setting of the Nankai Trough plate-subduction zone and location of sites (0001, C0002, 0004, C0006, (0007 and (0008 during the I0DP

Expeditions 315 and 316. The red line in the inlet indicates the transect line.

then transferred to a new tube and dissolved in 2 ml of TRIzol
reagent (Invitrogen, Carlsbad, CA, USA). Total RNA was extracted
using a TRIzol Plus RNA purification kit (Invitrogen) according to
the manufacturer’s protocol. The total RNA fraction was eluted
with 100 ul of water treated with diethylpyrocarbonate. Because
reverse transcription-PCR (RT-PCR) amplification using these
samples as templates was unsuccessful, the samples were purified
further and then concentrated to 30 wl using Agencourt RNAClean
(Beckman Coulter, Brea, CA, USA). The extracted RNA was treated
with DNase I (TURBO DNA-free Kit, Ambion) and the absence of
contaminating DNA was confirmed through a PCR amplification
test using LA Tag polymerase (Takara, Japan). The 165 rRNA
gene was amplified using the Superscript III One-Step RT-PCR
system with Platinum Tag DNA polymerase (Invitrogen) using
Bac27F and U1490R as primers [33]. The amplicons were cloned
into pCR2.1 TOPO vector (Invitrogen) and sequenced using an
ABI3130xI Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA). Sequences with a 97% identity were tentatively assigned
to the same phylotype. The 165 rRNA gene sequences were com-
pared with data deposited in DDBJ/EMBL/GenBank using
BLASTN analysis. A phylogenetic tree for the resulting sequences
was constructed according to the neighbor-joining method using
MEGA software, v. 4.0 [34].

(d) Detection of rdhA genes

Bulk environmental DNA was extracted from each core
sample using a PowerMax Soil DNA isolation kit (MO BIO
Laboratories, Carlsbad, CA, USA). The extracted DNA was puri-
fied using a MagExtractor DNA purification kit (Toyobo, Japan)
according to the manufacturer’s instructions. Because the
amount of DNA extracted was too low to conduct molecular ana-
lyses, multiple displacement amplification (MDA) was performed
using an illustra GenomiPhi HY kit (GE Healthcare, UK) according
to the manufacturer’s protocol. Briefly, the extracted DNA was
heat denatured at 95°C for 3 min, cooled on ice, then incubated
with phi29 polymerase, random hexamers and SYBR Green I
(0.05x in final concentration) at 30°C for 2 h while monitoring its
amplification with real-time PCR (StepOnePlus, Life Technol-
ogies). The amplification products were then treated at 65°C for
10 min to inactivate enzyme. The rdhA genes were detected by
PCR using Ex Taq polymerase (Takara, Kyoto, Japan), and RRF2
and B1R as primers, as described previously [23,35].

(e) Determination of cell density

The density of microbial cells in sediment core samples was
determined using a fluorescent image-based microscopic assay
with SYBR Green I staining, as described previously [36,37].

(f) Screening of genes involved in organohalides

The SIGEX technique was used to screen for isolation of catabolic
genes for organohalides in incubation slurries that were positive
for dehalogenation activity, according to previously published
procedures with some modifications [26,27]. Bulk environmental
DNA was extracted from the incubation slurry using a PowerMax
Soil DNA isolation kit (MO BIO Laboratories) from the enrichment
cultures that were positive for dehalogenation activity to 2,4,6-TBP,
2,4,6-TIP and TCE. The extracted DNA was purified using a
MagExtractor DNA purification kit (Toyobo) according to the
manufacturer’s instructions. To obtain a sufficient amount of
DNA to construct the SIGEX library, extracted DNA was amplified
by MDA using illustra GenomiPhi HY Kit (GE Healthcare) as
described above. After the purification using Montage PCR
centrifugal filter device (Millipore, Billerica, MA, USA), the
MDA-amplified, hyperbranched DNA products were then treated
with phi29 polymerase without adding any primer to reduce
branching junctions. To remove junctions and 3’ single-stranded
overhangs, the products were treated with S1 nuclease. The nicks
created by S1 nuclease treatment were resolved by nick translation
with DNA polymerase I (Takara) [38]. The debranched DNA was
A-tailed with TAKARA Tag DNA polymerase (Takara) and used as
insertion DNA fragments. The modified promoter trap vector
pK18GreenTIR was constructed according to the method by
Uchiyama et al. [26] by using pK18 [39] as starting vector and
pGreen TIR [40] as a source of gfp gene. The pK18GreenTIR
vector was then attached to topoisomerase I by Invitrogen
pK18GreenTIR-TOPO. Prepared DNA fragments were inserted
into pK18GreenTIR-TOPO following the manufacturer’s instruc-
tions and electropolated into Escherichia coli MegaX DH10B T1R
cells (Invitrogen). After a 1 h incubation of electroporated cells, a
small portion of the cells was plated onto a kanamycin and isopro-
pylthiogalactoside (IPTG)-containing Luria-Bertani (LB) agar plate
to check the cloning efficiency. This pre-master library in liquid
culture was stored at —80°C with 15 per cent glycerol. From the
pre-master library, fluorescence-negative clones were sorted by
an Epics ALTRA flow cytometer (Beckman Coulter). The
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Table 2. Dehalogenation activity in marine subsurface sediments collected from the Nankai Trough subduction zone. +, Dehalogenation activity was detected; [}

—, dechlorination activity was not detected.

halogenated compounds €0002 €0001
_ 2Ab-tichlorophenol ==
2,4,6-tribromophenol + (1.2 + (1.7)°
 2AGtiodophenol 4 (062" o+ (044
trichloroethene + (0.049)° —

(0004 0008 (0006 0007

(,5_1,2_d|ch|oroethene B S

trans-1,2-dichloroethene — —

carbon tetrachloride - -

chloroform — -

dibromomethane — -

*The maximum reduction rate of each organohalide was calculated (M per 1 cm® of sediment per day).

number of sorted cells was three times greater than the initial
number of the clones. The sorted cells were then incubated in
kanamycin-containing LB media and then stored at —80°C with
15 per cent glycerol as master library.

The cells in the master library were grown in dLB medium
(1 g Bacto-tryptone, 0.5 g bacto yeast extract, 1 g NaCl and 2 g
maltose per litre) until the ODg reached 0.6-0.8, then substrate
for transcriptional induction, including 2,4,6-TBP or 2,4,6-TCP
individually or a mixture consisting of 2,4,6-TBP, 2,4,6-TCP and
2,4,6-TIP, at a concentration of 50 uM was added and incubated
overnight to ensure gene fragment induction. The fluorescence
positive clones were sorted by the Epics ALTRA flow cytometer
and plated on the LB plate with kanamycin. The selected clones
were grown in a liquid medium with or without induction sub-
strate and the induction of the fluorescence by the substrate was
confirmed by the Epics ALTRA flow cytometer or a BD Accuri
C6 flow cytometer (Becton, Dickinson and Company, NJ, USA)
(see the electronic supplementary material, figure S1). The gene
fragments from the induction-positive clones were sequenced
using an ABI3130x] Genetic Analyzer (Applied Biosystems).
The obtained sequence data was base-called and assembled
with PHrep, PHrRAP and ConseD software [30,41]. Potential open
reading frames (ORFs) were identified using NCBI ORF Finder
and analysed using the NCBI programs BLASTN and BLASTP,
and Pfam.

(g) Nucleotide sequence accession numbers

The sequences reported in this study have been deposited
in the DDBJ/EMBL/GenBank databases under accession
numbers AB716277-AB716322.

3. Results

(a) Spatial distribution of dehalogenation activity
in a transect line of the Nankai Trough
accretionary wedge

Dehalogenation activity was screened in samples collected
from six different drilling sites (i.e. C0002, C0001, C0004,
C0008, C0006 and C0007) along a transect line of the Nankai
Trough plate-subduction zone (figure 1 and table 2). Sediment
samples collected from several different depths listed in table 1
were mixed with culture medium and spiked with 1 of 10

organohalides, which included halogenated phenols, ethenes
and methanes (listed in table 2). A previous pilot study con-
ducted by our laboratory demonstrated the debromination of
2,4,6-TBP to phenol and the dechlorination of TCE to cis-DCE
in samples collected from site C0002 [23]. In the present
study, we also detected the deiodination of 2,4,6-TIP to
phenol in samples collected from site C0002 and the debromi-
nation of 2,4,6-TBP and deiodination of 2,4,6-TIP to phenol in
samples collected from site C0001. The site C0002 is located
in the forearc basin, whereas site C0001 is located in the slope
apron. Even after 200 days of incubation, no dehalogenation
activity was observed in samples collected from sites C0004,
C0006, C0007 and C0008, which are located along the slope
of the accretionary wedge (figure 1).

The vertical distribution of 2,4,6-TBP debromination
activity was further investigated using sediment samples col-
lected from site C0002, because rdhA genes were most
frequently detected in these samples (table 1 and figure 2)
[23]. Slurries of sediment samples collected at depths of 1.9,
4.7,9.2,13.4,20.2, 30.0, 66.6 and 155.4 mbsf were spiked with
2,4,6-TBP. Debromination was detected only in the shallow
subsurface samples collected at 1.9 and 4.7 mbsf. Production
of 4-BP and phenol were detected in the sample of sediment
from 1.9 mbsf, whereas a lower concentration of 4-BP and no
phenol were detected in the sample from 4.7 mbsf (figure 3a,b).

The cell density did not seem to be a limiting factor
for dehalogenation. As shown in figure 3c, while we had
highest cell density in the sample at 1.9 mbsf, in which we
detected debromination activity, the other sample from
4.7 mbsf (1.76 x 10° cells cm ™ ®) was smaller in cell density
than the samples from 13.4 and 155.4 mbsf (8.42 x 10° and
5.45 x 10° cells cm 3, respectively).

(b) Distribution of rdhA-homologous genes in the
Nankai Trough plate-subduction zone

To evaluate the potential for organohalide respiration in the
Nankai Trough, we investigated the amplifiability of rdhA
genes using PCR (table 1 and figure 2). We amplified
rdhA genes in samples collected from all sites in the Nankai
Trough, even from those in which no dehalogenation activity
was detected (i.e. rdhA genes were detected in sediment col-
lected from depths of 1.9, 9.2, 20.2 and 66.6 mbsf at site
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Figure 2. Distribution of the rdhA genes in the subseafloor sediments of the Pacific Ocean. The data was summarized from table 1 and our previous study [23]. The
data from our previous study [23] are indicated by asterisks. Filled circles indicate that PCR product of expected size was amplified, whereas open circles indicate that
PR product of expected size was not amplified. The red circles indicate that the amplified rdhA genes were further confirmed by sequencing.

C0002, which did not correlate with the vertical distribution
of 2,4,6-TBP debromination activity as described above).

(c) Diversity of the metabolically active
microbial community during slurry incubation
with organohalides

Following the incubation of slurry samples of sediment
collected from site C0001 with and without 2,4,6-TBP and
2,4,6-TIP, the microbial community structure was investigated
by sequencing the 16S rRNA genes. Cultures spiked with either
2,4,6-TBP or 2,4,6-TIP showed a significant change in com-
munity structure compared with the no-addition control. In
cultures spiked with 2,4,6-TBP or 2,4,6-TIP, the community
was only composed of Deltaproteobacteria, whereas the
control culture included Gammaproteobacteria, Firmicutes
and Bacteroidetes (table 3 and figure 44). The predominant
Deltaproteobacteria 165 rRNA gene sequences matched to
the order Desulfuromonadales with high confidence, and
these organisms were phylogenetically classified into the
Desulfuromusa cluster (figure 5).

(d) Phylogenetic diversity of the clones obtained by

substrate-induced gene expression
We used the SIGEX method to identify genes involved in the
reductive dehalogenation. SIGEX is the method developed to

screen catabolic genes based on knowledge that catabolic
gene expression is generally induced by relevant compounds
and, in many cases, controlled by regulatory elements situ-
ated proximate to catabolic genes [26,27]. In this study, we
constructed a SIGEX library using sediment slurries that
dechlorinate 2,4,6-TBP and 2,4,6-TIP and TCE. The vector
we used in this study (pK18GreenTIR-TOPO) contains a lac
promoter upstream of the insertion site. After induction
with IPTG and following sorting of fluorescent-negative
cells, we could selectively obtained the clone that has an
inserted DNA fragment and is negative for GFP fluorescence
without induction substrates, and used it as a master library
for induction. The constructed master libraries contained a
total of ca 300 000 clones. Then, the cells that fluoresce after
the induction with the substrates were sorted from the
master library as induction-positive clones.

A total of 42 GFP-positive clones were screened from the
SIGEX library when 2,4,6-TBP, 2,4,6-TCP and 2,4,6-TIP were
used as induction substrates. We obtained clones from all
the induction conditions, and interestingly we could obtain
2,4,6-TCP induction-positive clones while no dechlorination
activity was detected in the incubation experiment, as shown
in table 2. Phylogenic affiliations of DNA fragments in 23
clones were estimated based on taxa of BLASTN matched
sequences (table 4; [43]). Although analysis of 16S rRNA
gene sequences showed that Deltaproteobacteria dominated
the dehalogenating cultures (table 3 and figure 4a), the
clones obtained by SIGEX analysis indicated that there were
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phenol.

phylogenetically more diverse DNA fragments. A BLASTN-
based estimation of the taxa of DNA fragments indicated the
presence of sequences showing similarities to those in Delta-
proteobacteria, Gammaproteobacteria, Dehalococcoidetes and
Clostridiales as well as members of the Methanomicrobia
methanogenic Archaea class (table 4 and figure 4b). Several
clone sequences did not show any significant similarity to
those contained in DDBJ/EMBL/GenBank, and thus their
phylotypes could not be predicted.

(e) Putative functions of the open reading frames
identified using substrate-induced gene expression

Because transcriptional factor is necessary for the function of
SIGEX screening [26], we looked for the putative functional
genes involved in transcriptional regulation using BLASTP
(table 5 and figure 6). We found clones that showed similarities
to HxIR family protein from Methanococcoides (clone TCP3),
and ArsR family protein from Shewanella (clone THP mix2).
Also several ORFs showed significant similarity to those
from the physiologically and functionally well-characterized
organohalide-respiring bacteria such as Dehalococcoides,
Dehalobacter, Desulfitobacterium and Geobacter (see the electronic
supplementary material, table S1). However, most of the
ORFs representing genes encoding proteins other than tran-
scriptional factors were apparently unrelated to organohalide
metabolism (e.g. proteins involved in flagellum biogenesis,
phage/plasmid primase, endonuclease, site-specific recombi-
nase, antitoxin, dihydroototase, NAD-dependent epimerase
dehydratase, 4Fe—4S ferredoxin, serine protease inhibitor,

copper-resistance protein transporter and epimerase; electronic
supplementary material, table S1). A single ORF involved in
the degradation of organohalides was similar to a haloacid
dehalogenase (HAD) superfamily hydrolase from Geobacter
(clone TCP6; electronic supplementary material, table S1).
This ORF showed significant Pfam-A-match to the HAD_2
family domain (e-value = 5.6 x 10~*?), although it showed
greater similarity to phosphatase in BLASTP search.

4. Discussion

Because subseafloor sedimentary microbes play a significant
role in the biogeochemical carbon cycle through anaerobic
degradation of buried organic matter, halogenated organic
compounds may support microbial activity by serving as
electron acceptors. Indeed, our previous study of various
coastal locations in the Pacific Ocean revealed the presence
of a diverse array of rdhA genes in ocean sediment, a result
that was consistent with the detection of a diverse assortment
of 165 rRNA genes within the Chloroflexi (figure 2). Given
the ecological significance of microbial dehalogenation in
the subseafloor environment, we further investigated the
spatial distribution of dehalogenation activity using drill-
cored samples obtained from the Nankai Trough, which is
one of the most geologically active plate-subduction zones
in the world, and is associated with the occurrence of devas-
tating earthquakes and tsunamis [44,45]. The Nankai Trough
is a geologically complex environment. Site C0002 is located
in the Kumano basin of the Nankai Trough, and the sediment
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Figure 4. Diversity of clones obtained from subseafloor sediments. (a) Bacterial groups in the 16S rRNA gene clone libraries constructed from site 0001 core
sediments amended with or without 2,4,6-TBP or 2,4,6-TIP. (b) Microbial groups in the clones obtained by SIGEX analysis using 2,4,6-TBP or 2,4,6-TCP as an

induction substrate.

core samples collected at those sites for use in this study are
well-stratified and characterized by relatively low structural
disturbance. Sites C0001, C0004, C0006, C0007 and C0008
are located along the slope to toe of the Nankai Trough accre-
tionary wedge, where the structures are mainly composed of
geologically old accretionary prism.

In our vertical investigation of debromination activity in
samples collected at 1.9, 4.7, 9.2, 13.4, 20.2, 30.0, 66.6 and
155.4 mbsf from site C0002, we detected debromination
only in samples collected at 1.9 and 4.7 mbsf, despite the
fact that PCR analyses indicated that rdhA genes are well-
distributed in the deeper sediments (e.g. 9.2, 20.2 and
66.6 mbsf). The deepest site C0002 sediment sample from
which rdhA genes were detected (66.6 mbsf) was formed at
least ca 500000 years ago, during the Quaternary period
[46]. Some conceivable explanations for our inability to
detect debromination in the deeper sediments could be:
(i) the cultivation conditions used might not be optimal
for deep subseafloor dehalogenating microbes (e.g. we have
many choices of organohalide substrates), (i) the metabolic
processes at depth may be very slow, thus requiring more sen-
sitive methods (e.g. radiotracer incubation experiments) than
those used in this study, and (iii) the PCR-based detection of
rdhA might be the result of unspecific amplification. In a similar
fashion, we detected no dehalogenation of the test 10 organo-
halides in sediment samples collected from sites C0004,
C0006, C0007 and C0008, where PCR products of the expected
sizes of rdhA genes were detected as well in our previous study
[23]. In the results of incubation experiments, it was worth
noting that the deiodination of 2,4,6-TIP detected in the present
study in sediments from sites C0001 and C0002 is the first
report of microbial deiodination of 2,4,6-TTP.

Clonal analysis of 165 rRNA genes indicated that members
of the Desulfuromusa cluster within the order Desulfuromona-
dales were the dominant bacteria in the 2,4,6-TBP- and 2,4,6-
TIP-dehalogenating cultures prepared from site C0001. This
taxonomic order of bacteria includes various anaerobic
respirers that use sulfur, nitrate, Fe (III)) Mn (IV) and
organochlorines, although it is not always true that they are
To date, organohalide-
respiring bacteria from the Desulfuromonadales belonging to

organohalide-respiring bacteria.

the genera Geobacter and Desulfuromonas have been isolated
from terrestrial environments. For example, Geobacter thiogenes
K1 (formerly Trichlorobacter thiogenes K1) is able to grow with
trichloroacetate serving as an electron acceptor [47-49],
and Geobacter lovleyi SZ dechlorinates PCE to cis-DCE [50].
Desulfuromonas ~ chloroethenica 'TT4B and Desulfuromonas
michiganensis strains BB1 and BRSI1 are able to respire with
PCE and TCE and convert them to cis-DCE [51,52].

We applied the SIGEX screening to obtain genes involved
in the reductive dehalogenation reaction in the dehalogenat-
ing cultures. This was for the reason that functional screening
of rdhA seems to be difficult because functional expression
of rdhA genes in E. coli has not been successful [53,54]. On
the other hand, the utility of an in vivo transcription assay of
the transcriptional regulator CprK in E. coli has been proved
[55], indicating that it might be possible to explore genes
involved in organohalide respiration using SIGEX transcrip-
tional screening. Contrary to the results of the 165 rRNA
gene sequence analysis, which indicated that Desulfuromona-
dales species predominated in the dehalogenation-positive
enrichment cultures, SIGEX suggested the presence of a phylo-
genetically diverse assortment of clones putatively belong to
the Gammaproteobacteria, Deltaproteobacteria, Dehalococcoi-
detes, Deferribacteres and Methanomicrobia. Interestingly,
SIGEX also retrieved clones that showed similarity to
the gene of methanogenic Archaea, Methanomicrobia. No
organohalide-respiring member of the Archaea has been ident-
ified to date, but Archaea are known to be capable of co-
metabolic dehalogenation, implying that Archaea may have
an organohalide-response system. For example, it has been
reported that Methanosarcina sp. strain DCM dechlorinates
PCE to TCE [56], potentially mediated in a cometabolic reaction
by cofactor Fy30 containing vitamin By, [57].

However, importantly, we could found only two putative
transcriptional regulator encoding clones among the 23 repre-
sentative clones obtained by SIGEX screening. This result
appears to contradict the fact that SIGEX is based on GFP
expression by transcriptional regulation with induction
substrates [26]. We hypothesized that the expressed gene
fragments obtained using SIGEX might encode novel tran-
scriptional factors because the environmental gene pools
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1001 Desulfuromonas michiganensis BRS1 (AF357914)*

52

Geothermobacter sp. Fe30-MC-S (AB268315)

67‘— Geothermobacter ehrlichii (AY155599)

Pelobacter massiliensis DSM 6233T (FR749901)
Desulfuromusa ferrireducens 102 (NR_043214)
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100 Geopsychrobacter electrodiphilus A2 (AY 187304)
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Desulfuromusa cluster

Desulfitobacterium metallireducens DSM 15288 (AF297871)

Figure 5. Phylogenetic tree showing 165 rRNA clones obtained from 2,4,6-TBP- and 2,4,6-TIP-dehalogenating cultures. Clones denoted in bold were representative
sequences obtained in this study. The functionally known organohalide-respiring bacteria are indicated by asterisks. The Geobacter, Desulfuromonas and
Desulfuromusa clusters were grouped according a previous report [42]. Bootstrap values are represented as percentages determined from 1000 trials. Scale bar

represents 5% estimated sequence divergence.

from subseafloor sediments contain significant proportions of
unannotated ORFs, and most of the metagenomic sequences
of subseafloor microbial communities are distinct from those
associated with surface environments [24,25]. Also there is
another concern on the false positives in the SIGEX procedure.
A stress or other response system in the host E. coli might affect
the expression level of GFP in clones where a putative tran-
scriptional factor that encodes genes was not found. In
addition, we could not find any dehalogenation-related
genes near the putative transcriptional factor genes retrieved
in our SIGEX survey, most likely because the average length
of the DNA library was relatively short (i.e. ca 1 and 2.9 kb).
Those above are the current limitation of our SIGEX approach.
We are trying to address this issue by constructing a library
with longer DNA fragments by using a number of the

environmental samples. These efforts will make the SIGEX
approach more effective and reliable in future.

5. Conclusion and perspectives

Dehalogenating microorganisms may play significant eco-
logical and biogeochemical roles in the carbon and halogen
cycles within the deep, dark and old subseafloor sedimentary
environment. In such a geological habitat, the metabolic pro-
cesses of most cells are extremely slow, leading to an expected
generation time ranging from hundreds to thousands of years
[28,29]. These microbial metabolic activities are considered to
be strongly associated with the availability of electron accep-
tors, which may include halogenated organic matter in the
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Table 5. Results of BLASTP analysis of ORFs encoded on clones obtained by SIGEX.

gene product (host organism)

TCP3 (1) 353 permease (Shewanella pealeana
ATCC 700345)
TCP3(2) vvvvvvvvvvv 64 N hypothet ic'élﬂprbt'éi'h'D'blev_'2v8'8'8” R
(Desulfococcus oleovorans Hxd3)
TW3B) 111 tansporter (Photobacterium
damselae subsp. damselae CIP)
TCP3(4) s Wreﬂgul'at'oryvpfoteihv o
(Pseudoalteromonas rubra
ATCC 29570)
. T(P3(6) T B
e HxIRfam|Iy transcr|pt|0nalregulator B
(1 (Methanococcoides burtonii
DSM 6242)
S o o 'p'ro'tve'é'se' L
(2 (Methanosarcina mazei Go1)

cione ey — Y —EER-€B-GD)-
clone THP mix2 w

Figure 6. ORF organization around the putative transcriptional factor gene
cluster of clones TCP3 and THP mix2. The putative transcriptional factor
genes are indicated by red. The numbers corresponds to the ORF numbers
in table 5.

1kb

sediment, and may be involved in the mineralization and
thermogenic degradation of deeply buried organic matter.
In this study, we detected dehalogenation activity only in
relatively shallow (approx. 4.7 mbsf) sediment samples col-
lected from the stratified sedimentary basin, although the
rdhA genes were found in the deep and old accretionary
prism. In addition, we performed the gene expression-
based metagenomic survey called SIGEX for exploring
organohalide respiration-related genes from the largely func-
tionally ‘unknown’ gene pools in the subseafloor biosphere
[24,25]. To obtain a better understanding of the ecological
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