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Halogenated organic matter buried in marine subsurface sediment may serve

as a source of electron acceptors for anaerobic respiration of subseafloor

microbes. Detection of a diverse array of reductive dehalogenase-homologous

(rdhA) genes suggests that subseafloor organohalide-respiring microbial

communities may play significant ecological roles in the biogeochemical

carbon and halogen cycle in the subseafloor biosphere. We report here the

spatial distribution of dehalogenation activity in the Nankai Trough plate-sub-

duction zone of the northwest Pacific off the Kii Peninsula of Japan. Incubation

experiments with slurries of sediment collected at various depths and locations

showed that degradation of several organohalides tested only occurred in the

shallow sedimentary basin, down to 4.7 metres below the seafloor, despite

detection of rdhA in the deeper sediments. We studied the phylogenetic diver-

sity of the metabolically active microbes in positive enrichment cultures by

extracting RNA, and found that Desulfuromonadales bacteria predominate.

In addition, for the isolation of genes involved in the dehalogenation reaction,

we performed a substrate-induced gene expression screening on DNA extracted

from the enrichment cultures. Diverse DNA fragments were obtained and some

of them showed best BLAST hit to known organohalide respirers such as

Dehalococcoides, whereas no functionally known dehalogenation-related genes

such as rdhA were found, indicating the need to improve the molecular

approach to assess functional genes for organohalide respiration.
1. Introduction
Numerous previous microbiological studies demonstrate that microbes play

important ecological roles in halogen cycles on our planet. Reductive dehalo-

genation mediated by organohalide-respiring microorganisms has been used

in the bioremediation of soil and groundwater contaminated with compounds

such as tetrachloroethene (PCE) and trichloroethene (TCE) [1–3]. Many organo-

halides are used in industrial processes (e.g. PCE is widely used in the dry

cleaning industry), and improper disposal of these chemicals has caused serious

environmental pollutions. There are also many naturally produced organoha-

lides. Gribble [4] reported that at least 4714 organohalides have been identified

from biotic and abiotic natural sources [4]. For example, both PCE and TCE

may also enter the environment through production by various marine algae

and as a result of volcanic emissions. In this context, microbial dehalogenation

is believed to have played an ecological role in the natural halogen cycle,

having arisen through microbial utilization of naturally produced organohalides

before anthropogenic release of these compounds into the environment [3,5,6].
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The marine aquatic environment is the primary source of

naturally occurring organohalides [4]. Microbial reductive

dehalogenation has been experimentally demonstrated in

both marine and estuarine environments [7]. King [8] was the

first to report microbial dehalogenation of 2,4-dibromophenol

produced by animal activity in coastal sediments. Dehalogena-

tion activity and the reductive dehalogenase-homologous

(rdhA) genes, the key functional genes necessary for organoha-

lide respiration, have also been detected in the microbial

community associated with bromophenol-producing marine

sponge Aplysina aerophoba [5]. Brominated compounds actually

serve as growth supporting electron acceptors. Recently, for

example, Dehalococcoides mccartyi strain CBDB1 was shown to

have an even wider dehalogenation potential for brominated

benzenes than for chlorinated benzenes [9]. The molecular eco-

logical and biochemical studies indicate the significance of

enzymatic dehalogenation reactions in marine halogen cycles.

The organohalide-respiring bacteria isolated from marine

and estuarine environments to date are members of the genera

Desulfomonile, Dehalobium and Dehalococcoides. Desulfomonile
limimaris strains DCB-M and DCB-F capable of dechlorinating

3-chlorobenzoate to benzoate were isolated from marine sedi-

ments in Florida [10]. Members of the genera Dehalobium and

Dehalococcoides belong to the class Dehalococcoidetes (subphy-

lum II) within the phylum Chloroflexi [11–13]. Dehalobium
chlorocoercia strain DF-1, isolated from Charleston harbour in

South Carolina, is capable of respiring polychlorinated biphenyls

[14,15]. Dehalococcoides mccartyi strain MB, isolated from San

Francisco Bay, dechlorinates PCE to trans-1,2-dichloroethene

(trans-DCE) [12,16]. All of the organohalide-respiring members

of the phylum Chloroflexi isolated so far are obligate organoha-

lide respirers. A number of molecular ecological studies have

shown that organohalide-respiring Chloroflexi may play signifi-

cant roles in natural dehalogenation processes in estuarine and

tidal flat sediments [1,17–20].

Previous molecular ecological studies of deep subseafloor

sedimentary habitats revealed that 16S rRNA genes derived

from potential dehalogenating bacteria within the Chloroflexi

and Deltaproteobacteria are widely distributed in organic-

rich marine subsurface sediments on the continental margins

[1,21,22]. PCR amplification and sequencing of the rdhA
genes showed that phylogenetically diverse rdhA genes

are widely distributed in the subseafloor sediments of the

Pacific Ocean, such as those located southeast of Peru, in

the eastern equatorial Pacific, the Juan de Fuca Ridge flank

off Oregon, and in the northwest Pacific off the Shimokita

Peninsula and Nankai Trough, down to as far as 358 m

below the seafloor (mbsf) (figure 2; [23]). Dehalogenation of

2,4,6-tribromophenol (2,4,6-TBP) and TCE has been detected

in samples of sediment collected from the Nankai Trough,

suggesting that organohalides may serve as possible electron

acceptors for deep subseafloor microbes [23].

In this study, we examined the spatial distribution of deha-

logenation activity in the forearc basin and accretionary wedge

of the Nankai Trough using 10 organohalides as test com-

pounds. Sediment samples were collected by drilling from six

sites during the Integrated Ocean Drilling Program (IODP)

expeditions 315 and 316. Given the significant fraction of func-

tionally uncharacterized genes in subseafloor sedimentary

habitats [24,25], we also performed a screening method, desig-

nated as ‘substrate-induced gene expression (SIGEX) screening’,

to the cultures showing dehalogenating activities for identifi-

cation of genes involved in the dehalogenation activity. The
SIGEX was a method developed for isolating catabolic genes

from metagenomes using the substrate-dependent gene-induc-

tion assay [26,27]. Although we could not retrieve any

dehalogenation-related genes such as rdhA in this study, we

discuss the result of SIGEX screening as applicable information

for studying the samples that have low microbial metabolic

activities such as deep marine subsurface microbes [28,29].
2. Material and methods
(a) Sample collection and cultivation conditions
The site location, water depth and sediment depth of the core

samples collected for use in this study are summarized in

table 1. Core samples were obtained using the deep-sea drilling

vessel Chikyu during the IODP expeditions 315 and 316. Site

C0002 is located in the Kumano forearc basin, whereas sites

C0001, C0004, C0006, C0007 and C0008 are located in the slope

and toe of the accretionary wedge associated with seismogenic

faults (figure 1), and hence the distances from land and water

depths for these sites are far greater than for the Kumano basin

site (table 1). All sediment core samples were collected and

processed as the whole round by shipboard microbiologists,

immediately placed in an anaerobic glove box where they were

placed into oxygen-impermeable bags with AnaeroPack

oxygen-removers (Mitsubishi Gas Chemical, Japan), and then

stored at 48C until use in experiments.

Sediment slurries for incubation experiments were prepared

in the laboratory on land as described previously [23]. Briefly,

the innermost sediment of the whole-round core was collected

with sterilized spatulas in an anaerobic glove box. The sediment

samples were slurried in anaerobic artificial seawater medium

containing a trace element solution and a vitamin solution with

a modified concentration of vitamin B12 [31,32]. Next, slurry

samples were spiked with or without one of the following orga-

nohalides to a final concentration of approximately 100 mM:

2,4,6-TBP, 2,4,6-trichlorophenol (2,4,6-TCP), 2,4,6-triiodophenol

(2,4,6-TIP), TCE, cis-DCE, trans-DCE, carbon tetrachloride,

chloroform, carbon dichloride or dibromomethane. The spiked

samples were statically incubated at 158C in the dark.
(b) Measurement of dehalogenation activity
During the slurry incubation, chlorophenols, iodophenols, bromo-

phenols and phenol were quantified using high-performance

liquid chromatography with UV detection (Shimadzu, Japan).

Compounds were resolved on a TSKgel ODS-100Z C18 column

(Tosoh, Japan), as described previously [23]. Chromatographic

peaks were identified and quantified based on retention time

and peak area as compared with chromatograms of the following

standards: 2,4,6-TBP, 2,6-dibromophenol, 2,4-dibromophenol,

4-bromophenol (4-BP), 2-bromophenol, 2,4,6-TIP, 2,4,6-TCP and

phenol. Halogenated methanes and ethenes were quantified on a

gas chromatograph (7890A GC System, Agilent Technologies,

Santa Clara, CA, USA) equipped with a DB-624 column (J&W

Scientific, Folsom, CA, USA) and flame ionization detector.
(c) Analysis of the diversity of metabolically active
bacteria in enrichment cultures

After complete dehalogenation was observed, sediment slurry

samples were preserved at 2808C with RNAlater (Ambion,

Austin, TX, USA). A 1.6 ml volume of each frozen sample

was homogenized using a freezer mill (SPEX CertiPrep 6850,

Metuchen, NJ, USA) for eight cycles of 1 min homogenization

at 15-impact frequency per second. The powdered slurry was



Table 1. Characteristics of sampling sites and results of PCR amplification of dehalogenase-homologous gene (rdh). þ, PCR product of expected size was amplified;
2, PCR product of expected size was not amplified; n.t., not tested. The data of PCR-detection of rdh in site C0002 were used from our previous study [23].

sampling site (expedition name) water depth (m) hole core section sediment depth (mbsf ) rdh amplification

site C0002 (IODP expedition 315) 1937.1 D 1H-3 1.9 þ
D 1H-6 4.7 2

D 2H-4 9.2 þ
D 2H-8 13.4 2

D 3H-5 20.2 þ
D 4H-5 30.0 2

D 8H-3 66.6 þ
D 16H-4 155.4 2

site C0001 (IODP expedition 315) 2198.0 E 1H-2 0.7 þ
E 2H-2 6.1 2

E 2H-6 10.8 2

E 4H-5 28.1 2

E 6H-7 50.3 2

E 8H-6 66.3 2

E 10H-2 82.0 2

E 12H-3 102.2 2

site C0004 (IODP expedition 316) 2627.0 C 1H-1 0.8 þ
C 1H-4 4.0 2

C 2H-4 10.4 2

C 3H-4 19.7 2

C 5H-2 36.6 þ
C 7H-3 57.7 2

C 9H-2 75.0 2

C 11H-1 86.3 2

site C0008 (IODP expedition 316) 2797.0 B 1H-3 3.1 þ
C 1H-4 3.1 2

B 1H-7 7.3 2

C 2H-3 7.5 2

C 2H-5 9.7 2

C 3H-2 16.6 2

C 5H-3 36.5 2

C 13H-6 93.7 n.t.

site C0006 (IODP expedition 316) 3880.5 C 1H-1 0.7 þ
E 1H-3 2.6 2

D 1H-4 3.8 2

C 1H-5 4.7 2

E 2H-6 11.1 2

E 3H-5 19.2 2

E 5H-2 35.6 2

E 7H-7 46.5 2

site C0007 (IODP expedition 316) 4081.0 A 1H-3 2.3 2

B 1H-1 4.3 2

B 1H-5 8.2 2

C 1H-3 15.0 þ
C 3H-1 30.2 þ
C 16H-1 148.8 2
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Figure 1. Geographical setting of the Nankai Trough plate-subduction zone and location of sites C0001, C0002, C0004, C0006, C0007 and C0008 during the IODP
Expeditions 315 and 316. The red line in the inlet indicates the transect line.
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then transferred to a new tube and dissolved in 2 ml of TRIzol

reagent (Invitrogen, Carlsbad, CA, USA). Total RNA was extracted

using a TRIzol Plus RNA purification kit (Invitrogen) according to

the manufacturer’s protocol. The total RNA fraction was eluted

with 100 ml of water treated with diethylpyrocarbonate. Because

reverse transcription–PCR (RT-PCR) amplification using these

samples as templates was unsuccessful, the samples were purified

further and then concentrated to 30 ml using Agencourt RNAClean

(Beckman Coulter, Brea, CA, USA). The extracted RNA was treated

with DNase I (TURBO DNA-free Kit, Ambion) and the absence of

contaminating DNA was confirmed through a PCR amplification

test using LA Taq polymerase (Takara, Japan). The 16S rRNA

gene was amplified using the Superscript III One-Step RT-PCR

system with Platinum Taq DNA polymerase (Invitrogen) using

Bac27F and U1490R as primers [33]. The amplicons were cloned

into pCR2.1 TOPO vector (Invitrogen) and sequenced using an

ABI3130xl Genetic Analyzer (Applied Biosystems, Foster City,

CA, USA). Sequences with a 97% identity were tentatively assigned

to the same phylotype. The 16S rRNA gene sequences were com-

pared with data deposited in DDBJ/EMBL/GenBank using

BLASTN analysis. A phylogenetic tree for the resulting sequences

was constructed according to the neighbor-joining method using

MEGA software, v. 4.0 [34].
(d) Detection of rdhA genes
Bulk environmental DNA was extracted from each core

sample using a PowerMax Soil DNA isolation kit (MO BIO

Laboratories, Carlsbad, CA, USA). The extracted DNA was puri-

fied using a MagExtractor DNA purification kit (Toyobo, Japan)

according to the manufacturer’s instructions. Because the

amount of DNA extracted was too low to conduct molecular ana-

lyses, multiple displacement amplification (MDA) was performed

using an illustra GenomiPhi HY kit (GE Healthcare, UK) according

to the manufacturer’s protocol. Briefly, the extracted DNA was

heat denatured at 958C for 3 min, cooled on ice, then incubated

with phi29 polymerase, random hexamers and SYBR Green I

(0.05� in final concentration) at 308C for 2 h while monitoring its

amplification with real-time PCR (StepOnePlus, Life Technol-

ogies). The amplification products were then treated at 658C for

10 min to inactivate enzyme. The rdhA genes were detected by

PCR using Ex Taq polymerase (Takara, Kyoto, Japan), and RRF2

and B1R as primers, as described previously [23,35].
(e) Determination of cell density
The density of microbial cells in sediment core samples was

determined using a fluorescent image-based microscopic assay

with SYBR Green I staining, as described previously [36,37].
( f ) Screening of genes involved in organohalides
The SIGEX technique was used to screen for isolation of catabolic

genes for organohalides in incubation slurries that were positive

for dehalogenation activity, according to previously published

procedures with some modifications [26,27]. Bulk environmental

DNA was extracted from the incubation slurry using a PowerMax

Soil DNA isolation kit (MO BIO Laboratories) from the enrichment

cultures that were positive for dehalogenation activity to 2,4,6-TBP,

2,4,6-TIP and TCE. The extracted DNA was purified using a

MagExtractor DNA purification kit (Toyobo) according to the

manufacturer’s instructions. To obtain a sufficient amount of

DNA to construct the SIGEX library, extracted DNA was amplified

by MDA using illustra GenomiPhi HY Kit (GE Healthcare) as

described above. After the purification using Montage PCR

centrifugal filter device (Millipore, Billerica, MA, USA), the

MDA-amplified, hyperbranched DNA products were then treated

with phi29 polymerase without adding any primer to reduce

branching junctions. To remove junctions and 30 single-stranded

overhangs, the products were treated with S1 nuclease. The nicks

created by S1 nuclease treatment were resolved by nick translation

with DNA polymerase I (Takara) [38]. The debranched DNA was

A-tailed with TAKARATaq DNA polymerase (Takara) and used as

insertion DNA fragments. The modified promoter trap vector

pK18GreenTIR was constructed according to the method by

Uchiyama et al. [26] by using pK18 [39] as starting vector and

pGreen TIR [40] as a source of gfp gene. The pK18GreenTIR

vector was then attached to topoisomerase I by Invitrogen

pK18GreenTIR-TOPO. Prepared DNA fragments were inserted

into pK18GreenTIR-TOPO following the manufacturer’s instruc-

tions and electropolated into Escherichia coli MegaX DH10B T1R

cells (Invitrogen). After a 1 h incubation of electroporated cells, a

small portion of the cells was plated onto a kanamycin and isopro-

pylthiogalactoside (IPTG)-containing Luria-Bertani (LB) agar plate

to check the cloning efficiency. This pre-master library in liquid

culture was stored at 2808C with 15 per cent glycerol. From the

pre-master library, fluorescence-negative clones were sorted by

an Epics ALTRA flow cytometer (Beckman Coulter). The



Table 2. Dehalogenation activity in marine subsurface sediments collected from the Nankai Trough subduction zone. þ, Dehalogenation activity was detected;
2, dechlorination activity was not detected.

halogenated compounds C0002 C0001 C0004 C0008 C0006 C0007

2,4,6-trichlorophenol 2 2 2 2 2 2

2,4,6-tribromophenol þ (1.2)a þ (1.7)a 2 2 2 2

2,4,6-triiodophenol þ (0.62)a þ (0.44)a 2 2 2 2

trichloroethene þ (0.049)a 2 2 2 2 2

cis-1,2-dichloroethene 2 2 2 2 2 2

trans-1,2-dichloroethene 2 2 2 2 2 2

carbon tetrachloride 2 2 2 2 2 2

chloroform 2 2 2 2 2 2

carbon dichloride 2 2 2 2 2 2

dibromomethane 2 2 2 2 2 2

aThe maximum reduction rate of each organohalide was calculated (mM per 1 cm3 of sediment per day).
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number of sorted cells was three times greater than the initial

number of the clones. The sorted cells were then incubated in

kanamycin-containing LB media and then stored at 2808C with

15 per cent glycerol as master library.

The cells in the master library were grown in dLB medium

(1 g Bacto-tryptone, 0.5 g bacto yeast extract, 1 g NaCl and 2 g

maltose per litre) until the OD600 reached 0.6–0.8, then substrate

for transcriptional induction, including 2,4,6-TBP or 2,4,6-TCP

individually or a mixture consisting of 2,4,6-TBP, 2,4,6-TCP and

2,4,6-TIP, at a concentration of 50 mM was added and incubated

overnight to ensure gene fragment induction. The fluorescence

positive clones were sorted by the Epics ALTRA flow cytometer

and plated on the LB plate with kanamycin. The selected clones

were grown in a liquid medium with or without induction sub-

strate and the induction of the fluorescence by the substrate was

confirmed by the Epics ALTRA flow cytometer or a BD Accuri

C6 flow cytometer (Becton, Dickinson and Company, NJ, USA)

(see the electronic supplementary material, figure S1). The gene

fragments from the induction-positive clones were sequenced

using an ABI3130xl Genetic Analyzer (Applied Biosystems).

The obtained sequence data was base-called and assembled

with PHRED, PHRAP and CONSED software [30,41]. Potential open

reading frames (ORFs) were identified using NCBI ORF Finder

and analysed using the NCBI programs BLASTN and BLASTP,

and Pfam.
(g) Nucleotide sequence accession numbers
The sequences reported in this study have been deposited

in the DDBJ/EMBL/GenBank databases under accession

numbers AB716277–AB716322.
3. Results
(a) Spatial distribution of dehalogenation activity

in a transect line of the Nankai Trough
accretionary wedge

Dehalogenation activity was screened in samples collected

from six different drilling sites (i.e. C0002, C0001, C0004,

C0008, C0006 and C0007) along a transect line of the Nankai

Trough plate-subduction zone (figure 1 and table 2). Sediment

samples collected from several different depths listed in table 1

were mixed with culture medium and spiked with 1 of 10
organohalides, which included halogenated phenols, ethenes

and methanes (listed in table 2). A previous pilot study con-

ducted by our laboratory demonstrated the debromination of

2,4,6-TBP to phenol and the dechlorination of TCE to cis-DCE

in samples collected from site C0002 [23]. In the present

study, we also detected the deiodination of 2,4,6-TIP to

phenol in samples collected from site C0002 and the debromi-

nation of 2,4,6-TBP and deiodination of 2,4,6-TIP to phenol in

samples collected from site C0001. The site C0002 is located

in the forearc basin, whereas site C0001 is located in the slope

apron. Even after 200 days of incubation, no dehalogenation

activity was observed in samples collected from sites C0004,

C0006, C0007 and C0008, which are located along the slope

of the accretionary wedge (figure 1).

The vertical distribution of 2,4,6-TBP debromination

activity was further investigated using sediment samples col-

lected from site C0002, because rdhA genes were most

frequently detected in these samples (table 1 and figure 2)

[23]. Slurries of sediment samples collected at depths of 1.9,

4.7, 9.2, 13.4, 20.2, 30.0, 66.6 and 155.4 mbsf were spiked with

2,4,6-TBP. Debromination was detected only in the shallow

subsurface samples collected at 1.9 and 4.7 mbsf. Production

of 4-BP and phenol were detected in the sample of sediment

from 1.9 mbsf, whereas a lower concentration of 4-BP and no

phenol were detected in the sample from 4.7 mbsf (figure 3a,b).

The cell density did not seem to be a limiting factor

for dehalogenation. As shown in figure 3c, while we had

highest cell density in the sample at 1.9 mbsf, in which we

detected debromination activity, the other sample from

4.7 mbsf (1.76 � 106 cells cm23) was smaller in cell density

than the samples from 13.4 and 155.4 mbsf (8.42 � 106 and

5.45 � 106 cells cm23, respectively).

(b) Distribution of rdhA-homologous genes in the
Nankai Trough plate-subduction zone

To evaluate the potential for organohalide respiration in the

Nankai Trough, we investigated the amplifiability of rdhA
genes using PCR (table 1 and figure 2). We amplified

rdhA genes in samples collected from all sites in the Nankai

Trough, even from those in which no dehalogenation activity

was detected (i.e. rdhA genes were detected in sediment col-

lected from depths of 1.9, 9.2, 20.2 and 66.6 mbsf at site
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C0002, which did not correlate with the vertical distribution

of 2,4,6-TBP debromination activity as described above).

(c) Diversity of the metabolically active
microbial community during slurry incubation
with organohalides

Following the incubation of slurry samples of sediment

collected from site C0001 with and without 2,4,6-TBP and

2,4,6-TIP, the microbial community structure was investigated

by sequencing the 16S rRNA genes. Cultures spiked with either

2,4,6-TBP or 2,4,6-TIP showed a significant change in com-

munity structure compared with the no-addition control. In

cultures spiked with 2,4,6-TBP or 2,4,6-TIP, the community

was only composed of Deltaproteobacteria, whereas the

control culture included Gammaproteobacteria, Firmicutes

and Bacteroidetes (table 3 and figure 4a). The predominant

Deltaproteobacteria 16S rRNA gene sequences matched to

the order Desulfuromonadales with high confidence, and

these organisms were phylogenetically classified into the

Desulfuromusa cluster (figure 5).

(d) Phylogenetic diversity of the clones obtained by
substrate-induced gene expression

We used the SIGEX method to identify genes involved in the

reductive dehalogenation. SIGEX is the method developed to
screen catabolic genes based on knowledge that catabolic

gene expression is generally induced by relevant compounds

and, in many cases, controlled by regulatory elements situ-

ated proximate to catabolic genes [26,27]. In this study, we

constructed a SIGEX library using sediment slurries that

dechlorinate 2,4,6-TBP and 2,4,6-TIP and TCE. The vector

we used in this study (pK18GreenTIR-TOPO) contains a lac
promoter upstream of the insertion site. After induction

with IPTG and following sorting of fluorescent-negative

cells, we could selectively obtained the clone that has an

inserted DNA fragment and is negative for GFP fluorescence

without induction substrates, and used it as a master library

for induction. The constructed master libraries contained a

total of ca 300 000 clones. Then, the cells that fluoresce after

the induction with the substrates were sorted from the

master library as induction-positive clones.

A total of 42 GFP-positive clones were screened from the

SIGEX library when 2,4,6-TBP, 2,4,6-TCP and 2,4,6-TIP were

used as induction substrates. We obtained clones from all

the induction conditions, and interestingly we could obtain

2,4,6-TCP induction-positive clones while no dechlorination

activity was detected in the incubation experiment, as shown

in table 2. Phylogenic affiliations of DNA fragments in 23

clones were estimated based on taxa of BLASTN matched

sequences (table 4; [43]). Although analysis of 16S rRNA

gene sequences showed that Deltaproteobacteria dominated

the dehalogenating cultures (table 3 and figure 4a), the

clones obtained by SIGEX analysis indicated that there were
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phylogenetically more diverse DNA fragments. A BLASTN-

based estimation of the taxa of DNA fragments indicated the

presence of sequences showing similarities to those in Delta-

proteobacteria, Gammaproteobacteria, Dehalococcoidetes and

Clostridiales as well as members of the Methanomicrobia

methanogenic Archaea class (table 4 and figure 4b). Several

clone sequences did not show any significant similarity to

those contained in DDBJ/EMBL/GenBank, and thus their

phylotypes could not be predicted.

(e) Putative functions of the open reading frames
identified using substrate-induced gene expression

Because transcriptional factor is necessary for the function of

SIGEX screening [26], we looked for the putative functional

genes involved in transcriptional regulation using BLASTP

(table 5 and figure 6). We found clones that showed similarities

to HxlR family protein from Methanococcoides (clone TCP3),

and ArsR family protein from Shewanella (clone THP mix2).

Also several ORFs showed significant similarity to those

from the physiologically and functionally well-characterized

organohalide-respiring bacteria such as Dehalococcoides,

Dehalobacter, Desulfitobacterium and Geobacter (see the electronic

supplementary material, table S1). However, most of the

ORFs representing genes encoding proteins other than tran-

scriptional factors were apparently unrelated to organohalide

metabolism (e.g. proteins involved in flagellum biogenesis,

phage/plasmid primase, endonuclease, site-specific recombi-

nase, antitoxin, dihydroototase, NAD-dependent epimerase

dehydratase, 4Fe–4S ferredoxin, serine protease inhibitor,
copper-resistance protein transporter and epimerase; electronic

supplementary material, table S1). A single ORF involved in

the degradation of organohalides was similar to a haloacid

dehalogenase (HAD) superfamily hydrolase from Geobacter
(clone TCP6; electronic supplementary material, table S1).

This ORF showed significant Pfam-A-match to the HAD_2

family domain (e-value ¼ 5.6 � 10213), although it showed

greater similarity to phosphatase in BLASTP search.
4. Discussion
Because subseafloor sedimentary microbes play a significant

role in the biogeochemical carbon cycle through anaerobic

degradation of buried organic matter, halogenated organic

compounds may support microbial activity by serving as

electron acceptors. Indeed, our previous study of various

coastal locations in the Pacific Ocean revealed the presence

of a diverse array of rdhA genes in ocean sediment, a result

that was consistent with the detection of a diverse assortment

of 16S rRNA genes within the Chloroflexi (figure 2). Given

the ecological significance of microbial dehalogenation in

the subseafloor environment, we further investigated the

spatial distribution of dehalogenation activity using drill-

cored samples obtained from the Nankai Trough, which is

one of the most geologically active plate-subduction zones

in the world, and is associated with the occurrence of devas-

tating earthquakes and tsunamis [44,45]. The Nankai Trough

is a geologically complex environment. Site C0002 is located

in the Kumano basin of the Nankai Trough, and the sediment
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core samples collected at those sites for use in this study are

well-stratified and characterized by relatively low structural

disturbance. Sites C0001, C0004, C0006, C0007 and C0008

are located along the slope to toe of the Nankai Trough accre-

tionary wedge, where the structures are mainly composed of

geologically old accretionary prism.

In our vertical investigation of debromination activity in

samples collected at 1.9, 4.7, 9.2, 13.4, 20.2, 30.0, 66.6 and

155.4 mbsf from site C0002, we detected debromination

only in samples collected at 1.9 and 4.7 mbsf, despite the

fact that PCR analyses indicated that rdhA genes are well-

distributed in the deeper sediments (e.g. 9.2, 20.2 and

66.6 mbsf). The deepest site C0002 sediment sample from

which rdhA genes were detected (66.6 mbsf) was formed at

least ca 500 000 years ago, during the Quaternary period

[46]. Some conceivable explanations for our inability to

detect debromination in the deeper sediments could be:

(i) the cultivation conditions used might not be optimal

for deep subseafloor dehalogenating microbes (e.g. we have

many choices of organohalide substrates), (ii) the metabolic

processes at depth may be very slow, thus requiring more sen-

sitive methods (e.g. radiotracer incubation experiments) than

those used in this study, and (iii) the PCR-based detection of

rdhA might be the result of unspecific amplification. In a similar

fashion, we detected no dehalogenation of the test 10 organo-

halides in sediment samples collected from sites C0004,

C0006, C0007 and C0008, where PCR products of the expected

sizes of rdhA genes were detected as well in our previous study

[23]. In the results of incubation experiments, it was worth

noting that the deiodination of 2,4,6-TIP detected in the present

study in sediments from sites C0001 and C0002 is the first

report of microbial deiodination of 2,4,6-TIP.

Clonal analysis of 16S rRNA genes indicated that members

of the Desulfuromusa cluster within the order Desulfuromona-

dales were the dominant bacteria in the 2,4,6-TBP- and 2,4,6-

TIP-dehalogenating cultures prepared from site C0001. This

taxonomic order of bacteria includes various anaerobic

respirers that use sulfur, nitrate, Fe (III), Mn (IV) and

organochlorines, although it is not always true that they are

organohalide-respiring bacteria. To date, organohalide-

respiring bacteria from the Desulfuromonadales belonging to
the genera Geobacter and Desulfuromonas have been isolated

from terrestrial environments. For example, Geobacter thiogenes
K1 (formerly Trichlorobacter thiogenes K1) is able to grow with

trichloroacetate serving as an electron acceptor [47–49],

and Geobacter lovleyi SZ dechlorinates PCE to cis-DCE [50].

Desulfuromonas chloroethenica TT4B and Desulfuromonas
michiganensis strains BB1 and BRS1 are able to respire with

PCE and TCE and convert them to cis-DCE [51,52].

We applied the SIGEX screening to obtain genes involved

in the reductive dehalogenation reaction in the dehalogenat-

ing cultures. This was for the reason that functional screening

of rdhA seems to be difficult because functional expression

of rdhA genes in E. coli has not been successful [53,54]. On

the other hand, the utility of an in vivo transcription assay of

the transcriptional regulator CprK in E. coli has been proved

[55], indicating that it might be possible to explore genes

involved in organohalide respiration using SIGEX transcrip-

tional screening. Contrary to the results of the 16S rRNA

gene sequence analysis, which indicated that Desulfuromona-

dales species predominated in the dehalogenation-positive

enrichment cultures, SIGEX suggested the presence of a phylo-

genetically diverse assortment of clones putatively belong to

the Gammaproteobacteria, Deltaproteobacteria, Dehalococcoi-

detes, Deferribacteres and Methanomicrobia. Interestingly,

SIGEX also retrieved clones that showed similarity to

the gene of methanogenic Archaea, Methanomicrobia. No

organohalide-respiring member of the Archaea has been ident-

ified to date, but Archaea are known to be capable of co-

metabolic dehalogenation, implying that Archaea may have

an organohalide-response system. For example, it has been

reported that Methanosarcina sp. strain DCM dechlorinates

PCE to TCE [56], potentially mediated in a cometabolic reaction

by cofactor F430 containing vitamin B12 [57].

However, importantly, we could found only two putative

transcriptional regulator encoding clones among the 23 repre-

sentative clones obtained by SIGEX screening. This result

appears to contradict the fact that SIGEX is based on GFP

expression by transcriptional regulation with induction

substrates [26]. We hypothesized that the expressed gene

fragments obtained using SIGEX might encode novel tran-

scriptional factors because the environmental gene pools
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from subseafloor sediments contain significant proportions of

unannotated ORFs, and most of the metagenomic sequences

of subseafloor microbial communities are distinct from those

associated with surface environments [24,25]. Also there is

another concern on the false positives in the SIGEX procedure.

A stress or other response system in the host E. coli might affect

the expression level of GFP in clones where a putative tran-

scriptional factor that encodes genes was not found. In

addition, we could not find any dehalogenation-related

genes near the putative transcriptional factor genes retrieved

in our SIGEX survey, most likely because the average length

of the DNA library was relatively short (i.e. ca 1 and 2.9 kb).

Those above are the current limitation of our SIGEX approach.

We are trying to address this issue by constructing a library

with longer DNA fragments by using a number of the
environmental samples. These efforts will make the SIGEX

approach more effective and reliable in future.
5. Conclusion and perspectives
Dehalogenating microorganisms may play significant eco-

logical and biogeochemical roles in the carbon and halogen

cycles within the deep, dark and old subseafloor sedimentary

environment. In such a geological habitat, the metabolic pro-

cesses of most cells are extremely slow, leading to an expected

generation time ranging from hundreds to thousands of years

[28,29]. These microbial metabolic activities are considered to

be strongly associated with the availability of electron accep-

tors, which may include halogenated organic matter in the



Ta
bl

e
4.

Re
su

lts
of

BL
AS

TN
an

aly
sis

of
re

pr
es

en
ta

tiv
e

clo
ne

s
ob

ta
in

ed
us

in
g

SIG
EX

.

clo
ne

na
m

ea
ac

ce
ss

io
n

no
.o

f
clo

se
st

se
qu

en
ce

clo
se

st
se

qu
en

ce
by

BL
AS

TN
%

id
en

tit
ie

s
(q

ue
ry

bp
/

ta
rg

et
bp

)
e-

va
lu

e
BL

AS
TN

-b
as

ed
cla

ss
ifi

ca
tio

n
ac

ce
ss

io
n

no
.

TB
P1

CP
00

03
00

.1
M

et
ha

no
co

cc
oid

es
bu

rto
ni

iD
SM

62
42

90
%

(7
76

/8
65

)
0

M
et

ha
no

m
icr

ob
ia

AB
71

63
00

TB
P2

CP
00

03
00

.1
M

.b
ur

to
ni

iD
SM

62
42

84
%

(9
6/

11
4)

2.
00
�

10
2

23
M

et
ha

no
m

icr
ob

ia
AB

71
63

01

TB
P3

CP
00

01
09

.2
Th

iom
icr

os
pir

a
cru

no
ge

na
XC

L-
2

76
%

(2
39

/3
15

)
2.

00
�

10
2

53
Ga

m
m

ap
ro

te
ob

ac
te

ria
AB

71
63

02

TB
P4

—
—

—
—

—
AB

71
63

03

TB
P5

—
—

—
—

—
AB

71
63

04

TB
P6

CP
00

31
71

.1
Oc

ea
ni

m
on

as
sp

.G
K1

69
%

(6
41

/9
23

)
8.

00
�

10
2

97
Ga

m
m

ap
ro

te
ob

ac
te

ria
AB

71
63

05

TB
P7

CP
00

30
83

.1
j

M
et

ha
no

lob
us

ps
yc

hr
op

hi
lu

s
R1

5
81

%
(4

19
/5

20
)

5.
00
�

10
2

13
1

M
et

ha
no

m
icr

ob
ia

AB
71

63
06

TB
P8

—
—

—
—

—
AB

71
63

07

TC
P1

CP
00

19
24

.1
De

ha
loc

oc
co

ide
s

sp
.G

T
70

%
(2

25
/3

21
)

4.
00
�

10
2

31
De

ha
lo

co
cc

oid
et

es
AB

71
63

08

TC
P2

CP
00

25
85

.1
Ps

eu
do

m
on

as
br

as
sic

ac
ea

ru
m

ss
p.

br
as

sic
ac

ea
ru

m

NF
M

42
1

68
%

(3
46

/5
11

)
2.

00
�

10
2

34
Ga

m
m

ap
ro

te
ob

ac
te

ria
AB

71
63

09

TC
P3

CP
00

03
00

.1
M

.b
ur

to
ni

iD
SM

62
42

87
%

(4
13

/4
76

)
8.

00
�

10
2

16
0

M
et

ha
no

m
icr

ob
ia

AB
71

63
10

TC
P4

CP
00

08
21

.1
Sh

ew
an

ell
a

se
dim

in
is

HA
W

-E
B3

73
%

(2
88

/3
97

)
6.

00
�

10
2

54
Ga

m
m

ap
ro

te
ob

ac
te

ria
AB

71
63

11

TC
P5

—
—

—
—

—
AB

71
63

12

TC
P6

—
—

—
—

—
AB

71
63

13

TC
P7

CP
00

38
69

.1
De

ha
lob

ac
te

r
sp

.D
CA

63
%

(8
17

/1
29

5)
3.

00
�

10
2

32
Clo

str
id

ial
es

AB
71

63
14

TC
P8

CP
00

03
00

.1
M

.b
ur

to
ni

iD
SM

62
42

85
%

(1
24

0/
14

67
)

0
M

et
ha

no
m

icr
ob

ia
AB

71
63

15

TC
P9

—
—

—
—

—
AB

71
63

16

TC
P1

0
—

—
—

—
—

AB
71

63
17

TC
P1

1
—

—
—

—
—

AB
71

63
18

TB
P/

TC
P1

—
—

—
—

—
AB

71
63

19

TB
P/

TC
P2

CP
00

03
00

.1
M

.b
ur

to
ni

iD
SM

62
42

89
%

(1
31

4/
14

80
)

0
M

et
ha

no
m

icr
ob

ia
AB

71
63

20

TH
P

m
ix1

AP
01

11
77

.1
Sh

ew
an

ell
a

vio
lac

ea
DS

S1
2

71
%

(2
04

1/
28

86
)

0
Ga

m
m

ap
ro

te
ob

ac
te

ria
AB

71
63

21

TH
P

m
ix2

CP
00

26
07

.1
Ae

ro
m

on
as

ve
ro

ni
iB

56
5

76
%

(1
02

/1
34

)
2.

00
�

10
2

16
Ga

m
m

ap
ro

te
ob

ac
te

ria
AB

71
63

22
a TB

P,
2,

4,
6-

TB
P

wa
s

us
ed

as
in

du
cti

on
su

bs
tra

te
;T

CP
,2

,4
,6

-T
CP

wa
s

us
ed

as
in

du
cti

on
su

bs
tra

te
;T

BP
/T

CP
,2

,4
,6

-T
BP

or
2,

4,
6-

TC
P

we
re

us
ed

as
in

du
cti

on
su

bs
tra

te
s;

TH
P

m
ix,

2,
4,

6-
TB

P,
2,

4,
6-

TC
P

an
d

2,
4,

6-
TIP

we
re

us
ed

as
in

du
cti

on
su

bs
tra

te
s.

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20120249

12



Table 5. Results of BLASTP analysis of ORFs encoded on clones obtained by SIGEX.

clone
no. (ORF
no.)

length
(aa) gene product (host organism)

length
(aa)

% identities
(aa) (query aa/
target aa) e-value accession no.

TCP3 (1) 353 permease (Shewanella pealeana

ATCC 700345)

356 47% (164/350) 1.0 � 102110 YP_001503275

TCP3 (2) 64 hypothetical protein Dole_2888

(Desulfococcus oleovorans Hxd3)

112 58% (35/60) 8.0 � 10217 YP_001530768

TCP3 (3) 111 transporter (Photobacterium

damselae subsp. damselae CIP)

357 64% (65/101) 2.0 � 10236 ZP_06155623

TCP3 (4) 104 regulatory protein ArsR

(Pseudoalteromonas rubra

ATCC 29570)

119 62% (63/102) 4.0 � 10237 ZP_10294511

TCP3 (5) 62 — — — — —

TCP3 (6) 77 — — — — —

THP mix2

(1)

125 HxlR family transcriptional regulator

(Methanococcoides burtonii

DSM 6242)

125 84% (105/125) 3.0 � 10269 YP_565113

THP mix2

(2)

197 serine protease inhibitor

(Methanosarcina mazei Go1)

427 58% (101/173) 2.0 � 10266 NP_634699

clone THP mix2
1 kb

clone TCP3 1 2 3 4 5 6

21

Figure 6. ORF organization around the putative transcriptional factor gene
cluster of clones TCP3 and THP mix2. The putative transcriptional factor
genes are indicated by red. The numbers corresponds to the ORF numbers
in table 5.

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20120249

13
sediment, and may be involved in the mineralization and

thermogenic degradation of deeply buried organic matter.

In this study, we detected dehalogenation activity only in

relatively shallow (approx. 4.7 mbsf) sediment samples col-

lected from the stratified sedimentary basin, although the

rdhA genes were found in the deep and old accretionary

prism. In addition, we performed the gene expression-

based metagenomic survey called SIGEX for exploring

organohalide respiration-related genes from the largely func-

tionally ‘unknown’ gene pools in the subseafloor biosphere

[24,25]. To obtain a better understanding of the ecological
importance of microbial dehalogenation in deep marine

sediments, it is clear that we should use more sensitive bio-

geochemical approaches to assess the activity (e.g. stable

and/or radioactive isotopic tracers). In addition, an effective

metagenomic screening assay customized for the microbes

having a quite low metabolic activity should also be used

for the deep marine subsurface microbes. We are currently

focusing on studies using such techniques.
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Flynn SJ, Tiedje JM, Löffler FE. 2003 Characterization
of two tetrachloroethene-reducing, acetate-oxidizing
anaerobic bacteria and their description as
Desulfuromonas michiganensis sp. nov. Appl.
Environ. Microbiol. 69, 2964 – 2974. (doi:10.1128/
AEM.69.5.2964-2974.2003)

53. Neumann A, Wohlfarth G, Diekert G. 1998
Tetrachloroethene dehalogenase from Dehalospirillum
multivorans: cloning, sequencing of the encoding
genes, and expression of the pceA gene in Escherichia
coli. J. Bacteriol. 180, 4140 – 4145.

54. Suyama A, Yamashita M, Yoshino S, Furukawa K.
2002 Molecular characterization of the PceA
reductive dehalogenase of Desulfitobacterium sp.
strain Y51. J. Bacteriol. 184, 3419 – 3425. (doi:10.
1128/JB.184.13.3419-3425.2002)
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