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Organohalide respiration is an anaerobic bacterial respiratory process that

uses halogenated hydrocarbons as terminal electron acceptors during electron

transport-based energy conservation. This dechlorination process has trig-

gered considerable interest for detoxification of anthropogenic groundwater

contaminants. Organohalide-respiring bacteria have been identified from mul-

tiple bacterial phyla, and can be categorized as obligate and non-obligate

organohalide respirers. The majority of the currently known organohalide-

respiring bacteria carry multiple reductive dehalogenase genes. Analysis of

a curated set of reductive dehalogenases reveals that sequence similarity

and substrate specificity are generally not correlated, making functional

prediction from sequence information difficult. In this article, an ortholo-

gue-based classification system for the reductive dehalogenases is proposed

to aid integration of new sequencing data and to unify terminology.
1. Organohalide respiration
Organohalide respiration is the preferred term for the energy-conserving

respiratory process wherein a halogen–carbon bond is broken and the halogen

atom is liberated as a halide. The removal of halogens from these compounds

may reduce or eliminate toxicity or render the compound more biodegradable,

making this process important for the remediation of contaminated sites [1].

Organohalide-respiring bacteria (OHRB) are micro-organisms capable of deriv-

ing energy for growth from dehalogenation of aromatic and/or aliphatic

halogenated compounds. These bacteria are of environmental importance

because they reduce anthropogenic halogenated compounds, many of which

are significant contaminants in groundwater systems that pose hazards to

human health and the environment [2,3]. Beyond bioremediation, the activities

of OHRB are part of the global halogen cycle [4].

OHRB have been identified from diverse bacterial phyla, including the Pro-

teobacteria, Firmicutes and Chloroflexi [5–8]. The known OHRB can be

grouped as either obligate or non-obligate organohalide respirers [9]. The

proteobacterial OHRB, including Geobacter, Desulfuromonas, Anaeromyxobacter
and Sulfurospirillum, are all non-obligate organohalide respirers with versatile

metabolisms encoded on relatively large genomes [9]. In contrast, the currently

known organohalide-respiring Chloroflexi are all obligate organohalide

respirers, meaning they are niche specialists with a very restricted metabolism.

The Firmicutes contain non-obligate organohalide-respiring Desulfitobacterium
spp. as well as metabolically restricted Dehalobacter OHRB [9]. It has recently
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been shown that some Dehalobacter spp. are able to ferment

dichloromethane [10,11]. There is little to no correlation

between phylogenetic affiliation and chlorinated substrate

specificities: aliphatic and aromatic substrates are used by

taxonomically diverse organisms [12].

Genome sequences exist for several OHRB, including five

Dehalococcoides mccartyi strains [13–16] and Dehalogenimonas
lykanthroporepellens strain BL-DC-9 [17] within the Chloroflexi;

Geobacter lovleyi strain SZ [18] and Anaeromyxobacter dehalogenans
strains 2CP-C and 2CP-1 [19] from the Proteobacteria; and

Desulfitobacterium hafniense strains Y51 and DCB-2 [6,20],

Desulfitobacterium dehalogenans (NC_018017), Desulfitobacterium
dichloroeliminans (NZ_AGJE00000000) and most recently two

Dehalobacter strains [21] from the Firmicutes. Given the low

cost and broad availability of sequencing from pure or mixed

cultures, the number of OHRB genomes will increase rapidly.

Consistent with this expectation, a draft genome for Dehalobacter
sp. E1 was recently elucidated based on metagenome analysis

of a defined co-culture [22]. The availability of OHRB genomes

has allowed comparative genomic studies within genera

[15,23] as well as across phyla [6]. Genome sequences of the

Dehalococcoides have revealed specific metabolic requirements,

including corrinoid auxotrophy for the majority of sequenced

strains [13–15].

The diversity of OHRB is not yet fully described. Moving

forward, novel strains, species and even new genera with

organohalide-respiring activity will probably be discovered,

enriched and isolated from environments where suitable halo-

genated electron acceptors, either of natural or anthropogenic

origin, are available.

Metagenomes of defined mixed cultures and entire micro-

bial communities are currently being unravelled, allowing

determination of metabolic interactions within organohalide-

respiring consortia. Metagenomes were sequenced from

consortia such as (i) the KB-1 culture, containing populations

of Dehalococcoides, Geobacter, Methanosarcina, Spirochaeta and

Sporomusa [24,25]; (ii) the ANAS tetrachloroethene (PCE)-

dechlorinating mixed culture containing Dehalococcoides, fermen-

tative bacteria and two methanogenic populations, among other

organisms [26,27]; and (iii) a highly stable and efficient dechlori-

nating bioreactor community containing Dehalococcoides [26,28].
In addition, a defined coculture of Dehalobacter sp. E1 and

Sedimentibacter sp. B4 that reductively dechlorinates beta-hexa-

chlorocyclohexane has been sequenced [22].
2. Reductive dehalogenases
Organohalide respiration reactions are catalysed by reductive

dehalogenases. The first reductive dehalogenase that was bio-

chemically characterized was the 3-chlorobenzoate reductive

dehalogenase of Desulfomonile tiedjei strain DCB-1 [29]. The

first gene sequences encoding reductive dehalogenases were

identified using classical reverse genetics approaches based

on partial amino acid sequences of purified enzymes [30,31].

PCR and genome studies have since identified new sequen-

ces with high sequence identity to the characterized genes

[6,13,14,32–42]. Reductive dehalogenase genes (or reductive

dehalogenase homologous genes (rdh) if the encoded protein

has not yet been biochemically characterized) typically

comprise an operon containing rdhA, the gene for the catalyti-

cally active enzyme (RDase if characterized, otherwise RdhA),

rdhB, a gene encoding a putative membrane-anchoring protein
[34], and sometimes one or more members of rdhTKZECD,

genes associated with reductive dehalogenase genes [43].

For some, but not all, of the predicted gene products, function

in transcription regulation and maturation of the holoenzyme

has been experimentally confirmed [44,45].

The nomenclature of the rdh genes as homologues is based on

the presence of specific conserved motifs [46]. RdhA proteins

have several conserved features, including two iron–sulfur clus-

ter-binding motifs and a twin-arginine signal motif for

translocation to or across the cell membrane [34]. Many, if not

all, characterized RdhAs contain corrinoid co-factors (derivatives

of vitamin B12), including the PCE dehalogenase from Sulfuros-
pirillum multivorans (formerly Dehalospirillum), which was shown

to contain the very specific, previously unknown corrinoid norp-

seudo-B12 [47]. Involvement of a Co(I) corrinoid in the catalytic

activity of reductive dehalogenases has been demonstrated by

the reversible inactivation of corrinoid using propyl iodides for

a number of enzymes, and by the fact that the lack of the corri-

noid cofactor resulted in loss of the PCE-dechlorination ability

in S. multivorans and Dehalobacter restrictus PER-K23 [38,48]. Six

chlorophenol and four PCE/trichloroethene (TCE) reductive

dehalogenases have been purified from different Desulfitobacter-
ium strains, and the majority of reductive dehalogenases that

have so far been tested for the presence of a corrinoid prosthetic

group contained such a group [49]. These corrinoid co-factors are

thought to be essential for enzymatic function, and show some

specificity: cocultures of Geobacter strains and Dehalococcoides
mccartyi strains revealed cobamides produced by the OHRB

Geobacter lovleyi strain SZ supported dechlorination by the Deha-
lococcoides strain, while cobamides produced by the non-OHRB

Geobacter sulfurreducens did not [50].

Although the identity of several rdhA genes has been con-

firmed based on partial (N-terminal) amino acid sequences of

purified enzymes with proven activity, the three-dimensional

structure of an RdhA protein has not yet been determined,

nor has an active site been identified. Furthermore, identifi-

cation of most rdhA genes, especially those encountered in

genome sequences of OHRB and other bacteria, has been

based entirely on sequence similarity and the presence of the

above-mentioned motifs. It is, in addition, not certain if all

RdhA proteins are homologous (i.e. share a common evol-

utionary origin). To this end, we are maintaining the

nomenclature of rdhA genes as homologues based on high

sequence similarity along the entire length of the genes, con-

servation of shared motifs, and an absence of evidence of

convergent evolution.

Reductive dehalogenase encoding genes have been

identified in a wide variety of strictly anaerobic bacteria,

including Sulfurospirillum [51], Desulfitobacterium [1,31,52,53],

Dehalobacter [7] and Dehalococcoides [13–15,54], and in micro-

aerophilic bacteria as in the case of Anaeromyxobacter [19],

and others (figure 1) [18,58]. Only one archaeal putative reduc-

tive dehalogenase gene has been identified to date from

a Ferroglobus species [59], but this organism has not been

demonstrated to conserve energy via organohalide respiration.

Most, but not all, of these rdhA gene-carrying organisms are

known to reduce halogenated organic compounds. Within

the known dehalogenating organisms, some do not use halo-

genated substrates for energy conservation in a respiratory

process; for example, a strain of Dehalobacter has been shown

to ferment dichloromethane [11].

The reductive dehalogenases present within an organism,

enrichment culture or contaminated site dictate the range of
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Figure 1. Maximum-likelihood (ML) tree of 16S rRNA gene sequences from all known organisms containing a reductive dehalogenase homologous (rdhA) gene. For
organisms with multiple 16S rRNA genes, one representative gene sequence was chosen for clarity (see the electronic supplementary material, table S2 for 16S rRNA
gene sequence accessions). 16S rRNA gene sequences were mined from IMG-M and NCBI. The sequences were aligned using the greengenes NAST alignment
algorithm [55], and manually curated and masked in GENEIOUS [56] to a final alignment of 1117 unambiguously aligned positions. Ten ML trees were calculated
using RAXML HPC v. 7.2.8 [57] under the GTRþ g model of nucleotide evolution, and the tree with the highest likelihood chosen. Organism names are coloured to
correspond to the colours on the RdhA tree (figure 2).
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halogenated electron acceptors used. Several molecular tools

have been developed for examining a broad range of rdhA
genes in a given sample (site, isolate or mixed culture),

including both microarray-based methods and PCR-based

protocols [60–63]. Identification of novel reductive dehalo-

genase genes has primarily come from PCR studies

[32,33,35–37,39,40,42] and subsequently from genome and

metagenome sequencing efforts [6,13,14,41,63], with each

new organism or environment sampled increasing the

known diversity of putative rdhA genes.

Analysis of genome sequences divides the OHRB into those

whose genomes contain one or two rdhA genes and those con-

taining several (more than two) different rdhA [5,64]. Genomes

of Desulfitobacterium, Dehalococcoides, Dehalogenimonas and

Dehalobacter strains contain multiple rdhA genes. The complete

genome sequence of Desulfitobacterium hafniense strain DCB-2

contains seven putative rdhA genes [20]. From the Dehalococ-
coides mccartyi genomes, the current minimum number of

rdhA genes per genome is 10 [15], with up to 36 rdhA genes pre-

sent on a single genome [15]. The genome of Dehalococcoides
mccartyi (formerly ethenogenes) strain 195 [65] harbours 17

different rdhA genes [14], while strain CBDB10s genome con-

tains 32 rdhAs [13]. The genome of Dehalogenimonas
lykanthroporepellens strain BL-DC-9, the only sequenced Dehalo-
genimonas, contains 19 rdhA genes [17,66]. The presence of

multiple rdhA genes is also a feature in the Dehalobacter
genus, with up to 24 complete putative rdhA genes within

sequenced Dehalobacter genomes [21,22,67].
(a) Substrate specificity of reductive dehalogenases
Only few reductive dehalogenases have been biochemically

characterized. The enzymes are inactivated by molecular

oxygen, and a genetically tractable system for expressing a

specific reductive dehalogenase is not yet available. Both these

factors have impeded extensive biochemical experimentation in

the past. In the case of Dehalococcoides, Dehalogenimonas and

some Dehalobacter, detailed studies on the biochemistry of reduc-

tive dehalogenases have been hampered by difficulties in

obtaining sufficient biomass. Substrates for RDases have been

identified using culture-based methods as well as by enzymatic

assays with pure RDases. Much of our understanding of reduc-

tive dehalogenases has come from well-studied organisms,

including Sulfurospirillum multivorans and Dehalobacter restrictus
PER-K23 which dechlorinate PCE to cis-dichloroethene (DCE)

[7,68–70]. PceAs, active on the chlorinated ethenes PCE and

TCE, have been identified from Sulfurospirillum, Desulfitobacter-
ium and Dehalobacter. The four known Desulfitobacterium
PCE/TCE reductive dehalogenases were isolated from Desul-
fitobacterium hafniense strains PCE-S, TCE1 and Y51, and

Desulfitobacterium sp. strain PCE1. The Sulfurospirillum and Desul-
fitobacterium PCE/TCE reductive dehalogenases cannot

dehalogenate isomers of DCE. The substrate spectrum dehaloge-

nated by the reductive dehalogenase of Desulfitobacterium
hafniense strain Y51 is similar to the PCE reductive dehalogenase

of Dehalobacter restrictus [35,38].

CprA and CrdA dehalogenases from Desulfitobacterium
dehalogenans and Desulfitobacterium hafniense dechlorinate a
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material, figure S1 for a rectangular version of this phylogeny with scale bar and bootstrap support values for this tree. Reductive dehalogenases with known function on
specific substrates, based on protein isolation, proteomics or transcriptomics are numbered as follows: (1) TceA (DET0079_tceA, Dehalococcoides mccartyi st. 195; TCE) [34]; (2)
BvcA (BAV1_0847, Dehalococcoides mccartyi st. BAV1; VC, cis-DCE, 1,2-DCA) [40]; (3) VcrA (8658217VS, Dehalococcoides mccartyi st. VS; VC, TCE, cis-DCE) [74]; (4) MbrA
(GU120391 (MB_mbrA on tree), Dehalococcoides mccartyi st. MB; TCE) [60]; (5) CbrA (cbdbA84, Dehalococcoides mccartyi st. CBDB1; 1,2,3,4-tetrachlorobenzene, 1,2,3-tri-
chlorobenzene, pentachlorobenzene) [75]; (6) PceA (DET0318, Dehalococcoides mccartyi st. 195; PCE) [54]; (7) PceA (AJ439607, Dehalobacter restrictus PER-K23; PCE)
[38]; (8) CprA (AY349165, Desulfitobacterium hafniense st. PCP-1; pentachlorophenol, 2,3,4,5-tetrachlorophenol, and 2,3,4-trichlorophenol) [71]; (9) CprA (AF259790, Desul-
fitobacterium dehalogenans; ortho-chlorophenols) [31]; 10-PrdA (AB194706, Desulfitobacterium sp. strain KBC1; PCE) [93]; (11) CfrA (ACT3_rdh02, Dehalobacter sp. strain CF;
1,1,1-trichloroethane, CF) [81]; (12) DcrA (ACT3_rdh01, Dehalobacter sp. strain DCA; 1,1-DCA) [81]; (13) DcrA (FJ010189 (AGWLrdh01 on tree), Dehalobacter sp. strain WL; 1,2-
DCA) [94]; (14) DcaA (AM183918, Desulfitobacterium dichloroeliminans; 1,2-DCA) [73]; (15) PceA (AF022812; Sulfurospirillum multivorans; PCE) [51].
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variety of chlorinated phenols [31,37,39,71]. Substrate specifi-

cities towards ortho or meta and para dechlorination are

observed for the different CprAs. CrdA is a unique chloro-

phenol reductive dehalogenase that is capable of ortho

dechlorination of several polychlorinated phenols but not of

3-chloro-4-hydroxyphenylacetate, in contrast to the other

chlorophenol reductive dehalogenases [37]. CrdAwas isolated

from Desulfitobacterium strain PCP-1 and the crdA gene is also

present in Desulfitobacterium hafniense strains TCP-A, DP7,

DCB-2, Y51 and TCE1, Desulfitobacterium dehalogenans,
Desulfitobacterium chlororespirans and Desulfitobacterium sp.

strain PCE-1 [72]. Another unique chlorophenol reductive deha-

logenase is CprA5 found in Desulfitobacterium hafniense strains

PCP-1, TCP-A and DCB-2, which has dechlorination activity

against several chlorophenols at all three substituent (ortho,

meta and para) positions [39,72].

A 1,2-dichloroethane (1,2-DCA)-specific reductive dehalo-

genase was identified in Desulfitobacterium dichloroeliminans
strain DCA1 and also in the metagenome of a 1,2-DCA orga-

nohalide-respiring enrichment culture from a contaminated

aquifer [73]. Sequence analysis of the catalytic subunit of

these DcaA proteins showed specific sequence differences

and signature motifs compared with the other known reduc-

tive dehalogenases, suggesting that these enzymes may have

specifically adapted to 1,2-DCA reductive dechlorination [73].

Within the Dehalococcoides, five proteins involved in respir-

ing chlorinated ethenes, ethanes and chlorinated benzenes

have been partially characterized. PceA has been shown to

dechlorinate PCE to TCE [54]. TceA has been shown to dechlor-

inate TCE to ethene, though was most active on TCE [34], and

VcrA catalyses the dechlorination of TCE, DCE isomers and

vinyl chloride (VC) to ethene [40,74]. The VcrA protein is

additionally capable of dihaloelimination of 1,2-DCA to

ethene [74]. Using native polyacrylamide gel electrophoresis

(PAGE), CbrA from Dehalococcoides mccartyi strain CBDB1

was found to dechlorinate 1,2,3,4-tetrachlorobenzene and

1,2,3-trichlorobenzene [75]. Recent studies using blue native

PAGE have confirmed that BvcA also catalyses dechlorination

of TCE, DCE isomers, VC and 1,2-DCA and further expands

the known substrate ranges for the enzymes BvcA, VcrA and

TceA [76], indicating that at least these RDases, and probably

many others, can dechlorinate multiple substrates.

Beyond these partially characterized reductive dehalo-

genases, many RdhA proteins have been assigned a putative

function through transcriptional analyses in the presence of

specific substrates, or through peptide sequencing of partially

purified proteins produced during specific stages of dechlori-

nation [40,61,77,78]. While these proteins often cannot be

assigned substrate specificity with certainty, these experiments

provide evidence for function and can be used to better illus-

trate the sequence similarity/substrate affinity relationship

within this group of enzymes. These methods have been some-

what confounded in the case of Dehalococcoides, where multiple

reductive dehalogenase genes are typically expressed in the

presence of a single halogenated substrate [79,80].

The oxygen sensitivity of reductive dehalogenases, their

association with the cell membrane, and the tendency for

multiple rdhA genes to be transcribed have impeded determi-

nation of substrate specificities or tertiary structures for these

enzymes. Blue Native PAGE is a promising approach for

examining in vitro reductive dehalogenase activity [76,81].

The current frontier of biochemical research on the reductive

dehalogenases involves attempts to heterologously express
reductive dehalogenase encoding genes and to engineer

an OHRB with desirable substrate preferences. Reductive

dehalogenase genes have been successfully cloned, but efforts

to produce an active enzyme have failed so far [30,82,83].
(b) Sequence analysis of reductive dehalogenases
This themed issue is the result of a meeting at the KAVLI

centre, UK, on 4–5 July 2011. At the meeting, a need for a

classification system and a consistent nomenclature was

identified. To address this need, the diversity of reductive

dehalogenases is examined based on sequence analysis on a

curated protein dataset of RDases and RdhA proteins. The

ability to predict an organism’s dechlorination potential

based on sequence similarity and the known functional infor-

mation for RDases is examined, and orthologous groups for

transparent nomenclature of the gene family are defined. The

orthologue groups are intended to serve as a reference point

for all subsequently identified RdhA proteins, and to facilitate

comparisons between sequenced organohalide respirers. Ortho-

logues were defined based on pairwise sequence identities

greater than 90 per cent at the amino acid level, and orthologue

groups constrained to this level of sequence identity. Addition-

ally, orthologue groups were confirmed as highly supported

clades in protein tree analyses.

A basic search for ‘reductive dehalogenase’ in the NCBI

nucleotide database results in over 600 sequences as of June

2012. For the curated, comprehensive dataset of RdhA proteins

discussed below, a reductive dehalogenase homologue had to

have been sequenced from a known organism for which a 16S

rRNA gene sequence was available. Based on this filter, environ-

mental sequences from contaminated sites, ocean surveys and

uncharacterized enrichment cultures were excluded. It was not

required that the organism had demonstrated reductive dehalo-

genation activity. In the majority of cases, rdhA genes were

mined from finished genome sequences, or from known dechlor-

inating isolates whose genomes have not yet been sequenced

(e.g. Dehalococcoides mccartyi strain MB [60,61]). rdhA genes

from consortia (KB-1, ACT-3 and WL) were included in cases

where metagenome sequences or quantitative PCR studies

allow connection of rdhA sequences with specific OHRB

genera [24,84–86]. Additionally, the rdhA genes were required

to be full-length or close to full-length (greater than 300 amino

acids), which excluded many partial rdhA genes in the data-

base. Only the catalytically active subunit (RdhA) was

included in this analysis; the RdhB proteins were not con-

sidered. The final curated set contained 264 RdhA proteins

from 44 micro-organisms (see the electronic supplementary

material, table S1 for sequence names, accessions and classifi-

cation identifiers). Sequence comparisons were conducted

both including and excluding the twin-arginine translocation

(Tat) signal sequences (approx. 50 amino acids, composed of

the characteristic Tat-motif and a hydrophobic stretch) at the

N-termini of the proteins, which may be expected to evolve

at a different rate from motifs involved in catalysis [87]. For

further comparison, phylogenetic analyses on the aligned

TIGRFAM reductive dehalogenase domain (removing Tat

signal sequences as well as C-terminal FeS cluster-binding

motifs from the original alignment) were conducted.

The Tat signal sequence trimmed alignment gave the best-

resolved tree in terms of strongest bootstrap support across

the tree. In general, the relationships defined by the three

trees (full-length proteins, Tat signal-trimmed and TIGRFAM
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domain only) were consistent, with the same overall topology,

and with all orthologue groups recovered with high bootstrap

support and posterior probabilities (greater than 90%, greater

than 0.9, respectively). Many of the differences between the

three trees were in the branching order of divergent, long-

branch sequences, which may be the result of long-branch

attraction artefacts. Other topological differences were the

result of rearrangements of the backbone of the tree, which

was poorly supported in all three trees, and as such, the correct

topology in the tree backbone cannot be ascertained. The Tat

signal-trimmed tree is depicted in figure 2, while all three

trees are presented with bootstrap support values in the

electronic supplementary material, figures S1–S3.

The RdhA protein tree is dominated by sequences from

Dehalococcoides (red), Dehalogenimonas (yellow), Dehalobacter
(light blue) and Desulfitobacterium (dark blue) (figure 2). The

preponderance of these organisms is partially due to the intense

research efforts concentrated on these bacterial groups based on

their environmental significance as dechlorinating organisms,

but is also due to the fact that genomes from these organisms

typically contain multiple rdhA genes [20,32,80,94].

The Chloroflexi RdhA proteins, predominantly from the

Dehalococcoides, cluster within a large clade. Within this

large Dehalococcoidales clade, several sub-clades of RdhA

identified in multiple Dehalococcoides mccartyi strains share

branching order with the 16S rRNA gene tree. In several

instances, orthologous RdhAs (greater than 90% pairwise

amino acid identity (PID) over the full-length of the

sequences and bidirectional best BLASTp hits) are present

in only two or three strains of the six sequenced strains.

This patchy distribution of rdhA genes points either to rapid

gene loss within the Dehalococcoides, or to lateral acquisition

of novel rdhA genes within subsets of Dehalococcoides mccartyi
strains. Lateral gene transfer has been invoked for rdhA gene

acquisition in several scenarios [95–99] and is potentially a

factor in the RdhA family diversification. Sequence infor-

mation from new strains and complete genome sequences

from strains for which some rdhA genes have been identified

will help clarify orthologue and paralogue relationships.

The only core RdhA present in all sequenced Dehalococcoides
genomes (11 o’clock in figure 2) falls outside of the main Deha-

lococcoidales RdhA clade. This core RdhA clade matches the

16S rRNA phylogeny in terms of strain relationships, and

shares synteny across Dehalococcoides genomes [15], indicating

it may have diverged within Dehalococcoides from a shared ances-

tral gene. A second smaller clade of Dehalococcoides sequences

is also present in the non-Dehalococcoides region of the tree

(next to marked conserved syntenic clade in figure 2), though

only three sequenced strains are represented (CBDB1, 195 and

VS). These clades may represent distant orthologues to non-

Dehalococcoides RdhA proteins, though the current analysis is

not conclusive.

There are 15 RdhA proteins on the tree (see numbers in

figure 2), for which functional information is available in the

form of transcriptional data or biochemical characterization of

purified proteins. These RDases are distributed across the

RdhA tree, and are known to catalyse the dehalogenation of a

broad range of substrates, including chlorinated ethenes (VcrA,

BvcA, TceA, MbrA, PceA, PrdA [38,40,54,60,74,93,100]), chlori-

nated ethanes (CfrA, DcrA, DcaA [73,81,94]), and chlorinated

aromatics (CbrA, CprA [31,71,75,101]). For most characterized

reductive dehalogenases, the full substrate range is not known;

instead activity on a specific substrate has been verified. It is
clear that reductive dehalogenases that share a specific function

do not necessarily share high sequence similarity: the four

PCE-dehalogenating enzymes (nos. 6, 7, 10 and 15) are located

at three distant positions on the tree. Similarly, the two

chlorophenol reductive dehalogenases (nos. 8 and 9) are at oppo-

site edges of the non-Dehalococcoides RdhA portion of the tree

and have relatively low sequence similarity (28% PID). One

note from this is that neither the structure nor the identities of

the catalytic amino acid residues in the active centre of the reduc-

tive dehalogenase enzymes are known. It is possible that the

dehalogenation of similar targets is conducted using different

catalytic mechanisms, but it is also possible that shared residues

and motifs between these divergent sequences with shared func-

tion will provide clues as to the critical residues for RdhA folding

and function. When genetic manipulation of these targets

becomes possible, those shared residues would be primary tar-

gets of interest for mutation experiments.

In a single example of sequence identity hinting at func-

tion, the chlorinated ethene reductive dehalogenases TceA

(DET0079_tceA), BvcA (BAV1_0847) and VcrA (DhcVS_1291)

in Dehalococcoides form a monophyletic group on the tree (with

approx. 48% PID), and proteins in this group are associated

with enrichment cultures capable of dechlorinating chlorinated

ethenes and 1,2-DCA. In general, the RdhA phylogeny does

not indicate that similarity analysis of reductive dehalogenases

will allow confident prediction of substrate specificity for novel

RdhA proteins identified. An example of this concerns the

DcrA (ACT3_rdh01) and CfrA (ACT3_rdh02) RDases from Deha-
lobacter strains DCA and CF, respectively, from the ACT-3 culture,

which share a high level of sequence similarity (95% PID), group

closely together (nos. 11 and 12, at 8.30 in figure 2), but do not

share overlapping substrate specificities [81]. Similarly, the Deha-
lobacter/Desulfitobacterium PceAs share 88–89% PID with the

Desulfitobacterium dichloroeliminans DcaA but do not share over-

lapping substrate specificities [73]. These two examples present

the reverse scenario to the four PceA proteins, where amino

acid residues that differ between the two proteins are potentially

important in substrate specificity.
(c) Classification system for reductive dehalogenases
The need for a classification system for the reductive dehalo-

genases is tied to the rapid expansion of the family through

genome and metagenome sequencing. These enzymes and

genes are being used extensively as biomarkers for monitoring

active and passive bioremediation at contaminated sites.

Greater clarity in nomenclature would facilitate this transfer of

science to practice. Typically, comparisons of proteins encoded

by novel rdhA genes focus on the characterized reductive deha-

logenases. As discussed above, these provide only a partial

picture of the sequence diversity of the protein family. In defin-

ing a classification system for the reductive dehalogenases, we

hope to clarify the relationships within the family as well as pro-

vide a platform for more robust comparisons of new sequences

to the existing family. Furthermore, such classification can

guide the selection of representative genes and proteins for

more detailed functional characterization.

Reductive dehalogenases are included in the TIGRFAM

and PFAM databases of homologous proteins (TIGR02486 and

PF13486), but are not recognized as a protein family by other

major databases (PROSITE and SMART). In the absence of a

crystal structure and information as to key residues for folding

or the active site, it is difficult to implement manyof the standard
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methods for classifying protein families. Instead, we have

implemented a sequence identity-based classification of ortholo-

gues into groups, anchored by the tree of curated reductive

dehalogenase protein sequences.

We defined orthologue groups based on a threshold of 90%

PID in amino acid alignments between all members of a group

that are additionally supported on the tree with bootstrap sup-

port values more than 90%. PID and similarity scores for all

RdhAs within this curated amino acid dataset were generated

using CLUSTALW [102,103]. The orthologue groups allow direct

comparisons of RdhAs between current sequenced strains

and facilitate placement of newly sequenced RdhAs in the

protein family. Based on these criteria, we have identified 46

orthologue groups containing in total 176 RdhA proteins. The

minimum number of proteins in a group is 2, while the current

maximum is 10. A complete description of the defined groups,

including organisms and gene names within each group,

number of encoded proteins per group, and the respective

PID ranges within the groups is presented in the electronic sup-

plementary material, table S3, and the groups are highlighted in

colour in the electronic supplementary material, figure S1.

In defining such a classification system for the reductive

dehalogenase family, we endeavoured to create a flexible

format that was informative, and which would not require con-

stant revision as new RdhA proteins are described. To that end,

all orthologue groups have been named sequentially based on

the date of first publication of the earliest described sequence

in the group. For example, the first sequenced RdhA was the

tetrachloroethene reductive dehalogenase PceA from Sulfuros-
pirillum multivorans in August 1998 [30], and as a result, the

orthologue group containing this protein has been designated

Reductive Dehalogenase Orthologue Group 1 (RD_OG1). In

the case where multiple RdhA proteins were reported in the

same article [13,14,32,40], group numbers were assigned

based on locus tag or accession numbers, in ascending order.

In one case, two RdhAs were presented in the same journal

issue [39,74]; in this case, the lower group number was assigned

based on alphabetical order of first author names.

An advantage to this classification method compared

with large clade-based classification methods [9,15] is that

the orthologue groups are not expected to change with

identification of divergent sequences, while larger order

relationships may shift with additional sequences. Given

the lack of support for the backbone of the protein tree, the

proposed classification system represents a conservative sol-

ution. The intention for this classification system moving

forward is to allow the addition of new groups as novel

RdhA proteins are discovered. A novel group would be cre-

ated when a full-length or near full-length (greater than

75%) RdhA from a known organism was identified that

had 90% or more PID with an RdhA not currently placed

in an orthologue group. The group would be defined as con-

taining that pair of sequences, and it would receive the next

available group number. Such a classification system allows

flexibility for adding novel sequences and provides a level

of intuitive interpretation, where the lower the group

number, the longer that particular RdhA group has been

known or studied in multiple organisms.
(i) An example: the WBC-2 consortium
WBC-2 is a microbial consortium capable of dechlorinating

chlorinated ethenes and ethanes [104]. This consortium contains
Dehalobacter, Dehalococcoides and Dehalogenimonas strains [104].

Previous sequence data from this consortium have been limited

to 16S rRNA gene clones, leaving the reductive dehalogenase

complement unknown. A metagenome from a 1,1,2,2-tetrachlor-

oethane-degrading WBC-2 subculture was sequenced and

partially assembled, resulting in 144 846 contigs with total scaf-

fold length of 68 536 230 bp, a maximum contig length of 334

963 and an N50 of 2192 bp. A total of 16 reductive dehalogenase

genes were identified from the WBC-2 metagenome using tblastx

with the curated gene set as queries. Of these, 13 were readily

classified into existing orthologue groups as described above,

while the remaining three shared greater than 90% PID with a

single existing sequence. A protein tree placing the WBC-2

RdhA within the orthologue groups can be found in the elec-

tronic supplementary material, figure S4. As the reductive

dehalogenases from the WBC-2 consortium cannot be ascribed

to a specific OHRB, this example illustrates how novel sequences

can be described in the context of the RD_OGs rather than how a

new RD_OG could be generated and numbered.

The curated reductive dehalogenase dataset, a detailed

method for incorporating novel reductive dehalogenase

sequences into the RD_OG framework and for creating new

RD_OGs, and a spreadsheet detailing the current RD_OGs

are all available for public access and editing at the following

link: docs.google.com/folder/d/0BwCzK8wzlz8ON1o2Z3

FTbHFPYXc/edit. It is the hope of the authors that this

allows simple adoption of this naming system for newly dis-

covered reductive dehalogenase sequences, with iterations of

the RD_OG framework easily generated and maintained.
3. Summary
Organohalide respiration is a unique metabolic process that

is implicated in the global halogen cycle as well as being of

environmental and societal significance for remediation efforts.

The reductive dehalogenase family is diverse and growing:

newly available genome sequences of organohalide-respiring

organisms or gene surveys of natural and anthropogenic

environments provide novel RdhA sequences, suggesting the

diversity of the protein family is nowhere near exhausted. In

this contribution, a curated database of RdhA proteins was gen-

erated and a phylogenetic comparison of the RdhA-encoding

organisms and their respective RdhA proteins conducted.

From this, a classification system for the RdhAs was proposed

based on sequence identity. The intention for this classification

is to facilitate placement of novel RdhAs within the context of

the gene family, and to aid communication about and compari-

son of the multiple rdhA genes and their encoded proteins in

different strains of organohalide-respiring bacteria.
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2012 Dichloromethane fermentation by a Dehalobacter
sp. in an enrichment culture derived from pristine river
sediment. Appl. Environ. Microbiol. 78, 1288 – 1291.
(doi:10.1128/AEM.07325-11)

12. Smidt H, de Vos WM. 2004 Anaerobic microbial
dehalogenation. Annu. Rev. Microbiol. 58, 43 – 73.
(doi:10.1146/annurev.micro.58.030603.123600)

13. Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R,
Adrian L. 2005 Genome sequence of the chlorinated
compound-respiring bacterium Dehalococcoides
species strain CBDB1. Nat. Biotechnol. 23,
1269 – 1273. (doi:10.1038/nbt1131)

14. Seshadri R et al. 2005 Genome sequence of the
PCE-dechlorinating bacterium Dehalococcoides
ethenogenes. Science 307, 105 – 108. (doi:10.1126/
science.1102226)

15. McMurdie PJ et al. 2009 Localized plasticity in the
streamlined genomes of vinyl chloride respiring
Dehalococcoides. PLoS Genet. 5, e1000714. (doi:10.
1371/journal.pgen.1000714)

16. Sung Y, Ritalahti KM, Apkarian RP, Löffler FE. 2006
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Löffler FE, Edwards EA, Adrian L. 2012 Functional
characterization of reductive dehalogenases by
using blue native polyacrylamide gel
electrophoresis. Appl. Environ. Microbiol. 79,
974 – 981. (doi:10.1128/AEM.01873-12)

77. Johnson DR, Brodie EL, Hubbard AE, Andersen GL,
Zinder SH, Alvarez-Cohen L. 2008 Temporal
transcriptomic microarray analysis of
‘Dehalococcoides ethenogenes’ strain 195 during the
transition into stationary phase. Appl. Environ.
Microbiol. 74, 2864 – 2872. (doi:10.1128/AEM.
02208-07)

78. Morris RM, Fung JM, Rahm BG, Zhang S, Freedman
DL, Zinder SH, Richardson RE. 2007 Comparative
proteomics of Dehalococcoides spp. reveals strain-
specific peptides associated with activity. Appl.
Environ. Microbiol. 73, 320 – 326. (doi:10.1128/AEM.
02129-06)

79. Holmes VF, He J, Lee PKH, Alvarez-Cohen L. 2006
Discrimination of multiple Dehalococcoides strains in
a trichloroethene enrichment by quantification of
their reductive dehalogenase genes. Appl. Environ.
Microbiol. 72, 5877 – 5883. (doi:10.1128/AEM.
00516-06)

80. Waller AS, Krajmalnik-Brown R, Löffler FE, Edwards
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