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The respiratory system comprises several scales of biological complexity: the

genes, cells and tissues that work in concert to generate resultant function.

Malfunctions of the structure or function of components at any spatial scale

can result in diseases, to the detriment of gas exchange, right heart function

and patient quality of life. Vast amounts of data emerge from studies across

each of the biological scales; however, the question remains: how can we inte-

grate and interpret these data in a meaningful way? Respiratory disease

presents a huge health and economic burden, with the diseases asthma and

chronic obstructive pulmonary disease (COPD) affecting over 500 million

people worldwide. Current therapies are inadequate owing to our incomplete

understanding of the disease pathophysiology and our lack of recognition of

the enormous disease heterogeneity: we need to characterize this heterogeneity

on a patient-specific basis to advance healthcare. In an effort to achieve

this goal, the AirPROM consortium (Airway disease Predicting Outcomes

through patient-specific computational Modelling) brings together a multi-

disciplinary team and a wealth of clinical data. Together we are developing

an integrated multi-scale model of the airways in order to unravel the complex

pathophysiological mechanisms occurring in the diseases asthma and COPD.

1. The need for multi-scale models of the respiratory system
The diseases asthma and chronic obstructive pulmonary disease (COPD) are

common chronic diseases associated with significant disability and societal

burden [1]. These diseases affect over 500 million people worldwide [2] and

related costs exceed E56 billion per year in the European Union (EU). Asthma

and COPD are complex airway diseases encompassing several underlying patho-

logical conditions that involve a variety of gene–cell–environment interactions

giving rise to various clinical phenotypes. The diseases are characterized by an

underlying inflammatory response that induces airway remodelling, airflow

limitation and increased ventilation–perfusion (V/Q) mismatch resulting in

diminished lung function. Current therapies are inadequate owing to our incom-

plete understanding of the pathophysiology of these diseases and our lack of

recognition of the enormous disease heterogeneity, complexity and multi-scale

nature of these diseases: we need to characterize this heterogeneity on a

patient-specific basis to advance healthcare. In an effort to achieve this goal,

the AirPROM consortium (Airway disease Predicting Outcomes through
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patient-specific computational Modelling; www.airprom.eu)

brings together existing clinical consortia with expertise in

physiology, radiology, image analysis, bioengineering, data

harmonization (the process of synchronizing and bringing

together different datasets), data security and ethics, compu-

tational modelling and systems biology. Together we are

developing an integrated multi-scale model of the airways in

order to unravel the complex pathophysiological mechanisms

occurring in the diseases asthma and COPD.

It is estimated that COPD, typically associated with ciga-

rette smoking but also related to biomass/environmental

exposure, will be the third largest cause of global mortality

by the year 2030. Few existing therapies have an impact

upon the natural history or mortality in COPD [3]. COPD is

associated with obstruction and obliteration of small (less

than 2 mm in diameter) conducting airways (bronchiolitis)

and alveolar airspace enlargement (emphysema). Both of

these processes contribute towards respiratory disability in

COPD [4], and can occur to differential degrees in patients

with the same level of lung function loss. The pathogenesis

of bronchiolitis and emphysema in COPD is poorly under-

stood. However, these two processes are likely to be

governed by a diverse array of cellular-scale processes, includ-

ing airway inflammation, adaptive and innate immunity to

cigarette smoking and microbiota, autoimmunity to external

or self-peptides, accelerated senescence and dysregulated

repair (reviewed in [5]). Finally, a variety of candidate genes

have recently been reported in genome-wide association

studies [6]. The focus to date has been upon single scales of

the disease, and how airway inflammation and persistent

infection are a consequence of genetic susceptibility and

result in airway remodelling and dysfunction is uncertain.

Although asthma deaths appear to be decreasing owing

to the consistent use of inhaled corticosteroids and wider

recognition of markers associated with adverse risk [7], many

patients with asthma continue to have persistence and poor

control of symptoms [8]. A substantial proportion of the EU

health budgets assigned to airway diseases is used by patients

who experience asthma exacerbations. The pathogenesis of

exacerbations remains poorly understood [9]. However, recog-

nition that asthma is associated with multiple inflammatory

phenotypes [10] and targeting these different phenotypes in

specific ways using existing or novel asthma therapies [11]

has been shown to reduce asthma exacerbations. The mechan-

ism of how eosinophilic disease may modulate exacerbations in

asthma remains unknown. Furthermore, non-eosinophilic

phenotypes of asthma are common in the general population

and new therapies targeting non-type 2 helper T-cell path-

ways (reviewed in [12]) and bronchial smooth muscle lability

(bronchial thermoplasty; [13]) are emerging. These therapies

are unlikely to show efficacy in every patient with asthma

and will probably need to be personalized by patient

phenotype informed by an understanding of the interactions

between different scales of the disease.

It is clear from the descriptions above that both diseases

encompass pathophysiological changes across a range of bio-

logical—spatial and time—scales: from gene to cell, tissue

and whole organ. Understanding how the changes within

these isolated components impact on whole organ (system)

function requires a systems biology approach. Here we present

an overview of the AirPROM project, which aims to do exactly

this. The project brings together various computational tools

and techniques and a wealth of patient data sampled from
the respiratory system. The huge challenge we face in Air-

PROM is the integration of these tools and the application of

the clinical and biological data to both inform and validate

the models to provide an understanding of the multi-scale

pathophysiological changes occurring in asthma and COPD,

striving towards the realization of personalized medicine.
2. The approach
The workflow includes collection and analysis of patient

data, extraction of structural information from medical

images, the construction of computational meshes, three-

dimensional computational fluid dynamics (CFD) and the

development of a multi-scale model—capturing information

from the gene–cell–tissue level—that predicts clinically rel-

evant outcomes (figure 1).

2.1. Patient data
We are working towards integrating and extending existing

clinical databases from three clinical consortia (U-BIOPRED

IMI [14], EvA FP7 [15] and BTS severe asthma [16]). These

data include extensive genomic, transcriptomic and proteo-

mic profiles, detailed lung function with novel small airway

physiological measures, bronchial challenge studies, imaging

data from computed tomography (CT) imaging and hyper-

polarized gas magnetic resonance imaging (HP MRI), and

patient-reported outcomes. The clinical measurements provide

a wealth of both cross-sectional and longitudinal follow-up

data. Proof-of-concept clinical trials with standard and novel

interventions will also contribute to the huge patient dataset

available. These patient-specific data together with known bio-

logical pathway data from public databases are being integrated

into a ‘knowledge management’ platform (see §2.2) that will

feed into the computational modelling framework.

2.2. Knowledge management system
Leveraging the clinical utility of systems biology techniques

requires the integrative assessment of complex, heterogeneous

data and information on multiple scales. Over the last

15 years, a large number of methods and software tools have

been developed to integrate aspects of biological knowledge,

such as signalling pathways, with experimental data [17,18].

However, it has proved extremely difficult to couple true

semantic integration across all information types relevant in a

life science project [19]. The inherent challenges in knowledge

management in the life sciences relate to primary data (e.g. natu-

ral text, omics and clinical datasets), to technically distributed

data sources and to knowledge (e.g. objects, entity relationships,

subnetworks and experimental procedures), the corresponding

complexity in developing and changing data formats, lack of

connectedness and missing semantic descriptions.

In order to address this challenge, Biomax Informatics

AG has developed the BioXM knowledge management

environment [20], which is widely used in European system

biology and medicine projects.1 Within AirPROM BioXM

establishes a comprehensive respiratory disease knowledge

base to facilitate the information flow between all (approx.

120) consortium participants. The BioXM system provides a

http://www.airprom.eu
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Figure 1. Schematic diagram illustrating the workflow structure within the AirPROM project.
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secure and sustainable infrastructure that semantically inte-

grates the newly produced clinical and experimental data

with existing biomedical knowledge from allied consortia

and public databases. This resource is available on Web

Apps and by APIs for analysis and modelling, facilitating

sharing, collaboration and publication within AirPROM

and beyond. The AirPROM Respiratory Disease Knowledge

Base represents knowledge as a network of nodes (e.g.

concepts such as ‘organ’, ‘disease’ and ‘protein’), their instan-

tiations (e.g. ‘lung’, ‘asthma’ and ‘interleukins’) and their

relationships (e.g. ‘is affected by’ and ‘produces’) as edges.

The network is based on semantic standardization using

ontologies [21,22]. Semantic mapping links the knowledge

network with patient data, mathematical models, public

resources and molecular concepts.

While molecular-level mathematical models can be rep-

resented in SBML or CellML [23,24] and their concepts

referenced based on MIRIAM [25], no corresponding stan-

dard is currently available for supra-molecular models.

Therefore, we developed a new concept which coincidentally

arrived at the same conclusions as the FP7-VPH RICORDO

project [26]. The AirPROM knowledge management system

now represents the first (to our knowledge) independent

implementation and validation of the RICORDO semantic

model and data representation concept. In this concept, indi-

vidual model and physiological parameters are semantically

described based on terms independently collected from a set

of controlled vocabularies. The resulting term feature vector

is used in a network search to identify semantically ‘similar’

parameters [27]. This ‘identity of meaning’ is subsequently

verified manually and is used to integrate models across

scales and to connect between models and data.
3. Component parts of the modelling toolkit
The primary function of the lungs is gas exchange; this pro-

cess is optimized by bringing air and blood into contact

over an extremely large alveolar surface area. All respiratory
diseases result in a reduction in ventilation and/or perfusion.

One of the major causes of the decline in gas exchange func-

tion in asthma and COPD is airflow obstruction. The main

focus of the modelling within AirPROM is ventilation and

the impact of pathophysiological changes on resultant venti-

latory and gas exchange function. Because changes occur

throughout the airway network—within both large and

small airways—and in the parenchymal tissue, there are sev-

eral components we need to include in an organ-scale model

to understand the system as a whole. We optimize and bring

together the existing techniques in three-dimensional CFD

(see §3.1), small airway measurements and models (see

§3.2), one-dimensional flow modelling, organ-level conti-

nuum mechanics and statistical models (see §3.4) to capture

the structure and function of a whole lung. Sub-organ-level

components also need to be integrated with the organ

model to enable an understanding of the multi-scale nature

of these diseases. Here, we again optimize and bring together

existing tools and techniques using agent-based modelling

to predict emergent tissue properties from gene–cell inter-

actions (see §3.3). The framework for a multi-scale model

was established at the outset of the project; a schematic illus-

tration representing some of the model components required

to represent an asthmatic patient is illustrated in figure 2.

3.1. Functional respiratory imaging
Classic pulmonary function tests and in particular the forced

expiratory volume in 1 second are commonly used but are

poor predictors for clinical symptoms, exercise tolerance and

response to bronchodilators in chronic lung disease [28,29].

The combination of CT imaging and CFD, here termed func-

tional respiratory imaging (FRI), yields novel, more sensitive

outcome parameters enabling an improved prediction of

clinically relevant changes in the respiratory system [30].

Structural information on the central airways (for

example, airway volume, length and wall thickness) and

lobes can be derived from CT images. Subsequently, solving

the Navier–Stokes equations adds a functional element to the
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static images by providing an indication of the regional

pressure, resistance, flow and wall shear stress. Following

the changes in these image-based outcome parameters pro-

vides a strong indication of the efficiency and response to

therapies (figure 3). In previous studies, this concept has

been applied to long-acting b2-agonists (LABAs) [32], a com-

bination of a LABA and an inhaled corticosteroid [30], a

short-acting anticholinergic, a short-acting b2-agonist [31]

and non-invasive ventilation [33]. The concept has been vali-

dated using gamma scintigraphy [34], single-photon

emission computed tomography [35] and HP MRI [36].

Within AirPROM, state-of-the-art software (MIMICS, Mate-

rialise NV, Belgium; AIRWAYS, Institut Telecom, France) is

being developed to enable automatic extraction of the mor-

phological properties of airways and lobes from patient CT

data. High-resolution computational meshes of the central

airways and lung surface are generated for use in three-

dimensional CFD (FRI) simulation studies using the ANSYS

software. These procedures will form part of a high-through-

put semi-automated framework for modelling structure and

function within the large airways (illustrated for a single

subject in figure 4), applied so far in 20 asthmatic subjects

and nine controls within AirPROM. Application of the FRI
technique further within AirPROM will focus on the phenotyp-

ing and treatment of the central and distal airways. The alveolar

and small airway regions are assessed indirectly via CT-based

lobar expansion from functional residual capacity to total

lung capacity, and applied as boundary conditions in the

CFD simulations. The AirPROM consortium aims to correlate

these image-based markers with other outcome predictors of

small airway diseases such as measurements from the forced

oscillation technique and ventilation imaging from HP MRI [9].
3.2. Small airway measurements and models
Severe asthma is characterized by disease within the small

airways with an absence of alveolar pathology or emphysema

contrasting that in COPD. Within AirPROM, small airway

diseases are being characterized using multiple breath wash-

out, impulse oscillometry, measurement of exhaled volatile

organic compounds and HP MRI [9]. HP MRI provides a

safe and repeatable technique for imaging multiple aspects of

regional lung physiology with sensitivity to lung structures

and function over multiple spatial and temporal length

scales. The non-reliance on ionizing radiation also lends the

technique to repeat studies in therapy follow-up (figure 5a),
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Figure 3. Changes in airway volume based on segmented airways from CT scans in a patient (a) mainly responsive to salbutamol and (b) less to ipratropium
bromide, and in a patient (c) more responsive to ipratropium bromide and (d ) less responsive to salbutamol [31]. Colour spectrums illustrate the change in local
airway volume after treatment (%).
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Figure 4. Computational meshes of the (a) lobar surfaces and (b) central
airways using subject data for an asthmatic subject within the AirPROM
database. (c) Illustrates the pressure solution within the central airways (red,
high pressure; dark blue, lowest pressure) obtained using the FRI approach.
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when modelling the regional effects of a personalized interven-

tion in a given patient with lung disease. These functional

measures cannot be accessed with other structural imaging

modalities such as CT.

A combined HP MRI measurement and modelling

approach [37,38] is being used to assess the structure and

function of small airways in asthma and COPD. Models of

HP MRI measurements are being developed to provide

regional functional data upon which computational models

of gas diffusion, washout, exchange and flow in the major
airways can be based. For example, models of 3He diffusion

within the lung micro-structure are being developed to under-

stand changes in alveolar dimensions related to emphysema

and to understand acinar gas exchange (figure 5b).
3.3. Cell – tissue-level modelling
Several previous studies have focused on acute bronchocon-

strictive airway response, incorporating models of sub-

cellular contraction (a nice review is given in [39]). In this

paper, we focus more on the longer time-scale airway remo-

delling and how the composition of cells in the airway walls

changes. Structural cells that make-up the tissue in the airway

are composed of epithelial cells, airway smooth muscle cells

and extracellular matrix components. In chronic asthma, in

response to repeated inflammatory and bronchoconstrictive

episodes, irreversible airway remodelling occurs through

recruitment and proliferation of the various cell types

[40–43]. These changes culminate in the increased thickness

of the lamina propria, an increase in the amount of mucus

and debris in the lumen and a reduction in the diameter of

the airway lumen. Although airway remodelling is assumed
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Figure 5. (a) HP MRI images for a patient with asthma before and after bronchodilator therapy. (b) Simulation of 3He diffusion in two-dimensional micro-sections of
alveolar ducts and sacs. Colour spectrum represents apparent diffusion coefficients (cm2 s21).
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to be damaging to the airways, there is also evidence that

some of the structural changes could help to limit airway

narrowing, thereby reducing the severity of an asthma

attack [44,45].

We are applying the technique of individual-based mod-

elling/agent-based modelling (ABM) to capture the changes

occurring at the cell level. ABM has been most widely used

in ecology [46], but also in finance, cell and crowd modelling.

The rationale for using ABM is that the collective behaviour

of a set of individuals is a result of their interaction, and

this collective behaviour cannot be predicted from the indi-

vidual behaviour. In ABM, individual entities (in this

case, cells) are represented by software agents which interact

within some framework. The interactions may be physical

(forces) or signals (messages). The agents change their state

(e.g. position in the cell cycle) depending on the interaction

of a set of internal functions, information stored in memory

(which could represent the phenotype) and external signals.

A function could be a mathematical model of a signalling

system, a statistical model of behaviour or a rule (a logical

expression) [47,48]. The flexible large-scale agent modelling

environment (http://www.flame.ac.uk/; [47]) enables the

agents to interact with other modelling paradigms, for

instance differential equation representations of signalling

systems or diffusion models, to understand the behaviour

of individual cells in the airway wall in response to stimu-

lation by irritants or agonists.

For the tissue modelling perspective, we think of the

airway wall as a ‘composite material’ composed of different

cell types with different volume fractions. We are modelling,

within a continuum framework, the corresponding changes

in volume fraction of the structural components that poten-

tially vary with time. This will in turn cause changes to the

elastic properties of the tissue (airway), and hence compli-

ance and contractile characteristics. The ultimate aim, at the

tissue level, is to develop a model, for a single airway, that

can predict changes in effective compliance and airway cal-

ibre as the airway wall remodels, extending from the study

of Brook et al. [49]. However, at the cellular level, inflamma-

tory mediators and growth factors released in response to

inflammation or bronchoconstriction interact with structural

cells within a complex biological network. In order to deter-

mine how the airway wall remodels, we therefore need to

couple the change in volume fraction of the different cell

types in the airway wall to the biological mechanisms at

the cellular level. ABMs being developed alongside the sim-

pler tissue models incorporate many of these mechanisms.

The aim here is to enable parameterization of the simpler

tissue model with outputs from ABMs, so that we may
simplify the coupling of the cell- and tissue-level mechanisms

and reduce computational and mathematical complexity.
3.4. Organ-level modelling
Multi-scale biophysically based computational models of the

lung have been developed and applied to the understanding

of several areas of respiratory physiology, including airflow

and particle deposition, bronchoconstriction, airway closure

[50] and airway hyper-responsiveness in asthmatic airways

[51,52], pulmonary blood flow [53] with application to pul-

monary embolism [54] and lung perfusion MRI [55] (for a

more detailed review refer to [39,56]). These types of models

have provided some understanding of structure–function

relationships in the lung; however, to date, these types of

mechanistic models have seldom (if at all) been applied to

clinical medicine. By contrast, statistical modelling techniques

already present a useful tool in clinical medicine. They

describe how random variables (e.g. clinical measurements)

are related to other random variables. Statistical models can

be used to understand relationships between variables

within a dataset and, for example, used to predict patient phe-

notypes based on previous population analysis of symptoms.

Here we describe biophysically based models and statistical

modelling approaches at the whole organ scale being brought

together within the framework of AirPROM.

In order to combine the range of model components span-

ning multiple scales into a predictive whole organ model,

several simplifications are required. Computational restrictions

limit the use of three-dimensional CFD to around seven to nine

airway branching generations; therefore, we are developing a

one-dimensional model of ventilation within the distal con-

ducting airways enabling inclusion of flow properties right

down to the gas exchange units (approx. 16th generation).

The geometry of the airway tree is created using a combination

of information extracted from CT (central airways and lobar

geometries) and a volume-filling branching algorithm [57].

The ventilation model developed within AirPROM is based

on work by Swan et al. [58], and can predict the dynamic distri-

bution of ventilation during breathing. This model is being

used to understand the consequences of airway remodelling

on ventilation. Ventilation is driven into the lung via defor-

mation of the lung parenchymal tissue. To calculate these

deformations and the stresses within the tissue acting on the air-

ways and vessels, we are using a continuum finite deformation

approach [59]. Properties of airway remodelling from the cell–

tissue-level models will be coupled into both the ventilation

and tissue mechanic models at the organ scale. These techniques

are being developed within the Chaste (cancer, heart and soft

http://www.flame.ac.uk/
http://www.flame.ac.uk/
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tissue environment; www.cs.ox.ac.uk/chaste), which is a

general purpose open-source multi-scale modelling platform.

The statistical modelling develops classifiers and predictors

based on univariate and multivariate statistical analyses

and clustering of data collected through clinical measure-

ments. Different aspects of the diseases can be measured and

quantified using factor analysis. Factor variables, which are

unobserved variables inferred from the statistical modelling,

can be defined which describe the underlying properties of a

dataset using a smaller dimensional space than the full dataset.

The factors can be thought of as representatives of processes or

aspects of disease which correlate with variables associa-

ted with that process. Factors most commonly obtained for

asthma include measurements associated with lung volumes,

airway obstruction, symptoms, allergy, inflammation, airway

hyper-responsiveness and lung physiology changes [10].

For COPD, these can include symptoms, lung volume and

airway obstruction, inflammation, lung physiology changes,

exercise capacity and gas exchange information [60]. Structural

equation models, which can be used to describe the causal

relationship between variables, can be converted to stochas-

tic models that can connect computational and statistical

modelling. Initial results for the BTS severe asthma study

are already available. Integrating all clinical groups regard-

less of current diagnosis (asthma or COPD) will allow for

the unbiased identification of subgroups defined by their

genotype–phenotype without disease boundaries.
4. Where to from here?
We are working on a multi-scale model of the airways to inves-

tigate the natural history and progression of the airway diseases

asthma and COPD. The airway model, following the ambi-

tions of the VPH Initiative, will incorporate data and models

spanning multiple levels of biological complexity, from

genes–cells–tissue to whole organ-level structure and function.

The models will be informed by an extensive cohort of medical

imaging data and physiological and molecular measurements

across the scales. Regarding asthma, we will focus on the

impact of cellular remodelling within the airway walls occur-

ring over longer time scales (chronic disease) on declining

lung function, incorporating feedback from the change in ven-

tilation and deformation patterns at the cell level. For COPD

as well as the airway remodelling (in a similar way to

asthma), we will also investigate the changes in parenchymal

tethering, occurring because of emphysema on lung function.

Current clinical classification of asthma and COPD is

imprecise owing to the range and overlap of symptoms. Patient

phenotyping is of vital clinical significance, potentially helping

to reveal the underlying pathophysiology, risk factors, natural

history and treatment responses of the specific phenotypes—

with the hope of enabling customized treatment regimes for

individuals [61]. One of the major underlying goals within

AirPROM is the improvement of patient phenotyping. This is

where statistical modelling can play a major role. In addition,

the biophysically based models will be used to search for

new biomarkers of disease and indicators of patient outcomes

and exacerbations. Further multi-scale phenotyping of patients

will be done via genomics and the development of cell models.

Cascading down the scales from the organ to the cell level

allows investigation of several hypotheses resulting in a

better understanding of the disease across multiple scales of
biology and the subsequent interaction of therapies to alter

the progression of the, often chronic, disease. Gaining insights

into these pathways is a crucial step to bring personalized

medicine closer to the patient.

Model validation brings together disparate aspects of the

AirPROM project, in particular the modelling outcomes and

patient data. Validation of computational models is a vital

yet exceedingly difficult task in a project of this type; how-

ever, the range of patient data makes this challenge feasible.

Patient-specific data will both inform and validate the

models. For example, HP MRI has been shown to provide

insight into ventilation dynamics in human lungs. We are

developing quantitative time-resolved methods for measur-

ing gas flow velocity to provide additional validation for

CFD and one-dimensional ventilation predictions. Pioneering

multi-material additive layer manufacturing will be used to

produce CT-based models that are not only anatomically

realistic, but also mimic the mechanical behaviour of the

different airway tissues enabling CFD validation as well as

investigation of airway dynamics [62]. The cell–tissue-level

models are being developed in parallel with ex vivo tissue

models within the realm of AirPROM.

One of the many challenges that will be faced within

this project will be bringing together disparate science from

several partners across Europe, and in particular bringing

together models and data across different spatial and tem-

poral scales. One way in which we are tackling this issue is

by forming a truly collaborative working approach, whereby

a detailed understanding of the models and the data is first

obtained. The AirPROM knowledge management platform

also provides a tool to aid in the linking across these scales.

To break this down into more manageable segments, the

model verification, clinical validation and development will

occur in multiple iterative cycles each with increasing

throughput and automation working towards a ‘turn-key’

platform. AirPROM will thus develop a validated patient-

specific multi-scale predictive computational airway model

underpinned by extensive clinical data. Validation will be

undertaken cross-sectionally, following interventions and after

longitudinal follow-up to incorporate both spatial and temporal

dimensions. Clinical interventions that we are aiming to study,

via both clinical measurement and modelling techniques,

include pharmaceutical interventions with highly specific

molecular therapies and surgical intervention procedures (i.e.

bronchial thermoplasty and lung volume reduction surgery),

both targeting stratified patient populations.

One of the many strengths of AirPROM is the close inter-

action between clinicians, patients and pharmaceutical

companies, so that the project is aware of the needs of the

patients, as well as the practicality of the application of

models in the clinic for drug discovery and development. We

have already engaged the prospective ‘users’ and ‘providers’

and started to translate the platforms into usable applications:

collaborations with pharmaceutical companies are already

developing into joint projects. AirPROM will bridge the critical

gaps in our clinical management of airway diseases, by provid-

ing validated models to predict disease progression and

response to treatment and the platform to translate these

patient-specific tools, so as to pave the way to improved,

personalized management of airway diseases.

This work is funded by the EU Seventh Framework Programme FP7/
2007–2013 under grant agreement no. 270194 and is presented on
behalf of the whole AirPROM consortium (www.airprom.eu).

http://www.cs.ox.ac.uk/chaste
http://www.airprom.eu
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