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2Centre for Computer Graphics and Visualisation, University of Bedfordshire, Luton, UK

In many biomechanical problems, the availability of a suitable model for the

wrapping of muscles when undergoing movement is essential for the esti-

mation of forces produced on and by the body during motion. This is an

important factor in the Osteoporotic Virtual Physiological Human project

which is investigating the likelihood of fracture for osteoporotic patients

undertaking a variety of movements. The weakening of their skeletons

makes them particularly vulnerable to bone fracture caused by excessive

loading being placed on the bones, even in simple everyday tasks. This

paper provides an overview of a novel volumetric model that describes

muscle wrapping around bones and other muscles during movement, and

which includes a consideration of how the orientations of the muscle

fibres change during the motion. The method can calculate the form of

wrapping of a muscle of medium size and visualize the outcome within

tenths of seconds on commodity hardware, while conserving muscle

volume. This makes the method suitable not only for educational biomedical

software, but also for clinical applications used to identify weak muscles that

should be strengthened during rehabilitation or to identify bone stresses

in order to estimate the risk of fractures.
1. Introduction
Musculoskeletal diseases (such as osteoporosis and neuromuscular disorders)

affect hundreds of millions of people around the world. In most cases, these dis-

orders are incurable and their treatment is generally ameliorative, involving

changes in lifestyle supported by rehabilitation to improve the quality of patient

life. To maximize the effectiveness of the treatment, a full understanding of the

physiology of muscles is required—for example, one needs to understand the

role played by different motion activities (e.g. walking, climbing stairs or fall-

ing) in the overall risk of bone fracture in order to be able to propose suitable

changes in lifestyle. To be useful, this assessment has to be specific to the indi-

vidual patient. This is one of the challenges currently being addressed by the

EC-funded project VPHOP: the Osteoporotic Virtual Physiological Human

[1], 2008–2012, which is an integrated project involving 21 partners.

Skeletal loading is significant for patients with osteoporosis, as even small

local peaks in the loading can cause fractures in bones made brittle by the dis-

ease; skeletal loading can be estimated only by using a suitable modelling

technique [2]. Although medical imaging, e.g. magnetic resonance imaging

(MRI) and computed tomography, can potentially provide all the data from

which a complete anatomical model of a patient can be constructed, it is cur-

rently impractical (and unethical, considering the amount of imaging that

would have to be performed on the patient) to create such a customized

model from scratch [3]. One solution lies in constructing a generic musculoskeletal

model (using data from cadaver studies) that can be scaled and morphed to fit

a patient-specific model, using limited imaging and morphometric data from

the patient [4,5].

Musculoskeletal models [6–11] in common clinical use assume that the

mechanical action of the muscle occurs along a polyline, named the line of
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Figure 1. Iliacus, its attachment areas (blue and red spheres) and muscle
fibre arrangement (see the muscle fibre template) as defined by an
expert. (Online version in colour.)
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action, joining the origin and insertion points of the muscle,

i.e. the sites at which the muscle is attached to the bone by

a tendon. In essence, a line of action is a representation of

the muscle fibres and tendons. An advantage of action-line

models, besides their rapid processing speed, is that the

model created for one particular patient can be easily

adjusted, usually by uniform scaling [5], to fit another

patient, though, of course, if the anatomies of the patients

differ greatly, this may no longer be true. However, these

models tend to overestimate the predicted joint loads because

their assumption of muscle fibre length being uniform over

the entire muscle bundle is often not fulfilled in practice [2].

Another drawback is that representing a muscle by a set of

ad hoc lines of action provides only a limited physical rep-

resentation of the changes induced in the human anatomy

by movement and may lead to inaccurate estimation of

many features important in the functioning of muscles,

such as cross-sectional area [12].

A more accurate approach represents a muscle by a

B-spline solid [13] in which the iso-lines correspond to

muscle fibres, data for which are extracted from a cadaver.

Deformation is controlled by manipulation of the control

points of the spline. An alternative uses a three-dimensional

finite element mesh (FEM) whose elements contain infor-

mation about the direction of the muscle fibres present in

its volume [14–16], and the vertices move in reaction to the

external force induced by the movement of the bones.

Although these models produce results that show good

agreement when compared with static MRI images taken in

different postures [14,15], their use in the clinical context is

highly impractical because generating the meshes is a com-

plex process that may require several days’ work even for a

highly skilled operator, and computing the solution requires

several hours on a supercomputer [14].

A different approach is used in character animation.

Muscles are represented variously as implicit blobs, ellipsoids

[17,18] or Bézier patches [19], which deform in reaction to

bone movement. Aubel & Thalmann [11] proposed a physio-

logically based technique by representing a muscle by a line

of action and a triangular surface mesh bound to nodes of

that line of action so that a change in the path of the line of

action triggers a deformation of the muscle surface. Although

they typically run in real time, these models emphasize visual

appeal rather than anatomical accuracy, e.g. the issue of

impenetrability between muscles and bones is not addressed

[15], and muscle fibres are not produced, so they are not

suited to biomechanical calculations.

Our model starts from an atlas and deforms this generic

model according to data captured from the individual patient

to form a personalized model. Motion is captured of a subject

performing activities suitable to the investigation taking

place. If the individual is the actual patient, these data can

be used immediately; if not, motion retargeting has to take

place to match the motion to the skeleton of the patient.

After this, the motion is fused with the anatomical data

and this provides the environment for the muscle defor-

mation calculations to take place. In this, the positions and

shapes of the muscles during motion are calculated, with

interpenetration being avoided so that muscles wrap prop-

erly around the bones and other muscles. A muscle fibre

model is accommodated within the deformed muscle.

The paper provides an overview of the method; other

papers [20,21] provide greater detail about specific novel
aspects. The remainder of this paper is structured as follows.

In §2, we present the generic musculoskeletal model, and

§3 describes the adjustments necessary to create a patient-

specific model from it. Motion fusion is discussed in §4,

while §5 gives an overview of the proposed muscle fibre wrap-

ping technique. A summary of the experiments performed and

their results can be found in §6 and §7 concludes this paper.
2. Our generic musculoskeletal model
Our model of the lower limbs extends the action-line model,

with bones and muscles being represented by triangulated

surface meshes in the rest-pose position as captured from

MRI images of a female cadaver [22]. Subsequently, these

were improved using various operations such as the Poisson

surface reconstruction, removal of non-manifold edges, hole

filling and smoothing that are available in mesh editing appli-

cations, e.g. MESHLAB (http://www.meshlab.sourceforge.net/)

and BLENDER (http://www.blender.org/). For each muscle,

two sets of landmarks fixed to an underlying bone, for

the origin and insertion areas, were specified by an expert,

who also defined the arrangement of the muscle fibres in

the muscle—parallel, pennate, curved, fanned or something

else (figure 1).

Each muscle is also associated with one or more lines of

action that describe its general path between the origin and

insertion attachment areas and are considered as the muscle

‘skeleton’. Muscles that have large (e.g. glutaeal muscles) or

multiple (e.g. biceps femoris) attachment areas are associated

with two lines of action, all other muscles with just one. In

most cases, a line of action is a straight or piecewise straight,

line, possibly passing via a single intermediate point. Both

endpoints, and the intermediate point if it exists, are given

as landmarks specified by an expert; these are fixed to the

surface of the relevant bone and move automatically with

it. For some muscles, e.g. iliacus, the lines of action wrap

around specified wrapping parametric surfaces, such as

spheres and cylinders, on paths defined by our wrapping

algorithm, which is a slight modification of the global optim-

ization method described by Audenaert & Audenaert [10] for

the following obstacle sets: single sphere, single cylinder and

sphere-capped cylinder.

For the latter two obstacle sets, the original global algor-

ithm assumes that the endpoint E of the line of action lies

on the cylinder surface. However, this assumption is often
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Figure 2. Wrapping of line of action around a single cylinder from the given
origin point O to the given endpoint E through one via point (I) whose coor-
dinates were automatically evaluated so that the overall length of the path
from O to E would be minimal. (Online version in colour.)

Figure 3. An overview of our musculoskeletal model. Lines of action are
depicted as yellow line segments, spheres with arrows show the position
and degree of freedom of joints defined. (Online version in colour.)

(a) (b)

Figure 4. Patient landmark (green dots) positioning in EOS images:
(a) coronal view, (b) sagittal view; landmarks used in this paper are the cen-
troid of the femur head, the centroid of the patella, and the lower end of the
tibia. (Online version in colour.)
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violated in practice as the endpoint is a landmark placed on

the bone surface by an expert. Hence, a new point I (xE, yE,

zE) through which the path must pass is introduced on the

cylinder surface (figure 2). Essentially, I is the point at

which the line of action leaves the cylinder. As line EI is a tan-

gent to the cylinder, provided that the axis of the cylinder is

aligned with the z-axis (if this is not the case, a simple coor-

dinate transformation can be applied to make it so), the

coordinates xI and yI of the point I can be obtained from

the equations x2
I þ y2

I ¼ r2, xI � xE þ yI � yE ¼ r2; where r
is the radius of the cylinder. Following the assumption that

the overall length of the line of action path should be a mini-

mum [6], the golden section search [23] is then used to find

the optimal zI.

Models of muscles and bones are hierarchically grouped

into regions. Each region represents a different part of the

body, e.g. right thigh, shank or pelvis, and is geometrically

defined as a triangular surface mesh, which should be a

model of an external body layer, i.e. skin. However, owing to

lack of these data, it is a low-resolution model of the skeletal

structure in our case. On the surface mesh of the region, land-

marks for motion fusion are specified. Regions are connected

by joints with different degrees of freedom, as described

in Delp & Loan [7], to assist with motion retargeting. An

overview of our musculoskeletal model is given in figure 3.
3. Adjustments to create a patient-specific model
Creating a patient-specific musculoskeletal model directly

from medical imaging is impractical as a huge amount of

human effort would be involved in performing the necessary

segmentation and reconstruction of the three-dimensional sur-

face models. Instead, a common practice is to derive the patient

model from a generic model such as that described in §2. This is

accomplished by appropriate scaling of the generic model to

fit the specific features to be found in the patient’s anatomy;

to achieve the required level of fit, this scaling would be non-

uniform, which means that generic linear scaling would not

work. The inputs to the scaling process are the generic surface
musculoskeletal model, with muscle attachment landmarks,

and patient-specific landmarks.

In our method, the patient-specific landmarks are extracted

from EOS images. An EOS image is a pair of orthogonal X-ray

images acquired by low-dose EOS imaging devices.

One advantage of EOS imaging over normal X-rays is that

the image is created by orthogonal projection, which makes

it possible to acquire accurate positional information. Salient

landmarks of patients are manually positioned on and

extracted from the digital EOS images by experienced

operators, as shown in figure 4. As bones are more distinguish-

able than muscles in EOS images, it is preferred to use

landmarks on bones. Our method uses three pairs of patient

landmarks which can be easily located—the centroid of the

femur head, the centroid of the patella and the lower end of

the tibia, as shown in figure 4. However, other landmarks

can also be defined and used.
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Figure 5. Bones and muscles of generic atlas model: (a) before and (b) after
Laplacian scaling; (c) fitting of the scaled model to patient EOS images.
(Online version in colour.)
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Laplacian mesh deformation is used to achieve patient-

specific scaling that captures the anatomical characteristics of

the patient’s anatomy while preserving the overall structure

of the generic model. The input generic model is a surface

model composed of a set of closed surfaces of bones, muscles

and tendons. The surfaces are triangular meshes defined by

vertices and triangles. In Laplacian deformation [24], the gen-

eric mesh model is re-expressed by a discrete form of the

differential Laplacian shape descriptor as the discrete differen-

tial coordinates of vertices on the surface, i.e. the distance of a

vertex to the average of all of its weighted neighbouring

vertices (d coordinates).

These coordinates are then represented in the form of

a Laplacian matrix equation [24] in which the matrix

on the left side of the equation represents the connectivity

and weights of vertices while the right side represents d

coordinates. The correspondence between certain surface

points and patient-specific landmarks is established and

represented in the Laplacian equation. For example, for

the centroid of the femur head, three points are used: the

uppermost, hindmost and outermost points in the femur

head. The distances between the patient-specific landmarks

and the corresponding points in the generic model are

inserted into the matrix, and the aim is to conserve

them. The user-specified positions of the patient-specific

landmarks are used as target positions on the right side of

the Laplacian equation.

The generic model is composed of multiple closed mesh

surfaces representing bones, muscles and tendons; the

muscles and bones are very closely positioned and the gaps

between neighbouring surfaces are very small. Without

special constraints, floating of the surfaces and penetration

between them may occur after scaling. Careful considera-

tion is needed to retain the integrity of the musculoskeletal

structures, to preserve the muscle–bone attachments and

to prevent inter-surface penetration. This is achieved by

adding extra constraints to the Laplacian matrix equation—

muscle-attachment constraints and inter-surface constraints

are used to preserve the muscle–bone attachment, and to pre-

vent muscle–muscle and muscle–bone penetration. Muscle

attachment landmarks used as muscle–bone constraints are

available in the generic model, whereas inter-muscle constraint

points are obtained by finding the closest points among neigh-

bouring surfaces. With these additional constraints, the generic

musculoskeletal model can be scaled properly to a patient-

specific model. The output of the scaling is a patient-fitted

musculoskeletal model, as shown in figure 5.

The generic model also includes motion landmarks,

which are used for motion retargeting; these also need to

be scaled. The landmark is usually very close to the surface

of a bone, so the closest point on a bone surface is chosen

as its anchor point and the distance between the landmark

points and their anchor points is used as the Laplacian d

coordinate in the equation.

Total energy minimization is applied to solve the

Laplacian matrix equation to calculate the scaled model.

This is achieved by optimizers which minimize the weighted

sum of the d coordinates and the distance between landmarks

and their targets; in our implementation, the least-squares

optimizer is used. Global non-uniform scaling is achieved.

Local surface details are preserved by the differential Lapla-

cian shape descriptor, while the patient-specific landmark

points are moved close to their target locations.
One challenge in scaling the full set of generic musculo-

skeletal models is that the least-squares optimizer may

produce an out-of-memory error as the memory demands

of the matrix decomposition can regularly exceed what is

available on a typical PC platform. In such circumstances, a

low-resolution generic model is created with the quadric

mesh decimator available in the VISUALIZATION TOOLKIT

(VTK) [25] in a pre-processing step. Scaling is then applied

using this low-resolution model, for which the Laplacian

matrix equation solving fits within the available memory,

to create a patient-specific low-resolution model. As a high-

resolution model is very close to its low-resolution counter-

part, correspondence between points in the high-resolution

and low-resolution models can be established allowing the

patient-specific high-resolution model to be formed.
4. Motion fusion
Once the model is adapted, it can be fused with motion data

defining the kinematics of the skeleton during various

physical activities, e.g. walking, stair climbing or falling to

one side. Our motion data contain time-variant landmarks

acquired from tracking markers placed on the subject.

The iterative closest point (ICP) algorithm by Horn [26],

which is implemented in the VTK [25], is used for the

registration of these time-variant landmarks and the corre-

sponding landmarks that are specified in our model. For

each time frame, the ICP algorithm translates and rotates

the regions according to the input motion data, which results

in translation and rotation of the bone surface meshes

because the vertex coordinates of a bone mesh are relative

to the position of the region to which this bone belongs.

Consequently, the positional parameters of the parametric

wrapping surfaces, the coordinates of the landmarks for the

attachment areas and the coordinates of the endpoints of

the lines of action change, because they are all relative to

the position of the corresponding bone. As a result, the wrap-

ping algorithm (see §2) must be run to update the paths of the

lines of action, after which the muscle surface meshes are

wrapped as will be described in §5.

If the motion was captured from the same subject as that

represented in the patient-specific model, the motion can be
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used directly. However, if the anatomy of the moving subject

is dissimilar from that of the static patient-specific model, the

input motion data must be converted into a physically plaus-

ible motion that preserves the desirable properties of the

original motion data, such as kinematics, balance, torque

limit and momentum [27], in the moving object but which

relates to an anatomy consistent with the static patient-specific

model. This is known as motion retargeting.

For this purpose, we use a Kàlmàn filter [27], originally

used in cinematic computer animation, with a slight modifi-

cation: only kinematic constraints (position and orientation)

are considered because the original captured data will have

correct physical data and the retargeted motion should not

diverge greatly from the original—the other constraints,

which were included to support the possibility of computer

graphics characters having extreme physical characteristics,

are not required in our context. Furthermore, unlike the

other constraints, kinematic constraints can be specified inter-

actively, and the filter can perform motion retargeting based

on these constraints, with interactive performance.

One difficulty with the Kàlmàn filter is that it works with

motion data in which the kinematics is represented by time-

varying positions of joints that are interconnected by line

segments and for which information about their degrees of

freedom is known. Our motion data, however, contain

time-varying external body landmarks, so it is necessary to

estimate the joint positions from these landmarks. We use

the algorithm described by Kirk et al. [28] that works as fol-

lows. First, the landmarks are subdivided into groups so

that all landmarks of one group are in proximity to the

same physical joint. Kirk et al. [28] suggest using a clustering

technique, but we opted for a predefined subdivision scheme

because landmarks in our motion data are named so it is

known to which joint each of them contributes. For each

group, the algorithm specifies the joint position to be at the

point that minimizes the average variance in distance

between itself and the landmarks of this group through all

time frames. This is a nonlinear optimization problem,

which is solved using an iterative nonlinear conjugate gradi-

ent method [23]. We note that relations between joints and

their degrees of freedom are adopted from those predefined

in the static musculoskeletal model.
5. Muscle fibre wrapping
For each time frame (current-pose position), the difference

between the new and previous paths of the line of action deter-

mines how the muscle surface should change to fit the anatomy

at the current time frame. We have developed a gradient-

domain deformation technique to deform the muscle accord-

ingly, based on the iterative solution of a system of linear

equations with a nonlinear constraint. It preserves the volume

of the muscle being deformed [29] and can process a muscle

of medium size in less than 400 ms on commodity hardware,

while keeping the volume error below 1 per cent.

The method also has the option of enforcing impene-

trability of muscles and bones, though this has some

computational cost. To process a single muscle of medium

size, avoiding penetration only with bones, i.e. muscles are

allowed to intersect each other, the method takes, on average,

23 s on commodity hardware. Increasing the number of

meshes involved, as needed if muscle–muscle penetration
is considered, increases the overall time substantially and

the method may take up to 5 min for several meshes, but

this is still far below that needed by previous methods [14].

Further details are provided in Kohout et al. [20].

Once the muscle is deformed, we can decompose its

volume into an arbitrarily large number of muscle fibres,

with each muscle fibre being represented by a polyline of

user-specified resolution, i.e. the number of linear segments

from which the polyline is formed. Our decomposition tech-

nique [21] is based on slice-by-slice mapping on to the surface

of the muscle, a cubical template that contains, in its interior,

fibres represented by Bézier curves as defined by Blemker &

Delp [14]; it uses the technique described by Ju et al. [30] to

map the fibre vertices into the interior of the muscle. A

muscle of medium size (10 K triangles) can be decomposed

by our technique in less than 1 s, even for a large number

of fibres (256) and a high resolution (50 segments). Further

details are provided in Kohout et al. [21].
6. Experiments and results
Our approach was implemented in Cþþ (MS Visual Studio

2010) under the Multimod Application Framework [31],

which is a visualization system based mainly on VTK [25],

and integrated into the LHPBUILDER software developed

within the VPHOP project [1].

The user interface for placing landmarks on an EOS

image pair is shown in figure 4. Predefined landmarks—the

centroids of the femur ball and patella and the lower end of

the tibia—can be viewed and moved by the operator.

Figure 4a displays the frontal image and is used to locate

the landmarks in the coronal (xz) plane, whereas figure 4b
is from the side and is used to locate landmarks in the sagittal

(yz) plane. The images can be flipped horizontally or verti-

cally as the coordinate system of the EOS images may differ

from that of the generic model.

Figure 5a shows the generic musculoskeletal model before

and after scaling. It can be seen that the non-uniform scaling

does preserve the overall shape and structures of the bones

and muscles, and the muscle–bone attachment relationships

correctly. There is no separation between neighbouring

muscles and there is no visible penetration between muscles

and bones. Figure 5b,c shows the scaled model together with

patient-specific EOS images and landmarks. The scaled

patient musculoskeletal model fits the patient images well,

and the user-specified landmarks are at their desired pos-

itions in the scaled model. All of this demonstrates that the

non-uniform scaling is successful.

The limitations of the EOS images mean that we can use

landmarks only from bones, not from muscles or the skin,

though the framework itself could support such landmarks.

The more landmarks that are used, the better the scaling of

the outer shapes of the muscles is likely to be, though there

will be an associated cost in computation, particularly in

terms of demands on the available memory.

Figure 6 shows the musculoskeletal model fused with

walking motion data without motion retargeting. It can be

seen that if the anatomy of the moving subject is similar to

that represented in the static model, the results are realistic,

though small imperfections may be observed: the head of

the femur does not fit perfectly into the socket of the pelvis

(for the right leg, the error was measured to be about



(a) (b) (c)

Figure 6. Musculoskeletal model: (a) before and (b) after being fused with
anatomically compatible and (c) incompatible motion data when motion
retargeting is not applied. (Online version in colour.)

Figure 7. Estimated joints (cyan spheres) in comparison with their counter-
parts ( pink spheres) present in our model. (Online version in colour.)

(a) (b)

Figure 8. Example of the result of motion retargeting. The skeleton is con-
structed from the joints, as shown in figure 6. The tall skeleton has the
original motion data (walking from (a) to (b)), and this is retargeted to
the short one with the same hierarchy but different bone lengths. The kin-
ematic constraint in this case is that the feet touch the same position on
the ground. The short skeleton is translated sideways to allow its walking
motion to be displayed clearly. It can be seen that the short skeleton
shares the pattern of movement with the tall one.
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9.5 mm); similarly, the tibias are slightly dislocated (for the

right leg, the error was about 14.9 mm).

It is important to point out that the position of a marker

placed on the moving subject is subject to local skin defor-

mations induced by muscle wrapping, so a single marker

can determine the position of its underlying bone with only

limited accuracy. Consequently, the error depends greatly

on the number of time-variant landmarks specified for a

part of the body in the motion data—the more landmarks

that are used, the better the method can cope with these

deformations. In our case, only three markers were used for

the thigh, all with the same reliability. Introducing different

weights for landmarks so that an unreliable landmark, e.g.

left and right posterior superior iliac spines, has a lower

weight than a more reliable one, e.g. left and right anterior

superior iliac spines, can also decrease the error, but this

increases the user intervention required, while the original

motion fusion method is fully automatic.

If the anatomy of the moving subject is completely dif-

ferent from that represented in the static model, the results

of motion fusion are totally unacceptable as the regions

become unrealistically disjoint—see figure 6c, where the

right femur ball centre is about 71.3 mm distant from its ana-

tomical position and the right tibia is displaced about 33 mm

from the femur. Motion retargeting is needed to produce

acceptable results in such cases.

As motion retargeting requires the estimation of joint pos-

itions, we considered motion data for a subject anatomically

compatible with the static model and compared the positions

of the joints estimated from time-varying landmarks in the

original motion data with the positions of those in the

model fused with that motion data. From figure 7, it is appar-

ent that the method is less accurate in estimating the

lumbosacral and coxofemoral joints (error 44.23 mm + 9.51)

than in estimating the femorotibial (error 16.64 mm + 4.49)

and subtalar joints (error 7.81 mm + 2.71). This is under-

standable because the former joints are more distant from

their corresponding landmarks (acquired from tracking mar-

kers placed on the subject).

An example of motion retargeting is given in figure 8. The

skeleton is constructed from the joints, as shown in figure 7,

and is organized in a hierarchy from the leg to the foot.

The tall skeleton has the original motion data, and this is
retargeted to the short one with the same hierarchy but differ-

ent bone lengths. The kinematic constraint in this case is that

the steps of both skeletons are the same, i.e. the feet touch the

same position on the ground, but the user can also interac-

tively adjust this kinematic constraint by, for example,

changing the step length. In figure 8, the short skeleton is

also translated sideways to allow its walking motion to be

displayed clearly. It can be seen that the short skeleton

shares the pattern of movement with the tall one, which con-

firms that our Kàlmàn-like filter can provide us with a

physically plausible motion that preserves the kinematic

properties of the motion data in the moving object.

Figure 9 shows results of wrapping the muscle surface

meshes for a walking human; overall, the shapes and

mutual positions of the muscles are realistic—comparing

the results against dynamic MRI, however, has yet to be

done. In our experience, if the lines of action of a muscle

do not accurately describe its general path (e.g. for iliacus,

sartorius and gracilis), the accuracy of the muscle wrapping



Figure 9. Wrapping of the muscles during movement. A supplementary movie
is available from http://graphics.zcu.cz/Projects/Muskuloskeletal-Modeling.
(Online version in colour.)

Figure 10. Glutaeus medius decomposed into fibres, compared with the
illustration in Richardson [32]. (Online version in colour.)

rsfs.royalsocietypublishing.org
Interface

Focus
3:20120062

7

is affected. A comparison of the fibres produced by our

method for muscle decomposition with those illustrated in

a traditional anatomical atlas is given in figure 10. The fibre

pattern is a good representation of reality, as confirmed by

orthopaedists with whom we cooperate. More results regard-

ing muscle fibre wrapping and verification can be found in

Kohout et al. [21].
7. Conclusion
This paper has presented a novel approach to the muscle wrap-

ping of a patient-specific model in which the muscles are

presented not as lines of action, as in most conventional bio-

engineering problems, but by volumetric models in which
the fibre pattern of the muscle is embedded and moves with

the muscle. The work is still at an early stage, but the results

are encouraging. While slower than methods using only lines

of action, its computational performance (seconds up to

a couple of minutes) is satisfactory and work continues

to optimize various aspects of the algorithm; increased use of

the graphics processing unit may well bring rapid improve-

ments. The availability of information concerning changes in

muscle fibre direction during motion is likely to provide

improved accuracy in force estimation, which is particularly

important in the context of osteoporosis. Compared with

alternative volumetric approaches such as FEM, the

computational times are orders of magnitude faster.

This work was partially supported by the Information Society
Technologies Programme of the European Commission within the
project VPHOP (FP7-ICT-223865). The authors thank the numerous
people who provided help and support for this work.
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