
rsfs.royalsocietypublishing.org
Research
Cite this article: Figueredo GP, Joshi TV,

Osborne JM, Byrne HM, Owen MR. 2013

On-lattice agent-based simulation of

populations of cells within the open-source

Chaste framework. Interface Focus 3:

20120081.

http://dx.doi.org/10.1098/rsfs.2012.0081

One contribution of 25 to a Theme Issue

‘The virtual physiological human: integrative

approaches to computational biomedicine’.

Subject Areas:
biomathematics, systems biology,

computational biology

Keywords:
agent-based simulation, multi-scale model,

cancer, lattice models, cell cycle,

tumour hypoxia

Author for correspondence:
Grazziela P. Figueredo

e-mail: grazziela.figueredo@nottingham.ac.uk
& 2013 The Author(s) Published by the Royal Society. All rights reserved.
On-lattice agent-based simulation of
populations of cells within the
open-source Chaste framework

Grazziela P. Figueredo1, Tanvi V. Joshi1, James M. Osborne2,
Helen M. Byrne2,3 and Markus R. Owen1

1Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham,
Nottingham NG7 2RD, UK
2Oxford University Computing Laboratory, Department of Computer Science, University of Oxford,
Wolfson Building, Oxford OX1 3QD, UK
3Oxford Centre for Collaborative Applied Mathematics, Oxford OX1 3LB, UK

Over the years, agent-based models have been developed that combine cell

division and reinforced random walks of cells on a regular lattice, reaction–

diffusion equations for nutrients and growth factors; and ordinary differential

equations for the subcellular networks regulating the cell cycle. When linked

to a vascular layer, this multiple scale model framework has been applied to

tumour growth and therapy. Here, we report on the creation of an agent-

based multi-scale environment amalgamating the characteristics of these

models within a Virtual Physiological Human (VPH) Exemplar Project. This

project enables reuse, integration, expansion and sharing of the model and rel-

evant data. The agent-based and reaction–diffusion parts of the multi-scale

model have been implemented and are available for download as part of

the latest public release of Chaste (Cancer, Heart and Soft Tissue Environ-

ment; http://www.cs.ox.ac.uk/chaste/), part of the VPH Toolkit (http://

toolkit.vph-noe.eu/). The environment functionalities are verified against

the original models, in addition to extra validation of all aspects of the

code. In this work, we present the details of the implementation of the

agent-based environment, including the system description, the conceptual

model, the development of the simulation model and the processes of verifi-

cation and validation of the simulation results. We explore the potential use of

the environment by presenting exemplar applications of the ‘what if’ scen-

arios that can easily be studied in the environment. These examples relate

to tumour growth, cellular competition for resources and tumour responses

to hypoxia (low oxygen levels). We conclude our work by summarizing the

future steps for the expansion of the current system.
1. Introduction
In this work, we introduce a virtual research environment for two-dimensional

and three-dimensional in silico simulation of the dynamics of lattice-based cell

populations coupled to diffusible fields such as nutrients and growth factors.

Our focus is to explain in detail the steps of the simulation model development,

regarding aspects such as the system description, the conceptual model, the

simulation model development in Chaste [1] as well as the system verification

and validation.

The main purpose of this simulation system is to facilitate biological

research in testing mechanisms such as interactions between different cell

types (such as proliferating normal cells and cancer cells and non-proliferative

macrophages) in a nutrient and growth-factor-dependent environment. Fur-

thermore, this simulation tool can be used to test potential new treatments

for various pathologies, such as early-stage cancer.

The idea of incorporating this environment into the VPH Toolkit came from

the successful development of models for cell division, birth, death and
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Figure 1. The conceptual model of the multi-scale environment. There are three layers in the model: the diffusibles, the cells and the intracellular phenomena (such
as the cell cycles and apoptosis).
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movement within a lattice in two dimensions [2] and three

dimensions [3]; regulation of cell cycle and factors, such as

oxygen and other nutrients [4]; tumour hypoxia and effects

of hypoxia in cell cycles of tumour and normal cells [5].

These models represent the state of the art in multi-scale

modelling for tumour growth and cellular hypoxia, but

their original implementation does not yet meet the stan-

dards of reproducibility, reusability and interoperability

that are required to enable a public release. Their implemen-

tation for the VPH Toolkit within Chaste therefore allows for

the release of a reliable, reusable and expandable code.

As part of the Chaste test-driven approach to software devel-

opment [1], extensive nightly and weekly tests are performed on

all parts of our code, which means that functionalities are con-

stantly being verified and should be preserved over time,

allowing the generation of reproducible simulation results. Fur-

thermore, the functionalities that we have added to Chaste are

verified against the original model implementation.

The object-oriented approach adopted by Chaste facilitates

the expansion of the model to include different cell popu-

lations and diffusible substances. In the future, we aim to

extend this environment to a vascular tissue modelling

environment (VTME), encompassing models for fluid flow

in a vessel network; transport, release and uptake of diffusible

substances such as oxygen; and integration of angiogenic and

vasculogenic endothelial cells into the vascular network [6,7].

The work presented here, therefore, represents the first step

towards a VTME.

The remainder of this paper is organized as follows. First, we

introduce the cellular, subcellular and diffusible components of

the multi-scale agent-based model (§2); subsequently, we intro-

duce the conceptual model of the simulation, which defines

the model scope and simplifications from the real-world bio-

logical system. In §3, we introduce the details of the model

implementation as well as the verification and validation of

each of the modules. Section 4 presents some applications that

can be developed in the environment. Finally, in §5 we draw con-

clusions and present the future steps to expand our environment.
2. The multi-scale agent-based system
The system implemented comprises different elements from

distinct time and length scales coupled together. The multi-

scale model features include competition between cell-cycle-

based cells (for example, cancer and normal cells, which can

divide) and lifespan-based cells (e.g. macrophages, which can

only die after a certain lifespan), cellular random walks and

coupling to diffusible substances such as nutrients (e.g. via con-

sumption and/or production by cells). Cell-cycle models and
cell death (apoptosis) can be dependent on the diffusible sub-

stances (e.g. nutrients such as oxygen). The general structure

of the model was therefore divided into three layers, corre-

sponding to the diffusible nutrients, the cellular and the

intracellular phenomena, as shown in the conceptual model

of figure 1.

The first layer contains the diffusible species existing within

the environment. These species are the molecules that interact

with cells, providing nutrition or stimulating cellular activity.

One example of a diffusible, shown in figure 1, is oxygen,

which directly regulates some types of cellular proliferation

and death. It is well known that cells are regulated by and pro-

duce various other substances such as growth factors, cytokines

and other signalling molecules. While we focus here on oxygen

in the diffusible layer, the framework we describe is easily

extended to include multiple diffusible species.

The cellular layer focuses on the cellular interactions and

their spatial locations. For our model, three types of cells are

initially considered: normal and cancer cells, which have

distinct nutrient-dependent cell cycles, and macrophages,

which are immunocompetent cells responsible for mounting

immune responses and aiding different types of immunothera-

pies [8]. Normal and cancer cells compete for space and

nutrients, such as oxygen. Cancer cells, however, tend to be

better competitors and take over the space of normal cells

with time [9]. This is explained by the fact that cancer cells

are more resistant to low levels of oxygen—they enter a quies-

cent state and survive longer than normal cells under such an

unfavourable environment. The competition between these

two types of cells is determined by rules that couple the cellular

and the subcellular layers of the model. Likewise, the apoptosis

(programmed cellular death) of normal and cancer cells is

controlled by the level of oxygen (or any other type of nutrient)

inside the cell. Macrophages, on the other hand, are marked for

apoptosis with age. Finally, these cells are capable of moving

randomly between neighbouring lattice sites.

The intracellular layer comprises the processes that control

cell division and apoptosis. For those cells that reproduce,

cell division is regulated by the cell cycle, which is the set of

events whereby a cell duplicates most of its components in

order to replicate [2]. In this layer, the rules that determine

how the cell cycle and cellular apoptosis should respond to

the levels of nutrient are implemented. The details of the

implementation of these layers will be further discussed in §3.
3. Development of the simulation environment
The simulation environment was implemented using a

multi-method approach comprising (i) two-dimensional and
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Figure 2. (a) Cycle-based and (b) lifespan-based cells state charts.
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three-dimensional lattices containing the objects from the

system; (ii) agents, representing the cells that lie in the lattice;

(iii) random-walk rules for the agents’ movement; (iv) ordin-

ary differential equations (ODEs) for subcellular networks

that regulate the cell cycle; and (v) partial differential

equations (PDEs) for the transport, release and uptake of dif-

fusible species such as oxygen. Each of these elements and

their integration will be described in greater detail below.
3.1. On-lattice simulations
Our on-lattice model can accommodate empty lattice sites

with no cells associated. Additionally, multiple cells can be

placed in each lattice site, according to a pre-defined carrying

capacity. This implementation allows the simulation models

to overcome some of the limitations of existing traditional cel-

lular automaton models. First, the maximum population size

is not constrained to the size of the lattice. Rather, the number

of biological cells in the simulation model is controlled by

the carrying capacity of each lattice site. This characteristic

allows for lattice sites to correspond to a user-defined tissue

volume whose natural carrying capacity will depend on

that volume and on the properties of the cells under consider-

ation (e.g. the cell volume and degree of contact inhibition).

Furthermore, different carrying capacities can be defined

for each lattice site, allowing, for example, for the simulation

of areas in a tissue with different microenvironmental con-

ditions (e.g. extracellular matrix density). The lattice sites

do not have rules associated with them. Instead, they are

just possible locations where the biological cells may lie,

with the advantage that this type of lattice is capable of con-

taining simultaneously heterogeneous populations with

distinct rules associated to each type of biological cell. The

concept of lattice neighbourhood is also used, in order to

allow cell movement in space. Following some concepts of

the traditional approach of cellular automata models, two

types of neighbourhoods are considered, the von Neumann

and Moore neighbourhoods [10]. These neighbourhoods are

also implemented in three dimensions.
3.2. The cell population
A cell population is a computational representation of a col-

lection of cells, for example a tissue. The cell population

exhibits the following features:
— Cells are associated with only one lattice site. The

implementation considers only on-lattice simulations.

— Each lattice site (and cell) has a neighbourhood associated

with it.

— Lattice sites may have no cell associated with them.

— Cells are added (cellular birth) and removed (cellular

death) from the lattice during the course of a simulation.

— Cells move randomly in the lattice and the probabilities of

movements can be specified to include certain cell

behaviours, such as chemotaxis.

— Different cell types (e.g. normal cells, tumour cells, macro-

phages) can occupy the same lattice site simultaneously.

— There can be more than one cell per lattice site. Each lattice

site has a carrying capacity that determines the maximum

number of cells which can be located at that site.

These features will be described in more detail in the

sections below.

3.2.1 The cell agents
There are two main types of agents in the system: those that

have a cell cycle (figure 2a) and those that die with age

(figure 2b). Here, we illustrate these concepts using state

charts from the unified modelling language (UML), where

it is possible to define and visualize the agents’ states

(round squares), transitions between the states (arrows),

events that trigger transitions, timing and agent actions.

Figure 2a introduces the state chart for cell-cycle-based

agents. Normal and cancer cells belong to this class of

agents. In the figure, the cycle-based cell assumes two main

states: alive or dead, which is the final state where the

cell is removed from the system. When the cell is alive, it

moves randomly in the lattice. This cell movement is dictated

by the transition move, which occurs probabilistically. In

addition, when the cell is alive, it enters its nutrient-

dependent cell-cycle state for division and, if it runs low of

nutrients, it is considered to enter an apoptotic state that pre-

cedes its death. The general action chart for the cell cycle is

illustrated in figure 3. As shown in the state chart of

figure 2a, the cell cycle is a cyclic procedure that occurs

until the cell is labelled for apoptosis. Once the cell is

marked for apoptosis, the conditional transition check_

apoptosis is triggered and the cell assumes the

apoptotic state. The general apoptosis action chart,

which determines when low nutrient causes a cell to be
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Figure 3. Cell-cycle action chart. (Online version in colour.)
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Figure 4. Cell apoptosis action chart. In the figure, the variablequiescent_time stores the amount of time a cancer cell is quiescent. For our experiments, the critical
value of quiescent time for a cancer cell to die is 4000 h. The actions in this chart are taken when the transition check_apoptosis (figure 2a) is triggered. (Online
version in colour.)

rsfs.royalsocietypublishing.org
Interface

Focus
3:20120081

4

labelled for apoptosis, is presented in figure 4. Specific

processes of cellular death for normal, cancer cells and

macrophages are explained in §3.6.

As described in §2, some types of cells, such as cancer

cells, can enter a quiescent state, which means that they are

more resistant to the lack of nutrients (e.g. oxygen) [9]. This

cell quiescence is established when the conditional transition
check_apoptosis is updated. Further details on the cell

cycle for cancer and normal cells are given in §3.4.

Figure 2b presents the state chart for cells that die after a

certain lifespan, such as macrophages. Similarly to the other

cell types, these cells are either dead or alive. While they

are alive, they move and age. They die after age reaches a

certain threshold.
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Although for our in silico experiments, we considered only

three types of cell with the main nutrient being oxygen, our

environment within Chaste is easily extensible to consider

other types of cells, diffusion rules and cell-cycle models.
Table 1. Parameters for the first experiment: single cell random
movement.

parameter value

simulation end time 480 h

time step length Dt 0.25 min

cell random motility coefficient D 0.3 � 1029 cm2 min21

lattice size Dx 5�1024 cm
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Figure 5. Comparison of results for single normal cell random movement
(Moore neighbourhood).

lsocietypublishing.org
Interface

Focus
3:20120081
3.2.2. Adding daughter cells to the population
When the subcellular (cell cycle) model indicates that a cell

is ready to divide, a check is made whether there is space

available to place a daughter cell in a neighbouring lattice

site. If space is available, a new cell (the daughter cell,

which inherits its properties from the parent cell) is added

to a randomly selected available site in the parent cell’s

neighbourhood. If there is no space available, the daughter

cell is not created and the parent cell cycle is reset.

The pseudo-code for adding new cells to the population is

shown in algorithm 1.

Algorithm 1. Adding cells to the population pseudo-code.

input : The cell to divide (parent cell)

output: The new cell created

Get location of the lattice site corresponding to the parent cell;

Get neighbouring locations of the parent cell;

found_available_neighbour  false;

foreach n in the neighbourhood do

// n is selected randomly from the set of

neighbours

if n is available then

found_available_neighbour  true;

// Stop searching

break for;

end

end

if found_available_neighbour then

create a new cell;

place the new cell in n location;

else

reset parent cell cycle;

end

The verification and validation of this module will be

discussed in §3.5, where we introduce the methods used

for cellular proliferation.
3.3 Cellular motility
Cells migrate along the lattice randomly to available sites

belonging to their neighbourhood. The probability of a cell

at site x moving to site y in its neighbourhood in a simulation

time step Dt is given by

Prðx; y; tÞ ¼ DDt
2d2

x;y

ðNm �Nðy; tÞÞ
Nm

for x = y; ð3:1Þ

where N(x,t) is the number of cells at site x, D is the random

cell motility coefficient, Nm is the carrying capacity for move-

ment of the cell type attempting to move and dx,y is the

distance between sites x and y. Thus, if the site y is occupied

by a number of cells equal to its carrying capacity, then the

probability to move to this site is set to zero. We remark

that equation (3.1) is equivalent to the form used in Owen

et al. [8], but without chemotaxis. Future extensions to the

Chaste implementation will include chemotaxis.
3.3.1. Random movement verification
The verification of the random movement implemen-

tation asserts whether diffusive movement is accurately

implemented. Two tests were defined using the Moore neigh-

bourhood to determine the cells’ moving directions. The first

test checks that the probability calculation is returning the

correct value. In the second test, we checked that movement,

in the eight directions corresponding to the Moore neigh-

bourhood, occurs with the frequency expected (results not

shown).
3.3.2. Random movement validation
Results for the movement of a single cell are validated against

those from the original implementation established in Owen

et al. [8]. In order to validate the results, 100 realizations of

both implementations were run and the results were col-

lected. The parameters used for the simulations are

presented in table 1 and the results are shown in figure 5.

Figure 5 shows the mean cell displacement against time

for the original model implementation (blue line) and our

implementation in Chaste (green line). Furthermore, the

red line shows the mathematical prediction of the mean

displacement, calculated as

prediction ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1440�D:time (in days)

p

The outcomes are very close and follow the same pat-

tern, which suggests that both implementations have

equivalent outputs. The differences observed in the graphs

are because of the different random numbers used for each

implementation.



Table 2. Parameters used for the cell-cycle model, equation (3.2). These
parameters were obtained from Owen et al. [8]. Under these parameter
values, a typical cell-cycle time would be approximately 1 day for cancer
cells and 2 days for normal cells.

parameter normal cell cancer cell

Tmin 3000 min 1600 min

Cf 3 mm Hg 1.4 mm Hg
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Figure 6. Normal cell proliferation for 100 realizations, in a two-dimensional
lattice of size [100 � 100], with carrying capacity per lattice site equal to 1.
The simulation was run for a period equivalent to 960 h and the cells’
random motility coefficient D was set to zero and dt¼ 0.5 h. The simulation
starts with a single cell placed in the middle of the lattice. The graphs show
the mean value of 100 realizations. The parameters for the cell cycle are
those defined in table 1 for normal cells. The oxygen concentration is
fixed at 30 mm Hg.
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3.4. Cell-cycle model
In this section, we expand the cell_cycle_process action

chart from figure 3 to the specific types of cells implemented

(normal and cancer cells) and the diffusible substance con-

sidered (oxygen). Although our implementation in Chaste

permits the expansion of the system to incorporate different

types of cell cycles, currently we adopt an oxygen-dependent

ODE-based cell-cycle model, proposed by Owen et al. [8] as a

simplification of the model of Alarcón et al. [5]. This cell cycle

is a simple phase model given by

df

dt
¼ C

TminðCf þ CÞ ; ð3:2Þ

where f [ ½0; 1� represents the phase of the cell cycle. The

oxygen concentration at the cell’s current location is given

by C(x,t). Tmin is the minimum period of the cell cycle and

Cf is the oxygen concentration at which the speed is half

maximal.

Since f ¼ 0 represents the start of the cycle, and f ¼ 1 is

the completion of one cycle, when f reaches 1, it is then reset

back to zero. As shown in equation (3.2), the speed of pro-

gress through the cell cycle depends on the oxygen

concentration. Table 2 shows the default parameter values

used for normal cells and cancer cells in our simulations.

Over the course of the simulation, the above ODE is

solved over each time step. If f ¼ 1 at any stage, the cell is

assumed to be ready to divide. In this case, the parent cell

divides forming daughter cells, only if there is sufficient

room to place the newly formed daughter cells. f is then

reset to zero and the cycle is repeated. f is also reset when

there is no space to divide.

In the case of cancer cells, if the oxygen concentration at

the cell’s current location drops below a certain threshold,

the cell is labelled to be quiescent. When in quiescent state,

cancer cells do not progress through the cell cycle (i.e. the

ODEs are not solved). When the oxygen concentration rises

above another minimum threshold value, the cells stop

being quiescent and the cell cycle progresses again.

An equivalent cell-cycle model has also been implemented

and tested, which exploits the fact that an explicit solution to

equation (3.2) is available under the assumption (used

throughout) that the diffusible variables are constant over

each simulation time step Dt. In this model, the phase of the

cell cycle is updated according to

fðtþ DtÞ ¼ fðtÞ þ C
T minðCf þ CÞDt; ð3:3Þ

where t is the current time.

As in the ODE model, f ¼ 1 marks the completion of one

cycle. The cell is ready to divide into daughter cells provided
that there is sufficient room for the newly formed daughter

cells. The value of f is then reset back to zero and the cycle

repeats. For quiescent cancer cells, the value of f remains

constant throughout the quiescent phase.

Macrophages do not have a cell cycle. Instead, they have a

fixed lifespan, after which they die (§3.6.3). Biologically,

macrophages typically do not proliferate and they enter tis-

sues in vivo from the vasculature and/or would be

introduced in an in vitro situation. Therefore, there is no

need for this cell type to divide. As the vascular parts are

still to be added to our environment, for now the macro-

phages, as well as the other cells, are created and placed in

the lattice in the start of the simulation.

3.5. Cellular proliferation
As mentioned in the previous section, the proliferation of

normal cells and cancer cells is controlled by a cell-cycle

model. Our cell cycle demands a minimum level of oxygen,

and proliferation occurs if there is available space within a

certain region. Results for cellular proliferation are validated

against those from the original implementation [8]. The

growth curves for both implementations are similar

(see figure 6).

3.6. Cell death
In this section, we explain how the action chart for cell apoptosis

(figure 4) was implemented in our agent-based environment.

The death of normal and cancer cells depends on how they

respond to hypoxia. The cell cycles of normal and cancer cells

exhibit remarkable differences [4]: normal cells undergo apopto-

sis in response to persistent periods of hypoxia, whereas cancer

cells appear to be more resistant to the lack of oxygen. This resist-

ance is partially owing to their ability to enter a quiescent state in

response to severe hypoxic stress [11]. In cases where the oxygen

levels remain low, the cancer cells will also eventually die. The
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rules associated with the death of normal and cancer cells are

based on characteristics of cellular responses to hypoxia, as out-

lined in the sections below.

3.6.1. Normal cell death
In the current implementation, following Owen et al. [7], a

normal cell is marked for apoptosis if the oxygen concentration

within its neighbourhood falls below a prescribed threshold.

This threshold increases when a normal cell is surrounded

predominantly by cancer cells, reflecting differences in the micro-

environment of normal tissue and tumours. The threshold for

apoptosis is defined in algorithm 2, where the ratio of normal

cells to total cells is calculated via the pseudo-code outlined in

algorithm 3.

Algorithm 2. Normal cell threshold calculation, where r is

a parameter that characterizes the cell ratio at which a

tumour microenvironment becomes hostile to normal cells.

In our examples, we set r ¼0.75, the lower value was set to

1.5 mm Hg and the higher value was set to the maximum

integer value defined in Chaste.

input: Cell ratio

if ratio . r then

threshold lower value;

end

else

threshold higher value;

end

Algorithm 3. Calculation of the ratio of normal cells to total

cells, following Owen et al. [7].

input : Current cell

output: ratio

Get location of the cell;

if Location (lattice site) has more than one cell then

normal_count number of normal cells;

cancer_count number of cancer cells;

end

else

Get the set of the cell’s neighbours;

Iterate over the set of neighbouring sites to count the

total number of normal cells and cancer cells surrounding

the target cell;

end

ratio normal_count/(normal_count þ cancer_count)

3.6.2. Cancer cell death
Cancer cells die if they remain quiescent for a time that

exceeds a predefined critical value. As mentioned previously,

this time is determined in the cell-cycle model. At each time

step, the interval of quiescence is updated or reset, depending

on the local oxygen concentration. If the time exceeds the

critical value, the cell is labelled for apoptosis.

3.6.3. Macrophage death
Macrophages are assumed to die after a certain period of time

and to have a mean lifetime of 90 days. When these cells are cre-

ated, they are assigned a birth time equal to the simulation time.

The age of the macrophage, therefore, is determined by the cur-

rent simulation time minus the birth time. If a macrophage has an

age greater than the mean macrophage life span, then it is

labelled as apoptotic. In our environment, macrophages are cre-

ated at the beginning of the simulation and do not reproduce.
3.6.4. Cell killer
The elimination of cells is performed by a cell killer method,

which identifies those cells from the population that should

be labelled for death, following the rules (introduced above)

for each cell type. The pseudo-code for this method is

shown in algorithm 4.

Algorithm 4. Pseudo-code for the cell killer.

input : The cell population

foreach cell c in the population do

if c is cell cycle based then

Determine the current nutrient (oxygen) level;

if c is a normal cell then

ratio RatioCalculation(c);

threshold_oxygen NormalCellThresholdCalculation

(ratio);

if oxygen level of cell c , threshold_oxygen then

Kill c;

end

end

else

if c is a cancer cell then

if oxygen level of cell c , threshold_quiescence then

Update quiescent_time;

if c is quiescent for a long time then

Kill c;

end

end

else

if oxygen level of cell c . threshold_leave_quiescence
then

Leave quiescence;

Reset quiescent_time;

end

end

end

end

end

else

if c is lifespan based (macrophage) then

if defined life span is over then

Kill c;

end

end

end

end

3.6.5. Cell killer verification
We verify that the cell killer method has been implemented

correctly by considering the following scenarios:

(1) Normal cell death verification:

(a) No cancer cells in the cell’s neighbourhood. This scenario

describes a normal cell with no cancer cells in its neigh-

bourhood, so that the cell ratio is equal to 1 and the

threshold oxygen concentration for apoptosis will be set

to the lower value.

(i) No death, oxygen concentration above the lower threshold.
We set the oxygen concentration at the cell’s location

to a value higher than the lower hypoxic threshold

and hence the cell should not die.

(ii) Death, oxygen concentration below the lower threshold. In

this case, the rules dictate that the cell should die.
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Figure 7. Oxygen-based cell proliferation. (a) Initial stage: time ¼ 0 h, (b) cells begin proliferation: time ¼ 600 h, (c) death of cells in the hypoxic region: time ¼
870 h and (d ) further cell proliferation and growing hypoxic region: time ¼ 1000 h. In figures 7 – 10, the oxygen concentration is given by its dimensionless values,
where C (dimensionless) ¼ C (in mm Hg) multiplied by 0.00225.
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(b) Death with cancer cells in the neighbourhood: A normal cell

is placed on the lattice and surrounded by cancer cells in

such a way that the cell ratio, as calculated in algorithm 3,

falls below the parameter r. The threshold oxygen con-

centration for apoptosis is therefore set to the higher

value.

(i) No death, oxygen concentration above the upper threshold.
The oxygen concentration at the cell’s location is set

to exceed the upper threshold and hence the cell will

not die.

(ii) Death—oxygen concentration below the upper threshold.
The verification process asserts that the cell dies in

this case.

(2) Cancer cell death: Verification for cancer cells asserts that

they die if they have been in a quiescent state for a pro-

longed period of time. For this purpose, we set the

oxygen concentration, at the cell’s location, such that

the cell is labelled to be in the quiescent state. The

amount of time that the cell has been quiescent is

updated at each time step, as mentioned in §3.6.2. We

continue to increment the time step in the simulation

until the amount of time the cell has been quiescent

exceeds the critical value. Also, at every time step we

assert that the cell does not progress through the cell

cycle, that it continues to remain quiescent and that it is

not labelled apoptotic. Once the cell has been quiescent

for longer than the critical value, the cell should be

labelled for apoptosis and thus be killed.

3.7. Diffusibles
The distribution of diffusibles such as oxygen is modelled

using reaction–diffusion equations, which are assumed to

be in quasi-steady state. Hence, the governing PDEs are of
the form

0 ¼ Dur2U þ Su � duU; ð3:4Þ

where Du is the diffusion coefficient of diffusible U,

Su ¼ SuðU; . . .Þ is the cell-dependent production/removal

rate and du is the U decay rate. For all diffusible species, we

impose zero flux boundary conditions.

The PDE for each diffusible is updated at each time step.

The solution at each site is then used to update the cell-cycle

phase, and/or to determine whether a cell should undergo

apoptosis.

3.8. Oxygen, C(x,t)
The environment acts as a source of oxygen and cells act as

the spatially distributed sinks, as they consume oxygen.

If the rate of oxygen consumption by a cell at site x is given

by kcell
c , then we get

Scðx; tÞ ¼ �
X

cell at x

kcell
c C; ð3:5Þ

and dc ¼ 0.
4. Examples
In this section, we present examples of in silico experiments

relating to cellular proliferation and nutrient consumption

that can be performed in our environment.

4.1. Oxygen-dependent cell proliferation
We illustrate cellular proliferation by inserting a single

tumour cell in an environment with a square grid of size

[50 � 50] (see figure 7a). The cells are set to consume

oxygen at the rate k ¼ 0.1 h21. The oxygen diffusion
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Figure 8. Oxygen-dependent normal cell proliferation with alternative boundary conditions. (a) Initial stage: time ¼ 0 h, (b) cells begin proliferation: time ¼ 600 h,
(c) death of cells in the hypoxic region: time ¼ 820 h and (d ) further cell proliferation and growing hypoxic region: time ¼ 1000 h.
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coefficient was set to Dc ¼ 1 (Dx)2 h21. In our examples, (Dx)2

was set to 1. The PDE used to determine the oxygen distri-

bution is given by equation (4.1) and Dirichlet boundary

conditions (C ¼ 30 mm Hg) were imposed on all the bound-

aries. In more detail, we have

0 ¼ Dcr2C� kIðx; yÞC; ð4:1Þ

where

I x; yð Þ ¼ 1 if a cell is present at x; yð Þ;
0 otherwise:

�
ð4:2Þ

Simulation results showing the evolution of the system

over 1000 h are presented in figure 7. We observe the initial

proliferation of the cells (figure 7b), which consume the

oxygen available at the centre of the tumour. This consump-

tion generates hypoxic areas and consequent cellular death

owing to lack of oxygen (figure 7c). As there is still space

and oxygen towards the edges of the lattice, cells there con-

tinue to proliferate and the tumour increases in size

(figure 7d ). With the increase of the number of cells and

oxygen consumption rate, the number of cells towards the

centre of the tumour undergoing cell death because of

hypoxia also increases (see figure 7d ).

4.2. Oxygen-dependent cell proliferation with
alternative boundary conditions

We now consider the case identical to that in the previous

section, except that we impose a zero flux boundary

condition on the bottom boundary.

The simulation was run for a period equivalent to 1000 h.

The results for this simulation are presented in figure 8. We

observe that the hypoxia region forms in the centre as cells
consume oxygen (figure 8d ). The oxygen concentration is

also low near the bottom boundary, because of the absence

of any source of oxygen there (figure 8c). The cells continue

to proliferate near the top, left and the right boundaries,

where C ¼ 30 mm Hg (see figure 8a–d ).

4.3. Multiple cell types
We now consider, different types of cells, i.e. normal cells and

cancer cells. In this example, the oxygen diffusion coefficient

was set to 1 (Dx)2 h21 and each lattice site carrying capacity

was set to 4. The lattice dimensions were set to [50 � 50].

The Dirichlet boundary condition (C ¼ 100 mm Hg) was

imposed on all boundaries. The oxygen uptake rate for

both types of cells was set to k ¼ 0.1 h21. The simulation

was run for a period equivalent to 500 h. Results are shown

in figure 9a–d. Figure 9a shows the initial disposition of the

cells in the system—there is a cluster of normal cells with

two cancer cells inside it. As simulation progresses, normal

cells start replicating and moving along the lattice

(figure 9b). Tumour cells also start replicating and take over

the space originally occupied by normal cells (figure 9c).

There is also an increase in the hypoxic areas, owing to

higher rates of oxygen consumption (figure 9d).

4.4. Cell proliferation in three dimensions
In this section, we illustrate cell proliferation in three dimen-

sions. For this purpose, we consider an initial configuration

with one tumour cell in a cube of size [20 � 20 � 20]

(figure 10a). A cell consumes oxygen at the rate k ¼ 1.0 h21.

The oxygen diffusion coefficient Dc ¼ 1 (Dx)2 h21. The

Dirichlet boundary condition (C ¼ 30 mm Hg) is imposed

on all boundaries. The simulation was run for a period

equivalent to 500 h. The results for this simulation are
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Figure 9. Evolution of a cluster containing multiple cell types. In the figure, the blue cells are normal cells, red cells are tumour while the remaining ones
(light green) are the quiescent tumour cells. (a) Initial stage: time ¼ 0 h, (b) cells begin proliferation: time ¼ 100 h, (c) death of cells in the hypoxic region:
time ¼ 300 h and (d ) further cell proliferation and growing hypoxic region: time ¼ 500 h.
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Figure 10. Cell proliferation in three dimensions. (a) Initial stage: time ¼ 0 h, (b) cells begin proliferation: time ¼ 100 h, (c) further cell proliferation: time ¼ 300 h
and (d ) further cell proliferation and growing hypoxic region: time ¼ 500 h.
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presented in figure 10. Similar to the two-dimensional

example described in §4.1, we observe the initial cell prolifer-

ation (figure 10b), which consumes the oxygen at the centre

of the tumour. This consumption generates hypoxic areas

and consequent cellular death owing to lack of oxygen

(figure 10d ).
5. Conclusions
We have introduced an open-source, extensible, agent-based

virtual research environment for two- and three-dimensional

in silico simulation of the dynamics of cell populations and

their responses to nutrient shortage. Our environment was
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developed within Chaste [1], as part of the VPH Toolkit. The

system development was based on models representing the

state-of-the-art multi-scale models of cellular proliferation and

its response to nutrient shortage. The simulation environment

was implemented using a multi-method approach comprising

(i) two- and three-dimensional lattices containing the cells and

molecules from the system; (ii) agents, representing the biologi-

cal cells that lie in the lattice; (iii) diffusion rules for the agents’

motility; (iv) ODEs for subcellular networks that regulate the

cell cycle; and (v) PDEs for the transport, release and uptake

of nutrients. Following Chaste philosophy, nightly and

weekly testing have extensively been performed on our code

in order to verify and preserve the functionalities implemented.

Further verification and validation were performed against the

original multi-scale models in which our environment is based,

ensuring the reproducibility of the simulation results.

In the released implementation, the examples regarding

cellular phenotypic changes (including proliferation, migration

and death) depend solely on oxygen. In our platform, how-

ever, it is easy to extend this implementation to other factors.

In the next release, we intend to add dependence on other

factors such as vascular endothelial growth factor. Further-

more, all parameters set for the experiments, such as the
diffusion coefficient, oxygen uptake rate, numbers of cells in

the population, lattice size, etc., can be easily modified in the

environment to suit other simulation scenarios.

Our environment also presents other limitations. For

example, one could argue that the choice of a cell neighbour-

hood could be implemented differently to better suit cases

where there are multiple cells per lattice site. Further, the cal-

culation of a dynamic threshold for determining cell death

could be replaced by a static threshold. These limitations,

however, were inherited from the previously published

models that the environment was based on.

In the future, we will extend our environment to include a

vascular layer. We aim to develop a VTME for curated and

sustainable multi-scale models to investigate the complex

interplay between subcellular signalling (e.g. the cell cycle,

responses to hypoxia), growth factor and nutrient distri-

butions and vascular dynamics at the network level.

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/
2007-2013) under the project ‘Virtual Physiological Human Network
of Excellence’, grant agreement no. 223920. This work was also sup-
ported in part by award no. KUK-013-04, made by the King Abdullah
University of Science and Technology (KAUST).
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