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Multiscale simulations are essential in the biomedical domain to accurately

model human physiology. We present a modular approach for designing,

constructing and executing multiscale simulations on a wide range of

resources, from laptops to petascale supercomputers, including combi-

nations of these. Our work features two multiscale applications, in-stent

restenosis and cerebrovascular bloodflow, which combine multiple existing

single-scale applications to create a multiscale simulation. These applications

can be efficiently coupled, deployed and executed on computers up to the

largest (peta) scale, incurring a coupling overhead of 1–10% of the total

execution time.
1. Introduction
Models of biomedical systems are inherently complex; properties on small time

and length scales, such as the molecular or genome level, can make a substan-

tial difference to the behaviour observed on much larger scales, such as the

organ, full-body and even the population level; and vice versa [1,2]. We there-

fore need to apply multiscale approaches when modelling many biomedical

situations. Examples of multiscale biomedical challenges include predicting

the impact of a surgical procedure [3], investigating the effects of pathologies

(e.g. arterial malformations and fistulas [4]) or assessing the effects of a targeted

drug on a given patient [5]. In all these cases, we need to examine processes that

not only occur across several time and/or length scales, but that also rely on

different underlying physical and/or biological mechanisms. As a result,

modelling these processes may require substantially different algorithms and

varying levels of computational effort.

Historically, these problems have often been modelled using single-scale

approaches, focusing exclusively on those aspects of the problem which are

deemed most relevant. However, applying a single-scale model is frequently

insufficient to fully understand the problem at hand, as additional processes

occurring on different scales must be incorporated to obtain sufficient accuracy.

It is this need for understanding the composite problem, rather than its individ-

ual subcomponents alone, that has driven many research groups to explore

multiscale modelling [6–9].

In a multiscale model, the overall system is approximated by coupling two

or more single-scale submodels. Establishing and performing the data exchange

between these submodels is an important aspect of enabling multiscale model-

ling. It is often addressed by using coupling tools, such as the Multiscale

Library and Coupling Environment (MUSCLE) [10,11], the Multilevel Commu-

nicating Interface [12] and GridSpace [13]. Groen et al. [14] provide a review of

coupling tools and the computational challenges they address.
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Another important aspect is adopting a data standard

which submodels can adopt to exchange meaningful infor-

mation. Several markup languages, such as SBML [15] and

CellML [16], resolve this problem by providing a description

language for the storage and exchange of model data and sub-

model definitions. CellML specifically allows for submodel

exchange between ODE and PDE solvers, whereas SBML is

aimed towards biochemical pathway and reaction ODE sub-

models. Both SBML and CellML, being languages for the

description of submodels and system data, have serious limit-

ations in that they require additional tools to perform tasks that

are not directly related to ensuring data interoperability. These

include transferring data between submodels, deploying

submodels on appropriate resources and orchestrating the

interplay of submodels in a multiscale simulation. Addition-

ally, they only provide very limited features to describe

submodels that do not rely on ODE-based methods, such as

finite-element/volume methods, spectral methods, lattice-

Boltzmann, molecular dynamics and particle-based methods,

which are of increasing importance in the biomedical domain.

Here, we present a comprehensive approach to enable mul-

tiscale biomedical modelling from problem definition through

the bridging of length and time scales, to the deployment and

execution of these models as multiscale simulations. Our

approach, which has been developed within the MAPPER

project (http://www.mapper-project.eu/), relies on coupling

existing submodels and supports the use of resources ranging

from a local laptop to large international supercomputing

infrastructures, and distributed combinations of these. We pre-

sent our approach for describing multiscale biomedical models

in §2 and for constructing and executing multiscale simulations

on large computing infrastructures in §3. We describe our

approach for biomedical applications in §4. We have applied

our approach to two biomedical multiscale applications, in-

stent restenosis (ISR) and hierarchical cerebrovascular blood

flow (BF), which we present in §§5 and 6, respectively. We

conclude with a brief discussion.
2. Multiscale biomedical modelling
Multiscale modelling gives rise to a number of challenges

which extend beyond the translation of model and system

data. Most importantly, we seek to allow application develo-

pers, such as computational biologists and biomedics, to

couple multiscale models for large problems, supporting any

type of coupling, using any type of submodel they wish to

include, and executing this using any type of computational

resource, from laptop to petascale. As we cannot expect compu-

tational biologists to have expertise in all the technical details of

multiscale computing, we also aim to present a uniform and

easy-to-use interface which retains the power of the underlying

technology. This also enables users with less technical expertise

to execute previously constructed multiscale simulations.

Multiscale systems are, in general, characterized by the

interaction of phenomena on different scales, but the details

vary for different scientific domains. To preserve the general-

ity of our approach, we adopt the multiscale modelling and

simulation framework (MMSF) to reason about multiscale

models in a domain-independent context and to create recipes
for constructing multiscale simulations independent of the

underlying implementations or computer architectures. This

MMSF is based on earlier work on coupled cellular automata
and agent-based systems [17,18] and has been applied to sev-

eral computational problems in biomedicine [3,19,20]. Within

the MMSF, the interactions between single-scale submodels

are confined to well-defined couplings. The submodels can

therefore be studied as independent models with dependent

incoming and outgoing links. The graph of all submodels and

couplings, the coupling topology, can either be cyclic or acyc-

lic [21]. In a cyclic coupling topology, the submodels will

exchange information in an iterative loop, whereas in an acyc-

lic topology the submodels are activated one after another,

resulting in a directional data flow which makes them well-

suited for workflow managers. Two parts of the MMSF are

particularly useful for our purposes, namely the Scale Separ-
ation Map [17] and the multiscale modelling language
(MML) [11,22]. The Scale Separation Map is a graphical rep-

resentation which provides direct insights into the coupling

characteristics of the multiscale application. MML provides

a formalization of the coupling between the submodels, inde-

pendent of the underlying implementation. In addition, it

simplifies the issues associated with orchestrating submodels

by capturing the orchestration mechanisms in a simple model

which consists of only four distinct operators. MML defi-

nitions can be stored for later use using an XML-based file

format (xMML) or represented visually using graphical

MML (gMML) [11].

The generic MML definitions allow us to identify com-

monalities between multiscale applications in different

scientific domains. Additionally, the stored xMML can be

used as input for a range of supporting tools that facilitate

multiscale simulations (e.g. tools that automate the deploy-

ment or the submodel coupling of these simulations, as

discussed in §3).
3. From multiscale model to production
simulation

We have developed a range of tools that allow us to create,

deploy and run multiscale simulations based on the xMML

specification of a multiscale model. Two of the main chal-

lenges in realizing successful multiscale simulations are to

establish a fast and flexible coupling between submodels and

to deploy and execute the implementations of these submodels

efficiently on computer resources of any size. In this section,

we review these challenges and present our solutions to them.

3.1. Coupling submodels
Effective and efficient coupling between submodels encom-

passes three major aspects. First, we must translate our

MML definitions to technical recipes for the multiscale simu-

lation execution. Second, we need to initiate and orchestrate

the execution of the submodels in an automated way, in

accordance with the MML specification. Third, we need to

efficiently exchange model and system information between

the submodels.

The MUSCLE [10,11] provides a solution to the first two

aspects. It uses MML in conjunction with a definition of the

requested resources to bootstrap and start the different submo-

dels and to establish a connection for data exchange between

the submodels. It also implements the coupling definitions

defined in the MMSF to orchestrate the submodels. The submo-

dels can be coupled either locally (on a workstation, for example),

http://www.mapper-project.eu/
http://www.mapper-project.eu/


(a) (b)

Figure 1. Images of a stented artery as modelled using ISR3D, before rest-
enosis occurs on (a) and after 12.5 days of muscle cell proliferation on (b).
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via a local network, or via a wide area network using the

MUSCLE Transport Overlay (MTO) [23]. Running submodels

in different locations and coupling them over a wide area net-

work is especially important when submodels have very

different computational requirements, for example when one

submodel requires a local machine with a set of Python libraries,

and another submodel requires a large supercomputer. How-

ever, messages exchanged across a wide area network do take

longer to arrive. Among other things, MTO provides the

means to exchange data between large supercomputers while

adhering to the local security policies and access restrictions.

The exchanges between submodels overlap with compu-

tations in many cases (see §6 for an example), allowing for

an efficient execution of the overall simulation. However,

when the exchanges are particularly frequent or the

exchanged data particularly large, inefficiencies in the data

exchange can severely slow down the multiscale simulation

as a whole. We use the MPWide communication library [24],

previously used to run cosmological simulations distributed

across supercomputers [25], to optimize our wide area com-

munications for performance. We already use MPWide

directly within the cerebrovascular bloodflow simulation

and are currently incorporating it in MUSCLE to optimize

the performance of the MTO.

3.2. Deploying and executing submodels on production
resources

When large multiscale models are deployed and executed as

simulations on production compute resources, a few major

practical challenges arise. Production resources are often

shared by many users, and are difficult to use even partially

at appropriate times. This in turn makes it difficult to ensure

that the submodels are invoked at the right times, and in

cases where they are distributed on different machines, to

ensure that the multiscale simulation retains an acceptable

time to completion. We use the QosCosGrid environment

(QCG) [26] to run submodels at a predetermined time on

large computing resources. QCG enables us, if installed on

the target resource, to reserve these resources in advance for

a given period of time to allow our submodels to be executed

there. This is valuable in applications that require cyclic coup-

ling, as we then require multiple submodels to be executed

either concurrently or in alternating fashion. Additionally,

with QCG we can explicitly specify the sequence of resources

to be reserved, allowing us to repeat multiple simulations in a

consistent manner using the same resource sequence each

time. A second component that aids in the execution of sub-

models is the application hosting environment (AHE) [27].

AHE simplifies user access to production resources by stream-

lining the authentication methods and by centralizing the

installation and maintenance tasks of application codes. The

end users of AHE only need to work with one uniform

client interface to access and run their applications on a

wide range of production resources.
4. Using MAPPER for biomedical problems
We apply the MAPPER approach to a number of appli-

cations. We present two of these applications here (ISR and

cerebrovascular BF), but we have also used MAPPER to

define, deploy and execute multiscale simulations of clay–
polymer nanocomposite materials [28], river beds and

canals [29], and several problems in nuclear fusion.

MAPPER provides formalisms, tools and services which

aid in the description of multiscale models, as well as the

construction, deployment and execution of multiscale simu-

lations on production infrastructures. It is intended as a

general-purpose solution, and as such tackles challenges in

multiscale simulation that exist across scientific disciplines.

There are a number of challenges which are outside the

scope of our approach, because they may require different

solutions for different scientific disciplines. These include

choosing appropriate submodels for a multiscale simulation

and defining, on the application level, what information

should be exchanged between submodels at which times to

provide a scientifically accurate and stable multiscale

simulation. However, MMSF does simplify the latter task

by providing a limited number of orchestration mechanisms.

The formalisms, tools and services presented here are

independent components, allowing users to adopt those

parts of our approach which specifically meet their require-

ments in multiscale modelling. This modular approach

makes it easier for users to exploit the functionalities of

individual components and helps to retain a lightweight

simulation environment.
5. Modelling in-stent restenosis
Coronary heart disease (CHD) is one of the most common

causes of death and is responsible for about 7.3 million

deaths per year worldwide [30]. CHD is typically expressed

as atherosclerosis, which corresponds with a thickening and

hardening of blood vessels caused by build-up of athero-

matous plaque; when this significantly narrows the vessel,

it is called a stenosis. A common intervention for stenosis is

stent-assisted balloon angioplasty where a balloon, attached

to a stent, is inserted in the blood vessel and inflated at the

stenosed location, consequently deploying the stent. The

stent acts as a scaffold for the blood vessel, compressing the

plaque and holding the lumen open. Occasionally, however,

this intervention is followed by ISR, an excessive regrowth

of tissue due to the injury caused by the stent deploy-

ment [31,32]. Although there are a number of different

hypotheses [33], the pathophysiological mechanisms and

risk factors of ISR are not yet fully clear.

By modelling ISR with a three-dimensional model

(ISR3D), it is possible to test mechanisms and risk factors

that are likely to be the main contributors to ISR. After eval-

uating the processes involved in ISR [19], ISR3D applies the

hypothesis that smooth muscle cell (SMC) proliferation

drives the restenosis, and that this is affected most heavily

by wall shear stress of the BF, which regulates endothelium
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Figure 2. Scale Separation Map of the ISR3D multiscale simulation, originally presented in [11].
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recovery, and by growth inhibiting drugs diffused by a drug-

eluting stent. Using the model, we can evaluate the effect of

different drug intensities, physical stent designs, vascular

geometries and endothelium recovery rates. ISR3D is derived

from the two-dimensional ISR2D [3,20] code. Compared with

ISR2D, it provides additional accuracy, incorporating a full

stent design, realistic cell growth and a three-dimensional

BF model, although it requires more computational effort.

We present several results from modelling a stented artery

using ISR3D in figure 1, which shows the artery both

before and after restenosis has occurred.

From a multiscale modelling perspective, ISR3D combines

four submodels, each operating on a different time scale: SMC

proliferation, which models the cell cycle, cell growth and

physical forces between cells; initial thrombus formation

(ITF) due to the backflow of blood; drug diffusion (DD) of

the drug-eluting stent through the tissue and applied to the

smooth muscle cells; and BF and the resulting wall shear

stress on SMCs. We show the time scales of each submodel

and the relations between them in figure 2. The SMC submo-

del uses an agent-based algorithm on the cellular scale, which

undergoes validation on the tissue level. All other submodels

act on a Cartesian grid representation of those cells. For the

BF submodel, we use 1 237 040 lattice sites, and for the SMC

submodel, we use 196 948 cells. The exchanges between

the submodels are in the order of 10–20 MB. The SMC

sends a list of cell locations and sizes (stored as 8-byte integers)

to the ITF, which sends the geometry (stored as a three-

dimensional matrix of 8-byte integers) to BF and DD. In

turn, BF and DD, respectively, send a list of wall shear stress

and drug concentrations (stored as 8-byte doubles) to SMC.

Each coupling communication between SMC and the other

submodels takes place once per SMC iteration.

The submodels act independently, apart from exchanging

messages, and are heterogeneous. The SMC code is

implemented in Cþþ, the DD code in Java and the ITF code

in Fortran. The BF code, which unlike the other codes runs in

parallel, uses the Palabos lattice–Boltzmann application

(http://www.palabos.org/), written in Cþþ. The MML speci-

fication of ISR3D contains a few conversion modules not

mentioned earlier, which perform basic data transformations

necessary to ensure that the various single-scale models do
not need to be aware of other submodels and their internal rep-

resentation or scales. Specifically, the submodels operate within

the same domain, requiring the application to keep the grid

and cell representation consistent, as well as their dimensions.

5.1. Tests
We have performed a number of tests to measure both the

runtime and the efficiency of our multiscale ISR3D simu-

lation. The runs that were performed here were short

versions of the actual simulations, with a limited number of

iterations. The runs contributed to the integration testing of

the code and allowed us to estimate the requirements for

future computing resource proposals.

We have run our tests in five different scenarios, using the

EGI resource in Krakow (Zeus, one scenario), a Dutch PRACE

tier-1 machine in Amsterdam (Huygens, two scenarios) or a

combination of both (two scenarios). We provide the techni-

cal specifications of the resources in table 1. Since the

runtime behaviour of ISR3D is cyclic, determined by the

number of SMC iterations, we measured the runtime of a

single cycle for each scenario. Because only the BF model is

parallelized, the resources we use are partially idle whenever

we are not executing the BF model. To reduce this overhead

of ‘idle time’, we created two double mapping scenarios, each

of which runs two simulations in alternating fashion using

the same resource reservation. In these cases, the BF calcu-

lations of one simulation takes place while the other

simulation executes one or more of the other submodels.

We use a wait/notify signalling system within MUSCLE to

enforce that only one of the two simulations indeed executes

its parallel BF model. We have run one double mapping scen-

ario locally on Huygens, and one distributed over Huygens

and Zeus.

5.1.1. Results
We present our performance measurements for the five scen-

arios in table 3. The runtime of our simulation is reduced by

almost 50 per cent when we use the Huygens machine

instead of Zeus. This is because we run the BF code on

Huygens using 32 cores, and on Zeus using 4 cores. How-

ever, the usage of the reservation was considerably lower

http://www.palabos.org/
http://www.palabos.org/


Table 1. Computational characteristics of the machines we use in our multiscale simulations for ISR3D and HemeLB. Clock frequency is given in the second
column, the number of cores used in the third column and the amount of memory per node in the fourth column. The administrative details are listed in
table 2.

name processor freq. (GHz) cores mem/node (GB) middleware

HECToR AMD Interlagos 2.3 512/2048 32 UNICORE

Huygens IBM Power6 4.7 32 128 UNICORE

Henry Intel Xeon 2.4 1 6 none

Zeus Intel Xeon 2.4 4 16 QCG-Comp.

Table 2. Administrative information for the resources described in table 1.

name provider location infrastructure

HECToR EPCC Edinburgh, UK PRACE Tier-1

Huygens SARA Amsterdam,

The Netherlands

PRACE Tier-1

Henry UCL London, UK Local

workstation

Zeus Cyfronet Krakow, Poland EGI (PL-Grid)
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on Huygens than on Zeus for two reasons: first, the allocation

on Huygens was larger, leaving more cores idle when the

sequential submodels were computed; second, the ITF

solver uses the gfortran compiler, which is not well opti-

mized for Huygens architecture. As a result, it requires only

4 min on Zeus and 12 min on Huygens. The performance

of the other sequential submodels is less platform dependent.

When we run our simulation distributed over both resources,

we achieve the lowest runtime. This is because we combine

the fast execution of the BF module on Huygens with the

fast execution of the ITF solver on Zeus.

When we use double mapping, the runtime per simu-

lation increases by about 6 per cent (using only Huygens)

to 18 per cent (using both resources). However, the double-

mapping improves the usage of the reservation by a factor

of approximately 1.7. Double-mapping is therefore an

effective method to improve the resource usage without

incurring major increases to the time to completion of each

simulation. The coupling overhead is relatively low through-

out our runs, consisting of no more than 11 per cent of the

runtime throughout our measurements. Using our approach,

we are now modelling different ISR scenarios, exploring a

range of modelling parameters.
5.2. Clinical directions
We primarily seek to understand which biological pathways

dominate in the process leading to ISR. If successful, this will

have two effects on clinical practice: first, it suggests which

factors are important for ISR, in turn giving clinicians more

accurate estimates of what the progression of the disease

can be; second, it may spur further directed clinical research

of certain pathways, which will help the next iteration of the

model give more accurate results.

The methods for achieving this divide naturally in two

directions: general model validation and experiments; and
virtual patient cohort studies. For general model validation,

we consult the literature and use basic experimental data,

such as measurements from animal studies. In addition, we

intend to use virtual patient cohort studies to assess the ISR-

risk factors of virtual patients with different characteristics.

In clinical practice, this will not lead to personalized estimates,

but rather to patient classifiers on how ISR3D will progress.

Once the primary factors leading to ISR have been assessed,

a simplified model could be made based on ISR3D, which

takes less computational effort and runs within a hospital.
6. Modelling of cerebrovascular blood flow
Our second hemodynamic example aims to incorporate not

only the local arterial structure in our models, but also prop-

erties of the circulation in the rest of the human body. The key

feature of this application is the multiscale modelling of BF,

delivering accuracy in the regions of direct scientific or clini-

cal interest while incorporating global BF properties using

more approximate methods. Here we provide an overview

of our multiscale model and report on its performance.

A considerable amount of previous work has been done

where groups combined bloodflow solvers of different

types, for example, in the area of cardiovascular [34–36] or

cerebrovascular bloodflow [12,37].

We have constructed a distributed multiscale model in

which we combine the open source HemeLB lattice-Boltzmann

application for BF modelling in three-dimensions [38,39] with

the open source one-dimensional Python Navier–Stokes

(pyNS) BF solver [40]. HemeLB is optimized for sparse geome-

tries, such as vascular networks and has been shown to scale

linearly up to at least 32 768 cores [41]. PyNS is a discontinuous

Galerkin solver which is geared towards modelling large arter-

ial structures. It uses aortic BF input based on a set of patient-

specific parameters, and it combines one-dimensional wave

propagation elements to model arterial vasculature with zero-

dimensional resistance elements to model veins. The numerical

code supports thread-level parallelization and is written in

Python in conjunction with the numpy numerical library.
6.1. Simulations
We have run a number of coupled simulations using both

HemeLB and pyNS as submodels. Within pyNS, we use a

customized version of the ‘Willis’ model, based on [42],

with a mean pressure 90 mmHg, a heart rate of 70 beats

per minute and a cardiac output of 5.68 l min21. Our model

includes the major arteries in the human torso, head and

both arms, as well as a full model for the circle of Willis,



Table 4. Performance measurements of coupled simulations which consist of HemeLB running on HECToR and pyNS running on a local UCL workstation. The
type of simulation, single-scale (ss) or coupled multiscale (ms) is given in the first columns. The number of cores used by HemeLB and the initialization time
are, respectively, given in the second and third column. The time spent on HemeLB and coupling work are given, respectively, in the fourth and fifth column,
the total time in the sixth column and the efficiency in the seventh column. The times for HemeLB model execution in the multiscale runs are estimates,
which we derived directly from the single-scale performance results of the same problem on the same resources.

ss/ms cores
init

(time spent)
HemeLB*

(time spent)
coupling

(time spent)
total

(time spent)
coupling

efficiency

ss 512 47.9 2223 n.a. 2271 n.a.

ms 512 51.2 2223 24 2298 98.8%

ss 2048 46.4 815 n.a. 862 n.a.

ms 2048 50.5 815 37 907 95.0%

Table 3. Runtimes with different scenarios. The name of the scenario is given in the first column, the time spent on BF in the second, and the total time
spent on the other submodels in the third column (both rounded to the nearest minute). We provide the coupling overhead in the fourth column and the total
simulation time per cycle in the fifth column. In the sixth column, we provide the average fraction of reserved resources doing computations (not idling)
throughout the period of execution. All time are given in seconds.

scenario BF other coupling total usage (%)

Zeus 2100 1140 79 3240 80

Huygens 480 1260 73 1813 27

Huygens-double 480 1320 131 1931 45

Zeus – Huygens 480 960 92 1532 32

Zeus – Huygens-double 480 1080 244 1804 56
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which is a major network of arteries in the human head. For

pyNS, we use a time step size of 2.3766 � 1024 s.

We have modified a section of the right mid-cerebral artery

in pyNS to allow it to be coupled to HemeLB in four places,

exchanging pressure values in these boundary regions. In

HemeLB we simulate a small network of arteries, with a

voxel size of 3.5 � 1025 m and consisting of about 4.2 million

lattice sites which occupy 2.3 per cent of the simulation box

volume. The HemeLB simulation runs with a time step of

2.3766� 1026 s, a Mach number of 0.1 and a relaxation par-

ameter t of 0.52. We run pyNS using a local machine at

UCL (Henry), while we run HemeLB for 400 000 time steps

on the HECToR supercomputer in Edinburgh. The round-

trip time for a network message between these two resources

is on average 11 ms. We provide technical details of both

machines in table 2. Both codes exchange pressure data at an

interval of 100 HemeLB time steps (or 1 pyNS time step).

Because HemeLB time steps can take as little as 0.0002 s, we

adopted MPWide to connect our submodels, which run con-

currently, and minimize the communication response time.

The exchanged data are represented using 8-byte doubles

and has a small aggregate size (less than 1 kb). As a compari-

son, we have also run HemeLB as a stand-alone single-scale

simulation (labelled ‘ss’), retrieving its boundary values from

a local configuration file. The pyNS code requires 116 s to

simulate 4000 time steps of our modified circle of Willis

problem when run as a stand-alone code.

We present our results in table 4. For 512 cores, the single-

scale HemeLB simulation takes 2271 s to perform its 400 000

lattice-Boltzmann time steps. The coupled HemeLB-pyNS

simulation is only marginally slower, reaching completion
in 2298 s. We measure a coupling overhead of only 24 s,

which is the time to do 4002 pressure exchanges between

HemeLB and pyNS. This amounts to about 6 ms per

exchange, well below even the round-trip time of the network

between UCL and EPCC alone. The communication time on

the HemeLB side is so low because pyNS runs faster per

coupling iteration than HemeLB, and the incoming pressure

values are already waiting at the network interface when

HemeLB begins to send out its own. As a result, the coupling

overhead is only 24 s, and the multiscale simulation is only

1.2 per cent slower than a single-scale simulation of the

same network domain.

When using 2048 cores, the runtime for the single-scale

HemeLB simulation is 815 s, which is a speed up of 2.63

compared with the 512 core run. The coupling overhead

of the multiscale simulation is relatively higher than that of

the 512 core run due to a larger number of processes with

which pressures must be exchanged. This results in an over

all coupling efficiency of 0.95, which is lower than for the

512 core run. However, the 2048 core run contains approxi-

mately 2000 sites per core, which is a regime where we no

longer achieve linear scalability [41] to begin with. As a

future task, we plan to coalesce these pressure exchanges

with the other communications in HemeLB, using the

coalesced communication pattern [43].
6.2. Clinical directions
We aim to understand the flow dynamics in cerebrovascular

networks and to predict the flow dynamics in brain aneurysms

for individual patients. The ability to predict the flow dynamics
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in cerebrovascular networks is of practical use to clinicians, as

it allows them to more accurately determine whether surgery

is required for a specific patient suffering from an aneurysm.

In addition, our work supports a range of other scenarios,

which in turn may drive clinical investigations of other

vascular diseases.

Our current efforts focus on enhancing the model by

introducing velocity exchange and testing our models for

accuracy. As a first accuracy test, we compared different

boundary conditions and flow models within HemeLB [39].

Additionally we used our HemeLB-pyNS setup to compare

different blood rheology models, which we describe in

detail in [44]. Next steps include more patient-specific

studies, where we wish to compare the flow behaviour

within patient-specific networks of arteries in our multi-

scale simulations with the measured from those same

patients. We have already established several key functional-

ities to allow patient-specific modelling. For example,

HemeLB is able to convert three-dimensional rotational

angiographic data into initial conditions for the simulation,

while pyNS provides support for patient-specific global

parameters and customized arterial tree definitions.
7. Conclusions and future work
We have shown that MAPPER provides a usable and modu-

lar environment which enables us to efficiently map

multiscale simulation models to a range of computing infra-

structures. Our methods provide computational biologists

with the ability to more clearly reason about multiscale simu-

lations, to formally define their multiscale scenarios, and to

more quickly simulate problems that involve the use of mul-

tiple codes using a range of resources. We have presented two

applications, in-stent restenosis and cerebrovascular blood-

flow, and conclude that both applications run rapidly and

efficiently, even when using multiple compute resources in

different geographical locations.

We thank our colleagues in the MAPPER consortium, the HemeLB
development team at UCL, as well as Simone Manini and Luca
Antiga from the pyNS development team. This work received fund-
ing from the MAPPER EU-FP7 project (grant no. RI-261507) and the
CRESTA EU-FP7 project (grant no. RI-287703). We made use of com-
putational resources provided by the PL-Grid Infrastructure (Zeus),
by PRACE at SARA in Amsterdam, The Netherlands (Huygens)
and EPCC in Edinburgh, UK (HECToR), and by University College
London (Henry).
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Kasztelnik M, Nowakowski P, Gubala T, Malawski M,
Bubak M. 2010 Exploratory programming in the
virtual laboratory. In Proc. 2010 Int. Multiconf. on
Computer Science and Information Technology
(IMCSIT), Wisła, Poland, October 18 – 20, 2010,
pp. 621 – 628. Washington, DC: IEEE Computer
Society.

14. Groen D, Zasada SJ, Coveney PV. 2012 Survey of
multiscale and multiphysics applications and
communities. See http://arxiv.org/abs/1208.6444.

15. Hucka M et al. 2003 The systems biology markup
language (SBML): a medium for representation and
exchange of biochemical network models.
Bioinformatics 19, 524 – 531. (doi:10.1093/
bioinformatics/btg015)
16. Lloyd CM, Halstead MDB, Nielsen PF. 2004 CellML:
its future, present and past. Progr. Biophys. Mol.
Biol. 85, 433 – 450. (doi:10.1016/j.pbiomolbio.2004.
01.004)

17. Hoekstra AG, Lorenz E, Falcone J-L, Chopard B.
2007 Toward a complex automata formalism
for multiscale modeling. Int. J. Multiscale Comp.
Eng. 5, 491 – 502. (doi:10.1615/IntJMultCompEng.
v5.i6.60)

18. Hoekstra AG, Caiazzo A, Lorenz E, Falcone J-L,
Chopard B. 2010 Complex automata: multi-scale
modeling with coupled cellular automata
(Understanding complex systems), pp. 29 – 57.
Berlin, Germany: Springer.

19. Evans DJW et al. 2008 The application of multiscale
modelling to the process of development and
prevention of stenosis in a stented coronary artery.
Phil. Trans. R. Soc. A 366, 3343 – 3360. (doi:10.
1098/rsta.2008.0081)

20. Caiazzo A et al. 2011 A complex automata approach
for in-stent restenosis: two-dimensional multiscale
modeling and simulations. J. Comp. Sci. 2, 9 – 17.
(doi:10.1016/j.jocs.2010.09.002)

21. Borgdorff J, Falcone J-L, Lorenz E, Chopard B,
Hoekstra AG. 2011 A principled approach to
distributed multiscale computing, from
formalization to execution. In Proc. IEEE 7th Int.
Conf. on e-Science Workshops, Stockholm, Sweden,
5 – 8 December, 2011, pp. 97 – 104. Stockholm,
Sweden: IEEE Computer Society Press.

22. Falcone J-L, Chopard B, Hoekstra A. 2010 Mml:
towards a multiscale modeling language. Proc.
Comp. Sci. 1, 819 – 826. (doi:10.1016/j.procs.2010.
04.089)

23. Zasada SJ, Mamonski M, Groen D, Borgdorff J,
Saverchenko I, Piontek T, Kurowski K, Coveney PV.

http://dx.doi.org/doi:10.1093/bib/bbp038
http://dx.doi.org/doi:10.1038/msb.2009.51
http://dx.doi.org/doi:10.1098/rsfs.2010.0024
http://dx.doi.org/doi:10.1098/rsfs.2010.0024
http://dx.doi.org/doi:10.1007/s10237-005-0070-2
http://dx.doi.org/doi:10.1007/s10237-005-0070-2
http://dx.doi.org/doi:10.1021/ci100423z
http://dx.doi.org/doi:10.1021/ci100423z
http://dx.doi.org/doi:10.1126/science.1069881
http://dx.doi.org/doi:10.1109/MC.2004.1297236
http://dx.doi.org/doi:10.1109/MC.2004.1297236
http://dx.doi.org/doi:10.1016/j.compchemeng.2006.10.004
http://dx.doi.org/doi:10.1016/j.pbiomolbio.2007.07.019
http://dx.doi.org/doi:10.1016/j.procs.2012.04.064
http://arxiv.org/abs/1208.6444
http://arxiv.org/abs/1208.6444
http://dx.doi.org/doi:10.1093/bioinformatics/btg015
http://dx.doi.org/doi:10.1093/bioinformatics/btg015
http://dx.doi.org/doi:10.1016/j.pbiomolbio.2004.01.004
http://dx.doi.org/doi:10.1016/j.pbiomolbio.2004.01.004
http://dx.doi.org/doi:10.1615/IntJMultCompEng.v5.i6.60
http://dx.doi.org/doi:10.1615/IntJMultCompEng.v5.i6.60
http://dx.doi.org/doi:10.1098/rsta.2008.0081
http://dx.doi.org/doi:10.1098/rsta.2008.0081
http://dx.doi.org/doi:10.1016/j.jocs.2010.09.002
http://dx.doi.org/doi:10.1016/j.procs.2010.04.089
http://dx.doi.org/doi:10.1016/j.procs.2010.04.089


rsfs.royalsocietypublishing.org
Interface

Focus
3:20120087

8
2012 Distributed infrastructure for multiscale
computing. In Proc. 2012 IEEE/ACM 16th Int. Symp
on Distributed Simulation and Real Time
Applications, DS-RT ’12, Dublin, Ireland, October
25 – 27, 2012, pp. 65 – 74. Washington, DC: IEEE
Computer Society.

24. Groen D, Rieder S, Grosso P, de Laat C, Portegies
Zwart P. 2010 A light-weight communication library
for distributed computing. Comp. Sci. Disc. 3.
(doi:10.1088/1749-4699/3/1/015002)

25. Groen D, Portegies Zwart S, Ishiyama T, Makino J.
2011 High performance gravitational N-body
simulations on a planet-wide distributed
supercomputer. Comp. Sci. Disc. 4, 015001. (doi:10.
1088/1749-4699/4/1/015001)

26. Kurowski K, Piontek T, Kopta P, Mamonski M, Bosak
B. 2010 Parallel large scale simulations in the PL-
grid environment. Computational Methods Sci
Technolo, Special Issue 2010, pp. 47 – 56.

27. Zasada SJ, Coveney PV. 2009 Virtualizing access to
scientific applications with the application hosting
environment. Comp. Phys. Commun. 180,
2513 – 2525. (doi:10.1016/j.cpc.2009.06.008)

28. Suter J, Groen D, Kabalan L, Coveney PV. 2012
Distributed multiscale simulations of clay-polymer
nanocomposites. In Materials Research Society
Spring Meeting, vol. 1470, San Francisco, CA, April
9 – 13, 2012 (MRS Online Proceedings Library).
Cambridge, UK: Cambridge University Press.

29. Ben Belgacem M, Chopard B, Parmigiani A.
2012 Coupling method for building a network
of irrigation canals on a distributed computing
environment. In Cellular automata (eds
G Sirakoulis, S Bandini). Lecture Notes in
Computer Science, vol. 7495, pp. 309 – 318.
Berlin, Germany: Springer.
30. WHO, World Heart Federation; World Stroke
Organization (ed.) 2012 Global atlas on
cardiovascular disease prevention and control.
Policies, strategies and interventions. Geneva,
Switzerland: World Health Organization.

31. Moustapha A et al. 2001 Percutaneous and surgical
interventions for in-stent restenosis: long-term
outcomes and effect of diabetes mellitus. J. Am.
College Cardiol. 37, 1877 – 1882. (doi:/10.1016/
S0735-1097(01)01231-1)

32. Kastrati A, Hall D, Schömig A. 2000 Long-term outcome
after coronary stenting. Curr. Control. Trials Cardiovasc.
Med. 1, 48– 54. (doi:10.1186/CVM-1-1-048)

33. Jukema JW, Verschuren JJW, Ahmed TAN, Quax PHA.
2011 Restenosis after PCI. Part 1: pathophysiology
and risk factors. Nat. Rev. Cardiol. 9, 53 – 62.
(doi:10.1038/nrcardio.2011.132)

34. Shi Y, Lawford P, Hose R. 2011 Review of zero-d
and 1-d models of blood flow in the cardiovascular
system. Biomed. Eng. Online 10, 33. (doi:10.1186/
1475-925X-10-33)

35. van de Vosse FN, Stergiopulos N. 2011 Pulse wave
propagation in the arterial tree. Annu. Rev. Fluid
Mech. 43, 467 – 499. (doi:10.1146/annurev-fluid-
122109-160730)

36. Sughimoto K, Liang F, Takahara Y, Yamazaki K,
Senzaki H, Takagi S, Liu H. In press. Assessment of
cardiovascular function by combining clinical data
with a computational model of the cardiovascular
system. J. Thorac. Cardiovasc. Surg.

37. Alastruey J, Moore SM, Parker KH, David T, Peiró J,
Sherwin SJ. 2008 Reduced modelling of blood
flow in the cerebral circulation: coupling 1-d, 0-d
and cerebral auto-regulation models. Int. J. Numer.
Methods Fluids 56, 1061 – 1067. (doi:10.1002/
fld.1606)
38. Mazzeo MD, Coveney PV. 2008 HemeLB: a high
performance parallel lattice-Boltzmann code for
large scale fluid flow in complex geometries. Comp.
Phys. Commun. 178, 894 – 914. (doi:10.1016/j.cpc.
2008.02.013)

39. Carver HB, Nash RW, Bernabeu MO, Hetherington J,
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