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The human immune system has a highly complex, multi-layered structure

which has evolved to detect and respond to changes in the internal micro-

environment of the body. Recognition occurs at the molecular or

submolecular scale, via classical reversible receptor–ligand interactions,

and can lead to a response with great sensitivity and speed. Remarkably, rec-

ognition is coupled to memory, such that responses are modulated by events

which occurred years or even decades before. Although the immune system

in general responds differently and more vigorously to stimuli entering the

body from the outside (e.g. infections), this is an emergent property of the

system: many of the recognition molecules themselves have no inherent

bias towards external stimuli (non-self ) but also bind targets found within

the body (self ). It is quite clear that the immune response registers pathophy-

siological changes in general. Cancer, wounding and chronic tissue injury

are some obvious examples. Against this background, the immune system

‘state’ tracks the internal processes of the body, and is likely to encode infor-

mation regarding both current and past disease processes. Moreover, the

distributed nature of most immune responses (e.g. typically involving lym-

phoid tissue, non-lymphoid tissue, bone marrow, blood, extracellular

interstitial spaces, etc.) means that many of the changes associated with

immune responses are manifested systemically, and specifically can be

detected in blood. This provides a very convenient route to sampling

immune cells. We consider two different and complementary ways of query-

ing the human immune ‘state’ using high-dimensional genomic screening

methodologies, and discuss the potentials of these approaches and some

of the technological and computational challenges to be overcome.
1. Introduction
1.1. The immune system as a biomonitor
The immune system can be regarded as a complex detection system focused on

identifying changes within the internal environment made up of the tissues, extra-

cellular spaces and fluids of the body. The primary detectors are receptor

complexes on the cell surface, or inside the cell and hence recognition occurs at

a molecular scale. Larger scale more general representations made up of a set of

many individual molecular changes may develop as an emergent property of

the system. For example, recognition of an influenza infection is mediated by

many individual interactions between molecular elements of the virus and a

large set of receptors (which may include antibody, T-cell receptors and various

innate pattern recognition receptors). But the overall outcome is an integrated

response aimed at protecting the host from invasion by influenza virus. Although

the immune system has presumably evolved primarily to recognize and respond

to infectious agents, it is quite clear that the system can respond to an enormous
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Figure 1. Blood as a window to the immune response. Pathophysiological disturbances (I, both infectious and non-infectious) elicit changes in the cells of the
immune system (II, III), some of which circulate via the blood and hence can be sampled (IV) and analysed in the laboratory (V). The objective is to learn about I
from studying V. However, the mappings between each compartment are high dimensional, nonlinear and possibly redundant. They may also require us to extend
the current cell centric understanding of disease.

rsfs.royalsocietypublishing.org
Interface

Focus
3:20120099

2

array of physiological and pathological changes in the body,

many of non-infectious origin. The immune system can there-

fore be regarded as a sensitive biomonitor of the body. The

ability to read and to interrogate and interpret this biomonitor

would provide valuable information for prognosis, diagnosis

and stratification of a wide range of diseases. In this article,

we outline some of the approaches to system-level analysis of

the immune response, using the power of the recent revolution

in DNA sequencing and transcriptomics technologies. We focus

specifically on the experimental and computational challenges

of developing a pipeline which starts with whole unfractionated

blood samples, and describe some of our initial experiences of

implementing such a pipeline. We argue that the ease with

which whole blood RNA sampling can be scaled up for intro-

duction into routine hospital diagnostic services provides a

strong rationale for developing such a pipeline despite the com-

plexities introduced by the heterogeneous cellular composition

of the samples. However, interpretation of the output of such

analysis will require new computational tools which can be

applied to large numbers of datasets. This type of analysis

will then be able to ‘learn’ new and informative patterns

within the data which may not be predicted by our current

cell-centric view of physiology and pathology.
1.2. The blood as a window for observing immunity
A unique feature of the immune system is that it has a plastic

and moving anatomy, with both the number and location of

many types of cells varying with immune state. The blood

and lymphatic system serves as a universal conduit through

which relevant immune cells can move from tissue to

tissue, ultimately homing to the site at which they are

required (figure 1). Furthermore, since leucocytes circulate

rapidly through all tissues of the body, local changes in

tissue micro-environment associated with physiological or

pathological changes can influence cells as they transit

through the affected tissue. Thus, although blood is not the

site of most immunological activity, it may offer a unique

window through which to observe the state of the immune

system. However, a typical immune response can involve a

wide variety of cell types, in both lymphoid and non-

lymphoid tissues. This raises two important methodological

questions. The first is the extent to which some cell types

may be absent from blood altogether and hence may be

missed by any analysis which focuses on blood samples.

The second is the relative advantages of analysing whole

unfractionated blood samples, versus analysis of subpopu-

lations of leucocytes isolated from blood by one of many

alternative sorting protocols available. Both these questions

are relevant to both global transcriptomic and T-cell reper-

toire approaches which are discussed in more detail below.
In terms of the first question, it is clear that a number of

functionally significant cell populations will indeed be

under-represented in blood. Tissue macrophages are one

obvious example drawn from innate immunity, while

plasma B-cells or mucosal associated invariant T-cells are

examples from adaptive immunity. Whole blood profiling

cannot by itself therefore aim to give a comprehensive view

of immunological activity in all compartments of the body.

Indeed, in our laboratory we are exploring transcriptional

profiling of a variety of biopsy tissue samples to provide

complimentary information to the blood profiling [1]. Never-

theless, as a prognostic or diagnostic tool, blood profiling

may provide molecular signatures which reflect global pat-

terns of activity associated with specific type of immune

responses. For example, even though tissue macrophages

are absent from blood, transcriptional changes resulting

from cytokine release by macrophages at a site of inflam-

mation may still reveal their activity. In respect to the

second question, transcriptional analysis of whole blood

samples is clearly not a replacement for detailed transcrip-

tomic analysis of sorted subpopulations of leucocytes.

Indeed, the analysis of unfractionated leucocyte populations

from blood has some significant limitations. In particular,

the analysis of extracts of heterogeneous cell populations

loses a whole layer of information linking gene expression

profiles to the accumulated knowledge regarding the func-

tion of the different subpopulations present. Rebuilding the

functional picture of what is happening without this infor-

mation adds a considerable layer of complexity to the

analysis. In addition, gene expression changes occurring in

very small subpopulations of cells may be missed in this

global approach, since they will be diluted out by changes

in larger more common cell types. Whole blood approaches

do, however, offer several advantages. The first is scalability

within a clinical setting. As discussed in more detail below,

the use of RNA collection/stabilization tubes mean that

high-quality RNA samples can be obtained by staff with no

immunological expertise (e.g. local nursing staff within a hos-

pital setting) and with minimum investment of additional

time and effort. This is in fact a crucial factor in studies

requiring collection of large numbers of longitudinal or

population samples from multiple centres. The cost and

time implications become even more crucial as the resource

setting of the studies become more circumscribed. A second

technical advantage is the short period between removal of

a blood sample and stabilization of RNA. Prolonged sorting

protocols, such as flow cytometry-based or bead-based

methods inevitably involve lengthy in vitro incubation

steps, which will induce changes in the cellular transcriptome

even in the rare situations that the temperature of the samples

is carefully controlled from the moment the blood sample is
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Figure 2. The immune system as a complex biomonitor: qualitative and quantitative immune profiling. The immune system responds to a wide variety of diseases,
by changes in the number of cells carrying antigen-specific receptors (adaptive immunity) and by a network of non-specific molecular interactions which transduce
the primary recognition signals, drive cell maturation and phenotype, and shape an overall immune response.
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collected. Finally, it should be remembered that cell subset

classification is to a greater or lesser extent artificial, reflecting

our current ability to distinguish cells based on specific small

sets of available markers. It is becoming increasingly clear

that every defined subpopulation of cells can be further

broken down into additional subgroups, as the tools for

such classification become more sophisticated. The analysis

of unfractionated cell populations adds a layer of complexity

to the interpretation, but is not necessarily less informative

than the analysis of marker defined subpopulations.
1.3. Qualitative and quantitative immune profiling
The immune system comprises several sets of molecular sen-

sors or receptors which interact directly with their targets

(generally named antigens for receptors of adaptive immunity,

and molecular patterns for receptors of innate immunity).

These primary interactions lead to a complex sequence of sub-

sequent intra-cellular and inter-cellular changes, which

together comprise an immune response (figure 2). An analysis

of these changes at a transcriptomic level, and how they map

onto known intra- and inter-cellular molecular networks

reveals much information on the qualitative nature of a particu-

lar immune response, both innate and adaptive. For example,

an analysis of whole blood transcriptomics highlighted a pre-

viously overlooked role of type I interferon responses in

neutrophils, a facet of innate immunity, in the pathogenesis

of tuberculosis [2]. Global transcriptomics does not, however,

directly address the antigen-specific (adaptive) element of the

immune response which requires a different approach. A fun-

damental tenet of our understanding of adaptive immunity is

that most B- and T-lymphocytes carry only receptors of one

unique sequence, and that the number of cells carrying a

specific receptor increases following exposure to the cognate

antigen. These two fundamental rules form the basis for the
clonal theory of immune function, which remains a central

dogma of immunology. The quantitative description of the fre-

quency of cells carrying each specific receptor as a function of

time therefore carries quantitative information on the response

to specific antigen. In this paper, we examine ways to capture

both these qualitative and quantitative aspects of the immune

response, by different strategies for whole blood expression

profiling. The overall workflow we are currently using is illus-

trated in figure 3. By combining qualitative and quantitative

analyses, we aim to obtain an integrated picture of the

immune response, and use it to reveal the underlying patho-

logical processes which may be difficult to access using

conventional diagnostic tools.
2. Whole blood expression profiling
2.1. Data collection and low-level processing
Several groups have used whole blood transcriptional profil-

ing previously [2–6]. Unfortunately, there is no consensus on

the best protocols and different laboratories use different

experimental and computational packages. For example,

microarray platforms are increasingly being superceded by

high-throughput sequencing approaches. In the context of

these rapid improvements in technology, it seems naive to

believe that it will be possible to establish a consensus pipe-

line, and the challenge will be to develop bioinformatic

computational tools which will allow cross-platform analysis

of different datasets, and which will be backwardly compati-

ble so as to make use of the large amounts of data which have

already been generated. The wet laboratory protocols for

RNA collection, isolation and hybridization used in our lab-

oratory are similar to published protocols [7,8] and include

a step to remove the very abundant hemoglobin transcript

in order to increase the sensitivity of detection of other
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Figure 3. The pipeline for human transcriptomic analysis: qualitative and quantitative immune profiling.

Table 1. agilp modules and their function.

module function

AAProcess extracts raw expression data from Agilent expression

array scanner files

Loader a file chooser utility file, to select sets of data from

a large database of expression datafiles

filenamex a file name listing utility

Baseline constructs a file with the mean of each probe from a

set of raw expression array data files

AALoess normalizes a set of gene expression data files using

LOESS against a reference dataset

IDswop maps expression data across different bioinformatic

identifiers

Equaliser trims a set of gene expression data files to include

only the set of identifiers common to all files
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transcripts. The output of the Agilent scanners generates files

with a large amount of image analysis information, most of

which is rarely used in subsequent analysis. We wished to

develop a computational pipeline which gave us full control

over key steps in data processing, such as normalization and

scaling, but which was simple enough to be learned rapidly

by people with little previous computational background.

For this purpose, we developed the package agilp, written

in R and available in Bioconductor [9]. The package contains

a series of modules (table 1).

A typical pipeline would first extract raw expression data

from the scanner output files using AAProcess. This module is
platform-specific and is designed to extract median spot raw

expression intensity values from the Agilent scanner output.

The module can use both one-colour and two-colour formats,

but typically our laboratory uses both colours for indepen-

dent samples thus doubling the number of samples which

can be run. The remaining modules are all platform indepen-

dent and simply require files which contain a list of

identifiers (typically probe names) in the first column and a

list of numbers representing intensities in the second. The

expression data from each sample output from AAProcess
are stored as a single tab delimited txt file, whose name

uniquely identifies the array. A key feature in managing the

workflow is a file named the template. The template is a

spreadsheet (for example, a simple Excel worksheet), which

acts as a database storing the key experimental details for

each sample (cell type, date of hybridization, stimulus, user,

etc.) along with the unique identifier linking the sample to

the array output. We found that a common problem was

operator error in manually entering the unique array identi-

fier file names, which are often long series of numbers and

letters, into the template manually. The utility filenamex
returns the list of file names in a directory in a form which

can be very easily copied and pasted into the template,

thus minimizing the opportunities for operator error. A set

of files for further processing can be selected from a large

bank of files on the basis of specific criteria as detailed in

the template (e.g. all files containing results from whole

blood samples), using the utility loader.

The two modules baseline and AALoess perform normali-

zation and transformation of the data. The data are log2

transformed by default, although an option is available to

use untransformed data. In addition to being standard prac-

tice in the microarray field, log transformation equalizes the

variance across the intensity range, and also improves the
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Figure 4. A gene module which identifies T-cells. The median processed gene expression level from the set of genes shown on the right was plotted against (a) T-cell
and (b) monocyte count for a set of whole blood samples (n ¼ 25). The T-cell signature score is highly correlated with T-cell count, but not with monocyte count.
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fit to normal distribution for many probes [10]. Further analy-

sis by parametric tests is therefore more robust. The

normalization algorithm uses a local regression model

(LOESS) to compare individual datasets to a standard,

which is typically the mean of many similar datasets, and

then apply an intensity-dependent correction factor across

the intensity range. The underlying assumption is that all

samples will have the same overall distribution of intensities

across the probe ensemble, since only a minority of genes

change between samples. This is a somewhat tighter assump-

tion than standardizing the mean or median, and the

evidence supporting it is discussed in more detail in [10].

Median centring, which is often computationally helpful for

further analysis, is a relatively trivial additional step once

LOESS normalization has been carried out. Standardization

of variance is not carried out, and is indeed not rec-

ommended, since variance of the log transformed data is

intensity independent, and the different magnitude of

changes between different genes is an important variable in

downstream analysis. The final two modules, IDswop and

Equaliser deal with cross platform analysis. Further details

are given in the agilp vignette.

2.2. Supervised and unsupervised approaches to
high-level analysis

The experimental and computational pipeline described

above produces datasets which are robust and highly repro-

ducible in a number of different models [1,7,11,12]. These

datasets therefore provide a solid base on which to develop

high-level analysis tools which interrogate the data, to

derive information which can be useful to clinicians in

terms of patient stratification and management, and may

also provide clues to understanding disease pathogenesis.
The development of analysis tools for microarray data is an

enormously active field, requiring close interaction between

biologists, clinicians, computer scientists and statisticians. It

is not possible to review the different approaches within

the confines of this discussion, and indeed it is too early to

say which tools will be of most value. Two major challenges

are that the datasets are both ultra high dimensional and

noisy, due in large part to the underlying enormous individ-

ual variability within the human population. The network of

gene interactions, which is often the focus of interest, is

sparse, in the sense that most genes are not directly linked

to most other genes, posing additional challenges [13]. Cur-

rent machine learning and statistical tools still struggle with

finding meaningful patterns within such datasets. One

approach to dimension reduction is to use prior knowledge

to build gene modules which may reflect known biological

entities or functions [14]. At the simplest level, modules can

define a cell type. For example, we have defined a T-cell

module, by choosing some ‘known’ T-cell markers and then

selecting other genes which closely correlate with these initial

seed genes across sets of data. A common core of genes

all closely correlated with each other emerge as a putative

T-cell signature. We tested the validity of this approach by

comparing the T-cell module signal (the median intensity

signal from all genes within a module) across a set of 25

whole blood arrays with the differential T-cell count obtained

by classical methods. The T-cell module signal gave excellent

correlation with T-cell numbers, but was uncorrelated to

monocyte numbers confirming that the signature was cell

type-specific (figure 4). This simple test example demon-

strates that the whole blood expression profile contains

within it information such as differential cell counts which

has long been used as a biomarker of clinical utility. It

seems probable that many other such informative signatures



Table 2. The possible diversity of T-cell receptor a and b chains, not including the effects of two additional D regions in the b chains.

chain V region 30 V deletions J region 5’ J deletions combinations additions total combinations

a 45 15 50 12 15

a 45 15 50 12 405 000 4.3 � 1014

b 48 10 13 12 18

b 48 10 13 12 74880 5.1 � 1015
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3. The T-cell receptor repertoire
The power of vertebrate adaptive immunity lies in its ability

to synthesize an enormously diverse repertoire of antigen-

specific receptors, by a unique process of imprecise

recombination of DNA segments within the lymphocyte

germline. Diversity is generated by stochastic recombination

of many copies of minigenes (V, D and J segments). At

each segment join, bases can be lost and added. Each receptor

contains two variable chains, and these join in a random (or

at least very promiscuous) way further boosting variability.

Estimates for the number of possible B- and T-cell receptors

which can be generated by this mechanism are in excess of

1010 [15], and may be much higher (table 2). Because of this

diversity, global analysis of immune repertoires and responses

has lagged behind the structural understanding of receptor/

antigen interactions. Advances in high-throughput sequen-

cing (HTS) now offer the possibility of analysing immune

responses with unprecedented breadth and depth [16,17].

The accurate description and analysis of the T- and B-cell

repertoires provides both wet laboratory and computational

challenges. A number of different approaches have been

described to isolate DNA which is representative of a whole

sample of diverse TcR or BcR sequences [18–21]. So far,

this approach has been applied only to a handful of

examples. However, with the rapid increase in high-quality

read length which can be achieved, and the fall in cost, the

number of such datasets generated in the coming years are

likely to increase rapidly. Most studies have used as starting

material messenger RNA, although at least theoretically

gene recombination associated with lymphocyte receptor

expression is a genomic event and could be tracked at DNA

level. Nevertheless, for methodological reasons RNA has

remained the favoured target, although accurate reflection

of the repertoire based on RNA measurements depends on

the assumption that the level of TcR message does not vary

very much during different stages of T-cell differentiation

and activation. This assumption has not been extensively

investigated, and is certainly not true for B-cells where immu-

noglobulin levels vary by as much as 1000-fold by stages of

differentiation and activation. All published studies have

used PCR for receptor amplification, and a major challenge

has been to ensure that amplification over the diverse set of

receptors occurs with uniform efficiency. With continued

improvements in sequencing technology (longer reads, less

DNA input requirement and ever higher depth of
sequencing) many of the challenges of the experimental pro-

tocol are likely to be solved within the next year or two.

One outstanding question in regard to whole blood reper-

toire analysis will be the interdependence of repertoire on

lymphocyte subset composition. Some of the generic advan-

tages and disadvantages of analysis of whole blood versus

sorted populations are discussed above. However, the reper-

toire is the result of specific constraints imposed by germline

gene sequence content and sequential somatic selection at

specific developmental and antigen challenge dependent

checkpoints. These processes will clearly be different

among various T-cell subpopulations. Indeed, some T-cell

subpopulations may be sampled poorly or not at all in

blood, since they are found predominantly within tissues:

for example, tumour-associated lymphocytes may be strongly

under-represented in blood. In practice, therefore studies of

both sorted and whole blood populations will be required,

and will need to be supplemented by analysis of repertoire

from tissue biopsy material where this is available. Analysis

of sequences obtained from specific lymphocyte subsets,

both antigen-specific (e.g. tetramer selected) and non-specific

(e.g. CD4 versus CD8, Tregs versus CD4, etc.) will inform

interpretation and understanding of the rules which deter-

mine the relationship between genetic recombination,

selection and antigen specificity. Nevertheless, as these rules

become better understood, and the relationships between

sequence and antigen recognition are established, whole

blood TcR profiling will provide a powerful tool for the

large-scale longitudinal and population analysis of repertoire

changes which may accompany infection or other diseases

affecting immune function.
3.1. Low-level sequence processing
In the same way as we describe above for microarray

expression analysis, our first step has been to develop a com-

putational tool for low-level analysis of large sequence

datafiles, which allows us control over key processing steps

but is sufficiently robust and easy to use that it can be readily

adopted by experimental scientists with little previous com-

putational training. To simplify analysis of the vast number

of short read sequences (potentially 100 million from a

single experiment using Illumina HiSeq technology), and

also to mitigate the influence of sequencing error on sub-

sequent analysis, we have developed an algorithm to

classify each TcR sequence read in terms of a five-part classi-

fier. This classifier consists of four numeric fields, namely the

V gene segment used, the J gene segment used, the number of

V and J deletions, and finally a categorical variable consisting

of the oligonucleotide string found between 3’ V and 5’ J.

Following previous studies, we have not tried to distinguish

between the two possible b D regions, since they are very
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Figure 5. Once a V (or J) tag has been found in the sequence read, its known, relative position within each V or J segment is used to determine where a full V or J
would end within the sequence read. From this position, consecutive comparisons are made working backwards from this inferred position to determine the number
of germline deletions.
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similar and are difficult to classify particularly when the ends

are significantly deleted. Each five part identifier unambigu-

ously defines a complete TcR chain sequence, thus

compressing the data from a string of several hundred char-

acters, to typically less than 50. Each identifier also reflects

an underlying biological process, so that the frequency of

each item can be given biological meaning (e.g. V or J gene

usage, etc.). Further advantages of categorizing sequence

reads are it distinguishes true TcR sequences from ‘junk’

sequences (and loses the latter). It removes some of the

sequencing error (which adds false additional diversity),

typically quoted as occurring at up to 1 per cent on the Illu-

mina platform. Finally, it allows efficient storage of high-

dimensional data in a form which can be rapidly interrogated

(for example, using hash tables) in order to look for patterns

and clusters across multiple different samples.

To parse the raw sequence files and convert each

sequence into an identifier, we implement the algorithm

described by Aho & Corasick [22], which allows efficient,

exact searching of a set of keywords within a target. The classi-

cal Aho–Corasick algorithm was extended to account for

sequencing error and assign gene regions using keywords
which differ from the target sequence by at most one letter

(i.e. one base pair). A set of V (or J) tags were found which

uniquely define one, and only one, V (or J) gene segment

[23]. These tags are used as the keywords. The beauty of

the algorithm is that it makes only one pass through the

target string to find all keywords present within it. The algor-

ithm was implemented using Acora in BioPython and is

available at https://github.com/uclinfectionimmunity/

Decombinator with full instructions on usage.

Once a tag has been assigned, the number of deletions is

calculated by using our knowledge of the location of the tag

within that gene segment. The algorithm jumps to the end of

where the full length gene segment would finish in the

sequence read, and then counts back towards the tag

(figure 5) until it finds the end of the V or J region, by finding

three consecutive bases which match to the expected V or J

region. Finally, the sequence found between 3’ V and 5’ J
gives the additional non-template nucleotides along with

the remnants of the D gene segment used.

Determining these five variables allows us to express each

sequence in terms of a classifier, providing a simple means of

clustering a repertoire of sequences. We categorize each

sequence fs as

fs ¼ ðVindex; Jindex;deletionsV;deletionsJ ; insertÞ: ð3:1Þ

From this classifier, we are then able to determine the

underlying nucleotide sequence, mitigating for sequencing

error, and determine the CDR3 region, which is believed to

reflect the region of protein making direct contact with anti-

gen, via translation of the nucleotide sequence (figure 6),

defined as the region between the last cysteine residue in V

and the conserved FG(X)G motif in J.
3.2. High-level analysis
We have used the analysis tool described above to parse

sequence data on b chains available in the public domain

[24]. As described previously, V and J region usage is non-

uniform, as are deletions and additions (figure 7a). The

pictorial depiction of the repertoire from one individual

is shown in a bubble plot in (figure 7b) where each distinct

sequence is represented by a circle, and its frequency

by the circle area and colour. The picture emphasizes the

extraordinary diversity of each individual’s repertoire.

Merely by investigating the quantity and persistence of

clones over time, studies using high-throughput DNA analy-

sis of TcR repertoire sequence data have revealed several

important fundamental features of T-cell biology, such as

the timing of b chain rearrangement [25], a minimum size

of the b repertoire [19,20], and the presence of surprisingly

few expanded clones in the memory compartment [15].

Some initial clinical applications of the approach have also

been explored. Two particular recent studies have employed

TcR sequencing with a translational focus, by tracking sub-

sets of T-cell clones in important clinical settings. The first

tracked the retention of clones in a patient with ankylosing

https://github.com/uclinfectionimmunity/Decombinator
https://github.com/uclinfectionimmunity/Decombinator
https://github.com/uclinfectionimmunity/Decombinator


Figure 6. Once a sequence read has been classified according to the five variables described in the text, the underlying nucleotide sequence can be determined
from the classifier, crucially without sequence error. From this underlying nucleotide sequence, it is then straightforward to determine the amino acid sequence via
translation, where the CDR3 region is defined as the last conserved cysteine residue in V to the conserved FG(X)G motif in J.
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spondylitis who underwent autologous haematopoietic stem

cell transplantation [26]. In this setting, the authors were able

to observe that at least 250 unique TcRb clones seem to have

survived the chemotherapy, being both detectable and see-

mingly expanded post-ablation. A second group used

similar approaches to track the survival of malignant clones

in lymphoid cancer patients [27]. Deep sequencing of T-cell

receptor b and g allowed monitoring of minimum residual

disease, a major prognostic marker, with greater sensitivity

than current clinical assays.

However, it is clear that the real power of the TcR and BcR

sequence analysis will only be understood when it is applied

to antigen-specific responses. Basic parameters including the

number of different clones which expand to a given antigen

stimulus and the kinetics of the response remain unknown.

We are beginning to collect longitudinal samples from var-

ious cohorts of individuals exposed to known antigen

stimulation, for example vaccination or infection. The long-

term objective will be to combine this sort of observational

data with bioinformatic structure predictions, to build up a

comprehensive catalogue of the predicted specificity of a sub-

stantial proportion of the overall T-cell repertoire. Achieving

this objective remains an ambitious goal.
4. General conclusions
Whole blood cell transcriptional profiling remains in its

infancy, but continued improvements in the underlying tech-

nologies will continue to make the wet laboratory analysis of
these samples easier, cheaper and more reliable. The concep-

tual framework of the approach is however radical. It goes

beyond the cell centric view of human pathology which has

dominated medicine for the past 150 years [28] because it

focuses on recognizing emergent global molecular networks

or signatures derived from complex cell mixtures which

reflect holistic changes in the body’s physiology. To a great

extent, the approach remains data-driven rather than hypoth-

esis or knowledge-driven. The relationships between the

detailed molecular interaction networks which have been

painstakingly defined over the last half century and the

gene expression profiles generated by global transcriptomics

remain very poorly defined. From a computational point of

view, this data-driven discovery relies heavily on unsuper-

vised machine learning techniques. However, as our

knowledge base deepens, prior knowledge will increasingly

drive supervised or semi-supervised learning algorithms. It

is clear, however, that if it is to take its part as part of the

twenty-first century’s personalized medicine revolution,

whole blood transcriptional profiling (whether global gene

expression or lymphocyte receptor specific) must be rolled

out as ‘big science’. Only by collecting large enough datasets,

and linking them carefully and methodically to detailed clini-

cal data will the power of the approach be properly realized.

Analysing these emerging datasets will then require new gen-

erations of young biomedical researchers who are as

comfortable with computational and mathematical skills as

they are with the molecular and cellular biology which

forms the basis for most of the current biomedical training

and research.
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