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Abstract

Significance: The hemoglobin (Hb) scavenger receptor, CD163, is a macrophage-specific protein and the upre-
gulated expression of this receptor is one of the major changes in the macrophage switch to alternative activated
phenotypes in inflammation. Accordingly, a high CD163 expression in macrophages is a characteristic of tissues
responding to inflammation. The scavenging of the oxidative and proinflammatory Hb leading to stimulation of
the heme-oxygenase-1 and production of anti-inflammatory heme metabolites indicates that CD163 thereby
indirectly contributes to the anti-inflammatory response. Recent Advances: In addition to this biological role in
inflammation, CD163 is a potential inflammation biomarker and a therapeutic target. The biomarker form of
CD163 is the soluble plasma CD163 that arises from the increased shedding of CD163 mediated by the tumor
necrosis factor-a (TNF-a) cleaving enzyme. This explains that a steadily increasing literature documents that the
plasma level of soluble CD163 is increased in a large spectrum of acute and chronic inflammatory disorders. The
nonshed membrane form of CD163 in macrophages constitutes a target for drugs to be directed to macrophages
in inflammation. This approach has been used in an animal inflammation model to highly increase the apparent
therapeutic index of anti-inflammatory glucocorticoid drug that was coupled to an anti-CD163 antibody. Fur-
thermore, other recent animal data, which indirectly involve CD163 in macrophages, demonstrate that injections
of haptoglobin attenuate Hb-induced damages after blood transfusion. Critical Issues and Future Directions:
The diagnostic and therapeutic properties of CD163 await further clinical studies and regulatory approval before
implementation in the clinic. Antioxid. Redox Signal. 18, 2352–2363.

Introduction

CD163 was originally identified in two independent
reports (75, 123) using monoclonal antibodies as an un-

known monocyte–macrophage-specific antigen associated
with the anti-inflammatory process. Several other groups
identified the same protein named as the antigen of different
monocyte–macrophage-specific antibodies, such as Ki-M8
(95), GHI/61 and SM4 (94), Ber-MAc3 (6), AM-3K (121), and
2A10 (100). The Leukocyte Typing Workshop V defined the
common antigen of the different antibodies leading to the
CD163 designation (52, 93) The function of the protein was for
long unknown, but its expression, regulation, and primary
structure (59) suggested an immunological receptor function
(52, 75, 123). In 2001, CD163 was identified as the ‘‘hemo-
globin (Hb) scavenger receptor’’ HbSR (57) for the uptake of
Hb released into the plasma and complexed to haptoglobin
(Hp) during intravascular hemolysis. Although this function
appeared distinct from a direct immunological role, it was
fully in accordance with the structure, macrophage-specific

expression, and regulation (69). In recent years, the receptor
has also been reported to bind the tumor necrosis factor-a
(TNF-a)-like weak inducer of the apoptosis (TWEAK) protein
(15), and some pathogenic bacteria (30) and virus (101, 113).

In addition to providing the basic information about CD163
in terms of structure, function, and expression, the present
review will describe the many links between CD163 and hu-
man inflammation. This includes the regulated expression in
macrophages, direct removal of proinflammatory ligands (in
particular Hb), fueling of the pathway for generation of anti-
inflammatory heme metabolites, inflammation-induced
shedding of CD163, the use of soluble CD163 as a biomarker
for inflammatory diseases, and the development of CD163-
targed anti-inflammatory therapy.

CD163 Structure

CD163 is a 130-kDa membrane protein with a short cyto-
plasmic tail, a single transmembrane segment, and a large
ectodomain consisting of nine scavenger receptor cysteine-
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rich (SRCR) scavenger receptor class B domains (59). Different
isoforms of human CD163 have been described, including
three variants with different length of the cytoplasmic tail (59),
with the short tail form (42 amino acids) being the most
abundant. All variants contain common internalization motifs
and exhibit endocytic activity (83).

The SRCR domain is a common 100–110 amino acid do-
main for molecular interactions (65) and with a determined
structural fold of six or seven b-sheets cradling an a-helix (34,
45, 98). The SRCR class A and class B domains share a similar
fold (34, 98) and differ only by the presence of an additional
disulfide bond in the class B domains. Whereas SRCR class A
domains largely are present as single domains in different
mosaic domain proteins, including the scavenger receptor, AI
and MARCO. The class B domains are largely present as
tandem repeat membrane proteins that only contain this type
structural motif in the ectodomain (65). Figure 1 shows the
human SRCR class B family membrane proteins CD163,
CD163b, CD5, CD6, and Scart1. CD163b, which has its en-
coding gene located close (107) to the CD163 gene on chro-
mosome 12 (97) and represents the closest homologue to

CD163 (41). It exhibits similarities in terms of tissue distri-
bution, regulation, and endocytic capability although it seems
to have another not yet defined ligand repertoire (67).

Some of the CD163 SRCR domains contain consensus sites
(88) for calcium binding, and the binding of Hp-Hb com-
plexes, as well as several antibodies (62, 63) exhibit calcium-
dependent binding. The calcium binding is pH-sensitive and
the calcium-binding structure is therefore suggested to be an
essential structural component for the uncoupling of ligand
upon internalization (62). Accordingly, the calcium-binding
SRCR domain 3 of CD163 has been shown to be essential for
the binding of Hb-Hp to CD163 (62).

CD163 Expression and Regulation

Human CD163 expression is restricted to the monocytic–
macrophage linage with high expression in, for example, red
pulp macrophages, bone marrow macrophages, liver macro-
phages (Kupffer cells), lung macrophages, and in macro-
phages of several other tissues (93). A similar expression
pattern is observed in the Lewis rat (10, 91). Monocytes have a
modest expression of CD163, but the expression level highly
increases in culture along with other macrophage character-
istics (2). Previous conflicting data on the monocyte expres-
sion have been explained by a receptor-based study revealing
that the cellular staining in flow cytometry protocols is very
sensitive to the antibody used and the incubation conditions,
which impacts reproducibility of results (63).

Low or absent CD163 expression is seen in other monocyte-
derived cells, such as dendritic cells (64), Langerhans cells
(55), and white pulp macrophages in the spleen (93). A
number of factors (Table 1) regulate CD163 expression in vitro.
The most potent stimulators of CD163 expression known are
glucocorticoid, interleukin (IL)-6, IL-10, and heme/Hb,
whereas IL-4, lipopolysaccharide (LPS), TNF-a and interferon
c, CXC-chemokine ligand 4 (CXCL4), and granulocyte–mac-
rophage colony-stimulating factor downregulate CD163 ex-
pression (17, 19, 36, 49, 108, 111). The effect of glucocorticoids
in vitro (75, 123) has been confirmed in vivo by analyzing
human monocytes after administration of glucocorticoids to
human volunteers (124). The glucocorticoid-mediated regu-
lation of CD163 is further evidenced by the identification of
three glucocorticoid receptor-binding sites in the promoter

FIG. 1. Scavenger receptor cysteine-rich (SRCR) class B
family membrane protein members. All members contain
multiple extracellular repeats of the SRCR class B domain. A
conserved repeat, known as the long-range cassette, is de-
fined by a cassette of five SRCR domains separated by a 31
amino acid spacer between repeat 2 and 3. All the proteins,
except for WC1, which was identified in the pig, are encoded
by the human genome. To see this illustration in color, the
reader is referred to the web version of this article at
www.liebertpub.com/ars

Table 1. Substances Regulating CD163 Expression

in Monocytes/Macrophages In Vitro

Compound Up- or downregulation

Glucocorticoid Up
IL-4 Down
IL-6 Up
IL-10 Up
IFN-c Down
LPS Down
TNFa Down
CXCL4 Down
GM-CSF Down
Hb Up

Refs (16, 19, 36, 49, 75, 108, 111, 123)
IL, Interleukin; IFN c, interferon c; LPS, lipopolysaccharide; TNFa,

tumor necrosis factor; CXCL4, CXC-chemokine ligand 4; GM-CSF,
granulocyte–macrophage colony-stimulating factor; Hb, hemoglobin.
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region of the CD163 gene. Furthermore, binding sites for
several transcription factors important for myeloid differen-
tiation have been identified. Altogether, the observations on
the regulation of CD163 conclude that CD163 is a feature of
macrophages that differentiate into the ‘‘alternatively acti-
vated’’ macrophages that contrast the classical activated M1-
type macrophages (37). Accordingly, CD163-expressing
macrophages have been detected in sites of inflammation,
such as chronically inflamed arthritis joints (8, 33), athero-
sclerotic plaques (96), and the vicinity of tumor cells (tumor-
associated macrophages) (18).

The CD163-positive macrophage may originate from extrav-
asation of monocytes or may represent macrophage activation
switching (92) of already present M1 proinflammatory macro-
phages. Studies of atherosclerosis (16) and Hb (49) suggest that
CD163 and Hb from local microbleedings (plaque hemorrhage)
have an atheroprotective role via the metabolism of Hb leading
to polarization of macrophages. These studies have led to a
definition of a new class of CD163-positive atheroprotective and
anti-inflammatory macrophages in atherosclerotic lesions (16).
These macrophages, now designated Mhem macrophages, are
characterized by a high iron load and heme-oxygenase-1 (HO-1)
activity in contrast to the low content of those in M1, M2, and
Mox macrophages (16). This further underscores the plasticity of
macrophages and their multiple and overlapping phenotypes
that may be regarded as a pronounced tendency to adapt to the
local environment.

Future studies of atherosclerosis and other types of inflam-
mation in CD163 knockout animals should further define the
protective role of CD163 in site of acute and chronic inflamma-
tion. CD163 knockout animals may better define a recent hy-
pothesis that atherogenesis is reduced in mice with a knock out
of the gene encoding the platelet chemokine, CXCL4, might re-
late to an absent CXCL4-mediated polarization of macrophages
with low CD163 expression in these animals (36).

The present literature on CD163 expression is largely based
on work on human material and to some extent the rat and pig
systems, in vivo data are limited. Unfortunately, most of the
comprehensive characterization of macrophage differentia-
tion in animal models is based on the mouse system, where a
suitable anti-CD163 antibody for tracking CD163 expression
until recently has been missing. By implementing CD163 ex-
pression in future studies of the many mouse inflammation
models, new information on macrophage differentiation and
CD163 expression during inflammation will hopefully be-
come available.

CD163- and Hp-Mediated Hb Scavenging

CD163 is a high-affinity receptor of human Hp-Hb com-
plexes (57, 62) that instantly form when Hb is released from
erythrocytes during physiological or pathological hemolysis
(Fig. 2). Moreover, free Hb can bind to low affinity to CD163
(102) and this may have importance after depletion of Hp
during excessive hemolysis. Binding of Hp to Hb is one the
strongest protein–protein interactions occurring in plasma
(48). The high-resolution structure of the porcine complex is
now known (3) and it shows how a previously identified loop
region important for CD163 recognition (87) pertrudes from
the complex in the proximity of Hb. Surprisingly, studies of
mice did not reveal a clearance-promoting effect of Hp (26)
suggesting that in this and other species, the Hp role in rela-

tion to Hb may be limited to protective functions, such as
avoiding peroxidative modification of Hb (14, 20) and im-
pairing filtration of the relatively small Hb molecule by the
kidney (31, 51). The binding of the complex to CD163 mac-
rophages leads to a fast degradation of the complex, and in
case of an increased intravascular hemolysis as seen in many
pathological conditions, such as malaria, hemoglobinopathies
(e.g., sickle cell disease), autoimmune hemolyses, and drug-
induced hemolysis, Hp may virtually disappear from the
human plasma. Hp and the protein moiety of Hb are
degraded in lysosomes (57). The fate of Hb is most likely
identical to that of Hb present in macrophages upon
erythrophagocytosis of outdated red cells. In the macrophage,
the heme-oxygenases convert heme to biliverdin, carbon
monoxide (CO), and iron. Biliverdin is further converted to
bilirubin, which is released and transported by albumin to the
liver for conjugation and excretion in the bile. Overall, the
removal of Hb and the generation of heme metabolites result
in a localized anti-inflammatory response (99).

The anti-inflammatory effects of the heme metabolites CO
and biliverdin/bilirubin are the outcome of multiple biolog-
ical mechanisms not fully elucidated and reviewed in detail
elsewhere (40). Among the many effects of CO, where some
overlap those of NO, this well-known, but potentially very
toxic CO gas, is a potent inhibitor of proinflammatory cyto-
kines, such as IL1 and TNF-a and a stimulator of IL-10 (61). In
malaria, where the plasmodium parasites may cause severe
hemolysis and heme intoxication, CO is reported to have a
specific cytoprotective role because it binds to free Hb and
thereby prevents heme release from Hb (32). Biliverdin and
bilirubin are antioxidants and their main cytoprotective
function is based on the inhibition of lipid and protein per-
oxidation, but they apparently also exhibit direct anti-
inflammatory activity, such as inhibition of the complement
cascade, P/E-selectin expression, and attenuation of leuko-
cyte rolling (9, 42, 105). Finally, the release of Fe2 + may in-
directly lead to protection of cells from oxidative stress even
though this atom is indirectly pro-oxidative. The mechanism
is that Fe2 + stimulates the expression of ferritin, the iron
storage protein, which has antioxidative properties (89).

Interestingly, HO-1 may also have cytoprotective effects
independent of the effect mediated by the heme metabolites.
Elegant studies of cells transfected with catalytic inactive HO-
1 have shown that HO-1 itself is involved in cell signaling and
different changes in phenotype, including an upregulated
expression of catalase, glutathione peroxidase, and GSH (46).
However, much seems still to be learned about the HO-1
protein that also may have an adverse affect in the central
nervous system, where HO-1 is reported to exacerbate early
brain injury after intracerebral bleeding (117).

Altogether, the stimulation of the Hp-CD163-HO-1 metabolic
pathway owing to an increased Hb metabolism leads to a
counter response of the pro-oxidative effects of Hb. In case of
consumption of Hp, the protective effect of the system may be
weakened leading to heme-induced damage of tissues, in par-
ticular, the kidney. However, CD163 may still play a role be-
cause in vitro studies have shown a low-affinity binding of Hb to
the receptor. Moreover, plasma contains hemopexin, which acts
as a kind of back-up protein (110) that binds the heme leading to
the uptake of hemopexin–heme complexes by CD91 (47, 85)
expressed in macrophages, hepatocytes, and several other cell
types (68). The backup by hemopexin has been demonstrated in
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knock models (116). These data show that mice with a combined
hemopexin and Hp knockout are far more sensitive to Hb-
induced inflammation than mice with knockout of Hp or he-
mopexon alone. (109). In line with these data, the knockout of
CD163 as described in an accompanying article of this issue
seems to have no obvious effect on the mouse health (26). On the
other hand, the same study shows striking differences between
mouse and man in terms of the role of Hp in Hb metabolism.
Most important, mouse Hp, which has less than a tenth of the
Hp plasma concentration in humans, does not promote high-
affinity binding of the complex to CD163. Interestingly, free
mouse Hb binds with higher affinity to CD163 compared to
human Hb. In view of these differences, it seems essential to take
precautions when translating rodent findings in the Hb degra-
dation pathway to human settings.

Humans also differ from other species by having two dif-
ferent Hp gene alleles encoding Hp1 and Hp2, where the Hp2
protein contains a duplicated a-chain that bridge to two other
Hp a-chains. This provides the property of forming disulfide-
linked Hp multimers (see (60) for review) in individuals het-
erozygous or homozygous for the Hp2 gene (the Hp2-1 and
Hp2-2 phenotypes, respectively). Individuals with the Hp1-1
phenotype have dimeric Hp that is the basic Hp form in most
mammalian species. All the human Hp phenotypes bind with
high affinity to CD163 when complex Hb. In vitro experiments
have shown that the multimeric Hp2-2 binds with a higher
functional affinity to the immobilized receptor than the Hp1-1
form (57). The multivalency in terms receptor-binding sites

leading to crosslinking of multiple receptors by the multimers
may explain this observation.

Human and other old monkey primates also express the
Hp-related protein (Hpr), which has only 23–30 amino acids
in difference compared to Hp1-1. Hpr binds Hb with high
affinity, but the Hpr-Hb complex does not bind to CD163 (84–
86, 115). Hpr is instead associated to apolipoprotein L-
containing lipoprotein particles that constitute a subspecies of
high-density lipoprotein (HDL) particles. Hb binds to Hpr in
the particles, which then are activated as an innate defense
weapon against certain trypanosome parasites (Trypanosoma
brucei brucei) causing animal sleeping sickness (Nagana) (84,
114). To sequester heme for enzymes, the parasites have a Hp-
Hb receptor, but in contrast to CD163, this receptor also binds
Hpr-Hb (84, 114, 115). Consequently, the parasites take up
circulating HDL particles also containing Hp-Hb and apoli-
poprotein L. The latter has a strong membrane pore-forming
effect that leads to rupture of the lysosomal membrane and to
self-digestion of the parasites (12). Primates, including hu-
mans, therefore have an innate immunity against the trypa-
nosoma brucei brucei infection, which is a great threat against
domestic animals in a large part of the African continent (115).
However, humans have no resistance against the human
pathogenic Trypanosoma brucei rhodiense, and Trypanoso-
ma brucei gambiense parasites are apparently accounted for
by the presence of an apolipoprotein L inhibitor (119) and
reduced haptoglobin–hemoglobin complex receptor expres-
sion (50), respectively.

FIG. 2. CD163-mediated
scavenging of Hb upon in-
travascular hemolysis. CD163
is highly expressed on phago-
cytic macrophages. Upon he-
molysis, released hemoglobin
(Hb) is rapidly bound by the
acute-phase protein Hp
forming the haptoglobin–
hemoglobin (Hp-Hb) complex.
The complex is subsequently
bound and removed from the
circulation by CD163-positive
macrophages in the liver,
spleen,and bone marrow. The
uptake of Hb by macro-
phages contributes to the re-
cycling of iron and also to the
inflammatory response. The
uptake of Hb in macrophages
and subsequent degradation
of heme by heme oxygenase-
1 (HO-1), produce the anti-
inflammatory metabolites,
Fe2 + , CO, and biliverdin. Bi-
liverdin reductase converts
biliverdin to bilirubin, which
is secreted to the cell exterior.
To see this illustration in col-
or, the reader is referred to
the web version of this article
at www.liebertpub.com/ars
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Other Functions of CD163

In addition to the established role of CD163 in Hb metab-
olism, other ligands for CD163 have been identified as re-
viewed in detail recently (112).

Early data on the rat ED2 antigen, which later have been
identified as CD163, identified binding to rat erythroblast
(11). A later follow-up study reported that CD163 has regu-
latory role during rat erythropoiesis (29).

Several reports (15, 74) have shown that TWEAK, a se-
creted cytokine belonging to the TNF-a superfamily, binds to
CD163. CD163 is proposed as a scavenger receptor for
TWEAK, preventing TWEAK from exerting its biological
functions by sequestering it from the physiological environ-
ment.

Some bacteria and virus have been reported to bind human
CD163. The first study on binding of the bacteria to CD163
reports that CD163 functions as sensor rather than an en-
docytic receptor for Streptococcus mutans, Eschericia coli,
and Staphylococcus aureus. The expression of CD163 in
monocytic cells promoted bacteria-induced production of
proinflammatory cytokines, like TNF-a. Another study has
reported binding of soluble CD163 to Staphylococcus aureus
via binding of specific fibronectin peptides, which promotes
recognition, phagocytosis, and killing of the bacteria (53).

African swine fever virus (ASFV) and the porcine repro-
ductive and respiratory syndrome virus (PRRSV) are the two
virus reported to bind CD163 (21, 101, 113). The binding of
virus to CD163 seems important for the virus infection, but in
different ways. ASFV is proposed to exploit CD163 for at-
tachment and internalization (101), whereas PRRSV data
suggest a role for CD163 during virus uncoating (113). Minor
envelope glycoproteins GP2a and GP4 of PRRSV are reported
to interact with CD163 (24).

Among the new ligands reported during the last decade,
only the virus–CD163 interaction and TWEAK interactions
have been reported by more than one laboratory. Further in-
vestigation should establish the physiological role and the
consequences in human disease.

Finally, it is intriguing to speculate that CD163 might have
other not yet identified ligands. Many endocytic scavenging
receptors are multiligand receptors (56) and it would make
sense if, for instance, other intracellular components, such as
Hb, liberated to the plasma during cell rupture or extracellular
waste products generated in the resolution phase of inflam-
mation take advantage of the CD163 (or CD163b)-mediated
scavenging in macrophages.

CD163 As Clinical Biomarker in Inflammation

A soluble form of CD163 ectodomain is present in normal
plasma (81) and an increased plasma concentration of sCD163
is seen in diseases relating to macrophage activity, including
acute and chronic inflammations (71). The physiological role
of sCD163 is not defined. Soluble CD163 binds Hp-Hb com-
plexes (81), but it is a poor competitor of CD163-mediated
uptake of this ligand (80), probably because the ligand has no
affinity gain in crosslinking to soluble receptors. It is possible
that the soluble receptor has functions not related to Hb, such
as the proposed role in opsonization of bacteria described
above (53).

Soluble CD163 is a homogenous protein (80) spanning at least
94% of the entire CD163. Several studies (43, 66, 118) have
pointed on a metalloproteinase as the enzyme responsible for
cleavage of CD163 in macrophages, and recently the inflam-
mation regulated a disintegrin and metalloproteinase 17
(ADAM17)/TNF-a–cleaving enzyme (TACE) was identified as
the responsible enzyme using inhibitor and siRNA knockdown
analyses (28) (Fig. 3). In view of the TNF-a-mediated inflam-
matory symptoms during conditions, such as sepsis and chronic
inflammations (1), it is likely that the increased levels of sCD163
measured under these conditions are the outcome of concomi-
tant ADAM17/TACE-induced release of CD163 and TNF-a in
macrophages. Figure 4 shows the effect on the LPS and TNF-a
levels in healthy subjects after an LPS injection, which instantly
increases the plasma levels of TNF-a and CD163. In contrast to
the fast clearance of TNF-a, the soluble CD163 level remains
increased for days. In this context, soluble CD163 may be

FIG. 3. A disintegrin and
metalloproteinase 17
(ADAM17)/tumor necrosis
factor (TNF)-a converting
enzyme (TACE)-mediated
shedding of CD163 and
TNF-a upon stimulation by
proinflammatory stimuli.
CD163 and proTNF-a are
rapidly cleaved from the
surface of activated macro-
phages by an ADAM17/
TACE-dependent mechanism.
A number of proinflamma-
tory substances induce
ADAM17/TACE activation.
The exact site of cleavage in
CD163 awaits identification.
To see this illustration in col-
or, the reader is referred to
the web version of this article
at www.liebertpub.com/ars
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regarded as a long-circulating surrogate marker for TNF-a in
conditions where LPS leads to shedding of CD163. Probably,
this may extend to other inflammatory conditions, since several
other stimuli, such as Fc receptor crosslinking via activation of
toll-like receptors, cause TACE/ADAM17 activation and release
of TNF-a and CD163 (104, 118).

Although the levels of soluble CD163 may increase many-fold
by ADAM17/TACE activation, the amount of soluble CD163 in
plasma is probably low compared to the amount of the mem-
brane-bound form in macrophages. There are no data with exact
comparison of the two forms in humans, which so far is the only
species, where the soluble CD163 has been reported. However,
comparison of the levels of receptor purified from human tissues
(57) with the measured amount in plasma suggests that most of
the body’s CD163 is membrane-associated even when the sol-
uble CD163 concentration is upregulated. The major pool of
CD163 seems to be localized intracellularly (83) as seen for other
endocytic receptors trafficking between the surface and endo-
somes (70), and it is therefore likely that a temporary shedding of
CD163 will be followed by a fast mobilization of CD163 from the
intracellular pool.

As reviewed in detail elsewhere (71), the level of CD163 has
been thoroughly characterized in normal and diseased indi-
viduals (Table 2). The range in normal individual is 1–4 mg/l
based on a widely used enzyme-linked immunosorbent assay
(77) and there is a low intraindividual variation (78). Increased
levels are seen in many diseases (71) involving macrophages
with the highest levels measured in patients with hemophago-
cytosis (103) and the related macrophage activation syndrome
(13). These conditions are characterized by an abnormal lym-
phohistiocytic activation of complex and partially unknown
etiology leading to the systemic inflammatory response syn-
drome. Macrophage accumulation in the bone marrow, liver, or
lymphoid tissues and overt phagocytosis of blood cells and their
precursors are a pathognomonic feature of the syndrome, which
has a high mortality. The high significant level of sCD163 in
hemophagocytosis and macrophage activation syndrome has
led to the proposal of including soluble CD163 as one of the
diagnostic criteria (22, 25).

Several other diseases, where inflammation is an important
component of the pathogenesis have increased levels of sol-
uble CD163. This includes acute diseases, such as bacterial

sepsis/infection (54, 76, 79), hepatitis (44), and malaria (58) as
well chronic inflammation, such as rheumatoid arthritis (39,
66), Crohn’s disease (76), scleroderma (82), coeliac disease
(23), and atherosclerosis (4, 73) (Table 3). Generally, the in-
crease in the CD163 level is much more pronounced in acute
inflammations, such as bacteremia/sepsis, where the CD163
level also has negative correlation to survival (79).

The measurement of soluble CD163 in a general population
cohort encompassing 8849 individuals followed for 18 years
revealed that soluble CD163 is a risk marker for the devel-
opment of type 2 diabetes and it correlates with indices of the
metabolic syndrome (72). Previous data have shown that
soluble CD163 correlates with the body fat mass (5, 106),
which probably reflects the fat-induced low-grade inflam-
mation in these individuals. Interestingly, the cohort study
shows that soluble CD163 predicts diabetes, independently of
body mass index and age, suggesting that soluble CD163 may
be used to identify persons genetically predisposed for low-
grade inflammation diabetes 2 (72). Two recent studies fol-
lowing up on the large cohort study have shown that soluble
CD163 positively correlates to insulin resistance, which is the
fundamental problem in diabetes 2 (90, 120).

In conclusion, soluble CD163 is increased in a number of
diseases (and in particular, inflammatory diseases) with in-
creased macrophage activity. The receptor will probably not
be used as a single diagnostic marker of a disease, but it may
gain use as a macrophage activity marker complementary to
clinical findings and other laboratory tests. Furthermore, it

FIG. 4. Soluble CD163 is a long-circulating surrogate
marker of TNF-a in experimental endotoxemia. Serum
levels of sCD163 and TNF-a in healthy volunteers (n = 8) after
receiving a bolus-injection of endotoxin. Serum analysis
shows a fast increase in both markers, whereas TNF-a rap-
idly cleared increased levels sCD163 are still measured after
24 h. The figure is reproduced from (28) with permission
from J. Leuk. Biology.

Table 2. Reported CD163 Binding Substances

Hp-Hb complexes (57)
Hb (102)
TWEAK protein (15, 74)
Porcine-pathogenic viruses (the African swine fever virus
(ASFV) (101)
Porcine reproductive and respiratory syndrome virus
(PRRSV) (21, 113)
Various gram-positive and gram-negative bacteria (30, 53)
Erythroblasts (11, 29)

Hp-Hb, haptoglobin–hemoglobin complex; TWEAK, TNF-like
weak inducer of apoptosis.

Table 3. Examples of Inflammatory Diseases

with Increased CD163 Plasma Levels

Acute inflammations (infections)
Hepatitis High increase (44)
Bacteriemia/sepsis High increase (54, 76, 79)
Malaria High increase (58)

Chronic inflammations
Rheumatoid arthritis Moderate increase (39, 66)
Mb Crohn Low increase (76)
Scleroderma Low increase (82)
Celiac disease Low increase (23)
Atherosclerosis Low increase (4, 73)

Low-grade chronic inflammation
Diabetes II Low increase (71, 90, 120)

Other type of inflammation
Macrophage activation

syndrome/
Hemophagocytosis Very high increase (13, 103)
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may be used as a monitoring marker of single individuals
during disease progression and treatment.

CD163 As a Receptor for Drug-Targeting Macrophages

The specific expression of CD163 in monocytes/macro-
phages makes the receptor an interesting gate for drug de-
livery. This may apply to different kinds of disease, including
inflammatory disorders, certain cancers of myeolo-monocytic
origin, infections, where the macrophages harbor the patho-
gen (e.g., mycobacterium, HIV, or leishmania parasites), and
rare genetic disorders (e.g., Gaucher’s disease affecting mac-
rophages).

The pathological mechanisms of inflammation includes
several types of leukocyte effector cells (monocytes–macro-
phages, T-lymphocytes, and granulocytes) and complex im-
mune cell interplays such as those between macrophages and
T helper cells. There are therefore many potential drug attack
points in treatment of inflammation. Cytostatics (e.g., meth-
otrexate), glucocorticoids (e.g., prednisolone and dexametha-
sone), and different biological drugs (e.g., antibodies against
TNF-a ad other cytokines) are potent drugs widely used in
rheumatoid arthritis and other chronic inflammatory disease.
However, serious side effects (e.g., by glucorticoids) or loss of
efficacy (e.g., by methotrexate and biological drugs) keep up
the need for development of new anti-inflammatory drugs.

The CD163-expressing macrophage is an interesting ther-
apeutic target because CD163 macrophages are present at the
site of inflammation where they, despite an overall anti-
inflammatory function, also produce inflammatory cytokines,
such as TNF-a. This cytokine is largely produced by macro-
phages and the efficacy of anti-TNF-a biological drugs (35)

suggests that the macrophage is an obvious target for anti-
inflammatory therapy. The proof of concept of this CD163-
targeting therapy has recently been established in a recent
study in rats using an antibody drug conjugate (ADC) con-
sisting of average four glucocorticoid drugs (dexamethasone)
linked to an anti-rat CD163 antibody (38). This glucocorticoid
conjugate exhibited high affinity to CD163 comparable with
that of nonconjugated antibody, and cell experiments re-
vealed that the receptor mediates the endocytosis and trans-
port of the drug to the cell interior. A rat model of acute
sepsis-induced inflammation (LPS-induced TNF-a release)
revealed about a 50-fold higher efficacy of the intravenously
injected conjugate compared to free dexamethasone. Holding
promise for the use of this new strategy in glucocorticoid
treatment, the conjugate showed no major systemic effects/
side effects measured as suppression of endogenous cortisol
production and weight loss of whole body and thymus
(indicates lymphocyte apoptosis). In contrast, the equipotent
amount of free dexamethasone induced complete suppression
of endogenous cortisol production and a substantial loss in
body and thymus weight.

CD163 targeting may also be used for other type of conju-
gates, such as drugs directed linked to a physiological CD163
ligand (e.g., Hp-Hb) or liposome-encapsulated liposomes
with a CD163 targeting moiety in the membrane (Fig. 5). A
recent rodent study has, for instance, designed liposomes
encapsulating the fluorescent dye calcein in the interior and
integrated Hb in the phospholipid layer (122). In vitro uptake
analysis showed that they are taken by cultured macro-
phages. The CD163 specificity in terms of targeting CD163-
positive macrophages of these Hb-liposomes remains to be
investigated though. The potential alternative clearance

FIG. 5. Using CD163 as a
target for directed drug de-
livery. The endocytic prop-
erty of CD163 allows either
ligand- or antibody-associ-
ated drugs to have an easy
and specific access to cyto-
solic compartment of macro-
phages. The figure shows
examples of two types of
conjugates: CD163 antibody-
or ligand-drug conjugates
and drugs encapsulated in
pegylated liposomes with a
CD163-binding antibody or
ligand linked to the phos-
pholipid layer. To see this il-
lustration in color, the reader
is referred to the web version
of this article at www
.liebertpub.com/ars
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mechanism of Hb and the apparent absent Hp-promoting of
Hb clearance in the mouse (25) suggest that mice, and perhaps
also other rodents, should be used as the only test animals. An
alternative type of conjugate vehicles targeting CD163 has
recently been constructed and analyzed in vivo and in vitro
(27). This type of conjugate vehicle is a pegylated liposome
(stealth liposome) protected with polyethylene glycol that
prevents nonspecific targeting and intravascular rupture.
Anti-mouse CD163 is linked to the phospholipid layer by a
hydrophobic linker. Loading the liposomes with the cytotoxic
agent doxorubicin revealed strong CD163-dependent cyto-
toxic effects in cultured CD163-expressing cells. In vivo anal-
ysis of calcein-loaded anti-CD163 stealth liposomes showed
accumulation in mainly the liver that contains the majority of
the body macrophages. A much lower uptake was seen with
nontargeting liposomes (27).

Using CD163 for drug delivery to macrophages could
suggest an inhibitory effect of circulating soluble CD163 that
may bind to the therapeutic ADC intended for targeting
CD163 in macrophages. However, the dose for use in human
therapy of ADC is far higher than the plasma amount of
soluble CD163, thus suggesting that the soluble receptor is
competed out in the first dose. Furthermore, soluble CD163
is a poor competitor for macrophage uptake of Hp-Hb
complexes probably because the ligand gains functional
affinity by crosslinking two CD163s (or more for the Hp2-1
and Hp2-2 phenotypes) in the membrane. The IgG moiety of
the therapeutic ADC is also divalent and therefore likely also
to have preference for crosslinking membrane-associated
CD163.

Finally, CD163 may also indirectly be involved in therapy
using Hp that may be administered during excessive hemo-
lysis, where the body’s Hp store has been consumed. A recent
study in guinea pigs nicely demonstrates that such a Hp
therapy attenuates the tissue damaging effects by Hb released
during blood transfusion (7).

Conclusion

The present review summarizes information on the Hb
scavenger receptor CD163 with focus on its pamphlet of rela-
tions to inflammation. Besides being an important biological link
between Hb metabolism and the anti-inflammatory response
elicited by HO-1 and the heme metabolites in macrophages, an
increasing body of evidence from many laboratories have now
evidenced that the level of soluble CD163 increases in several
acute and chronic inflammatory disorders. Novel data have
documented that this increased presence in plasma is owing to
the stimulated activation of the ADAM 17/TACE metallopro-
teinase (27). The high concentration of soluble CD163 in systemic
inflammatory hemophagocytosis, has led to a proposal of in-
cluding soluble CD163 as a marker in the diagnosis of this dis-
order. Further studies and documentation may reveal whether
soluble CD163 in the future may be included in clinical risk
prediction, diagnosis, and disease monitoring in relation to other
inflammatory diseases. The latest novel connection between
CD163 and inflammation concerns the use of CD163 and a target
for drug delivery to macrophages. By the use of targeting anti-
bodies or ligands directly coupled to drugs or to liposomes en-
capsulating drugs, it is now possible to direct in principle any
kind of drug, such as cystostatic and anti-inflammatory com-
pounds, directly to macrophages in the inflammatory process.

The first reports (26,37) using this technology seem rather
promising for the development of conjugate glucocorticiods
with far lower side effects and higher potency than the non-
conjugated glucocorticoid used in therapy today.
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Matute J, Orbe J, Páramo JA, Ortega L, Egido J, and Blanco-
Colio LM. The CD163-expressing macrophages recognize
and internalize TWEAK: potential consequences in ath-
erosclerosis. Atherosclerosis 207: 103–110, 2009.

75. Morganelli PM and Guyre PM. IFN-gamma plus gluco-
corticoids stimulate the expression of a newly identified
human mononuclear phagocyte-specific antigen. J Immunol
140: 2296–2304, 1988.

76. Møller HJ, Aerts H, Grønbaek H, Peterslund NA, Hyltoft
Petersen P, Hornung N, Rejnmark L, Jabbarpour E, and
Moestrup SK. Soluble CD163: a marker molecule for
monocyte/macrophage activity in disease. Scand J Clin Lab
Invest Suppl 237: 29–33, 2002.

77. Møller HJ, Hald K, and Moestrup SK. Characterization of
an enzyme-linked immunosorbent assay for soluble
CD163. Scand J Clin Lab Invest 62: 293–299, 2002.

78. Møller HJ, Hyltoft Petersen P, Rejnmark L, and Moestrup
SK. Biological variation of soluble CD163. Scand J Clin Lab
Invest 63: 15–21, 2003.

79. Møller HJ, Moestrup SK, Weis N, Wejse C, Nielsen H, Ped-
ersen SS, Attermann J, Nexø E, and Kronborg G. Macrophage
serum markers in pneumococcal bacteremia: prediction of
survival by soluble CD163. Crit Care Med 34: 2561–2566, 2006.

80. Møller HJ, Nielsen MJ, Maniecki MB, Madsen M, and
Moestrup SK. Soluble macrophage-derived CD163: a homog-
enous ectodomain protein with a dissociable haptoglobin-he-
moglobin binding. Immunobiology 215: 406–412, 2010.

81. Møller HJ, Peterslund NA, Graversen JH, and Moestrup SK.
Identification of the hemoglobin scavenger receptor/CD163
as a natural soluble protein in plasma. Blood 99: 378–380, 2002.

82. Nakayama W, Jinnin M, Makino K, Kajihara I, Makino T,
Fukushima S, Inoue Y, and Ihn H. Serum levels of soluble
CD163 in patients with systemic sclerosis. Rheumatol Int 32:
403–407, 2012.

83. Nielsen MJ, Madsen M, Møller HJ, and Moestrup SK. The
macrophage scavenger receptor CD163: endocytic properties
of cytoplasmic tail variants. J Leukoc Biol 79: 837–845, 2006.

84. Nielsen MJ and Moestrup SK. Receptor targeting of he-
moglobin mediated by the haptoglobins: roles beyond
heme scavenging. Blood 114: 764–771, 2009.

85. Nielsen MJ, Møller HJ, and Moestrup SK. Hemoglobin and
heme scavenger receptors. Antioxid Redox Signal 12: 261–
273, 2010.

86. Nielsen MJ, Petersen SV, Jacobsen C, Oxvig C, Rees D,
Møller HJ, and Moestrup SK. Haptoglobin-related protein
is a high-affinity hemoglobin-binding plasma protein. Blood
108: 2846–2849, 2006.

87. Nielsen MJ, Petersen SV, Jacobsen C, Thirup S, Enghild JJ,
Graversen JH, and Moestrup SK. A unique loop extension
in the serine protease domain of haptoglobin is essential for
CD163 recognition of the haptoglobin-hemoglobin com-
plex. J Biol Chem 282: 1072–1079, 2007.

88. Ojala JRM, Pikkarainen T, Tuuttila A, Sandalova T, and
Tryggvason K. Crystal structure of the cysteine-rich do-
main of scavenger receptor MARCO reveals the presence of

a basic and an acidic cluster that both contribute to ligand
recognition. J Biol Chem 282: 16654–16666, 2007.

89. Otterbein L, Soares M, Yamashita K, and Bach F. Heme
oxygenase-1: unleashing the protective properties of heme.
Trends Immunol 24: 449–455, 2003.

90. Parkner T, Sørensen L, Nielsen A, Fischer C, Bibby C,
Nielsen S, Pedersen B, and Møller H. Soluble CD163- a
biomarker linking macrophages and insulin resistance.
Diabetologia 55:1856–1862, 2012.

91. Polfliet M, Fabriek B, Dani _els W, Dijkstra C, and van den
Berg T. The rat macrophage scavenger receptor CD163:
expression, regulation and role in inflammatory mediator
production. Immunobiology 211: 419–425, 2006.

92. Porcheray F, Viaud S, Rimaniol A-C, Léone C, Samah B,
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