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Abstract
Nonstop decay is the mechanism of identifying and disposing aberrant transcripts that lack in-
frame stop codons. It is hypothesized that these transcripts are identified during translation when
the ribosome arrives at the 3′ end of the mRNA and stalls. Presumably the ribosome stalling
recruits additional cofactors, Ski7 and the exosome complex. The exosome degrades the transcript
using either one of is ribonucleolytic activities and the ribosome and the peptide are both released.
Additional precautionary measures by the nonstop decay pathway may include translational
repression of the nonstop transcript after translation, and proteolysis of the released peptide by the
proteasome. This surveillance mechanism protects the cells from potentially harmful truncated
proteins, but it may also be involved in mediating critical cellular functions of transcripts that are
prone to stop codon read-through. Important advances have been made in the past decade as we
learn that nonstop decay may have implications in human disease.
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Introduction
In all three kingdoms of life, gene expression is a precisely regulated process. As a way to
control the gene expression in the cell, eukaryotes have evolved two pathways to rid the cell
of normal mRNAs. Normal mRNA decay has been characterized in yeast and it is conserved
throughout eukaryotes1. The rate limiting step in both pathways includes the deadenylation,
or poly(A) shortening, of the target mRNA2, 3. Once the mRNA is deadenylated, it can be
degraded in either 5′ to 3′ or 3′ to 5′ directions. Deadenylated mRNAs quickly become
prone to decapping by the Dcp2 enzyme and are subsequently degraded by the 5′ to 3′
exonuclease Xrn12, 4–11. The 3′ to 5′ degradation pathway involves the 3′ exonucleolytic
digestion of the deadenylated mRNA by the exosome12. The exosome is a complex of ten
essential proteins that performs RNA maturation and degradation functions in the nucleus
and cytoplasm of eukaryotic cells.

In addition to the exosome, the 3′ to 5′ decay pathway requires a complex of three proteins,
Ski2, Ski3, and Ski8, as well as the cofactor Ski78, 12–14. Yeast cells remain viable when
either the decapping or exosome pathway is disrupted, however simultaneous inactivation of
these mRNA degradation pathways is lethal 12, 15. The observations that mutants of the 3′ to
5′ degradation pathway show little increase in the half-lives of most mRNAs indicated that
this pathway may be secondary to the 5′ to 3′ pathway 12. However, for two mRNAs whose
decay kinetics have been carefully characterized, the decapping pathway is only 2–5 fold
faster than the exosome pathway and genome-wide analysis of the mutants in the 5′ to 3′
decay pathway indicated that 20% of mRNAs depend on this pathway for degradation,
arguing that the 3′ to 5′ decay pathway may be the main degradation pathway for some
mRNAs 16,17.
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In addition to controlling the amount of normal mRNAs, the cell needs to maintain fidelity
in the production of such mRNAs. Since mistakes can arise from transcription to translation
and anywhere in between, the cell has evolved ways to rapidly identify, target, and eliminate
these errors. These aberrancies can occur at the gene, mRNA or protein levels. Through
mRNA surveillance mechanisms, the cell distinguishes between transcripts suitable for
translation and those that are unsuitable. Examples of aberrant mRNAs include those with
premature stop codons, rare codons, or those that lack a poly(A) tail 18–22. Each of these
different types of aberrant mRNAs triggers a different surveillance response. Transcripts
with premature stop codons activate nonsense-mediated decay 23 and mRNAs that contain
rare codons or secondary structures that promote long translations pauses trigger no-go
decay 24. Transcripts that lack a poly(A) tail are degraded through an exosome-mediated
decay pathway 22. Moreover, transcripts that promote translation beyond the normal stop
codon are degraded through ribosome-extension mediated decay 25, 26. As more of these
pathways become unveiled, we expect that we will discover more aberrant substrates, which
may be degraded through a variety of decay pathways. Finally, this review focuses on the
degradation pathway that targets transcripts that lack in-frame stop codons, the nonstop
decay pathway. Interestingly, some of these mRNA surveillance pathways are related and
use similar trans-acting factors. We refer the interested reviewer to thorough and recent
reviews on this relatedness27, 28.

NONSTOP mRNAs ARE COMMON PRODUCTS OF MISTAKES IN GENE
EXPRESSION

Nonstop transcripts can arise in instances when transcription aborts, when polyadenylation
occurs prematurely or through point mutations that disrupt the stop codon. It is also possible
that certain transcripts are prone to nonstop decay in order to maintain low levels of gene
expression under certain/normal physiological conditions.

In silico analysis provided evidence that premature polyadenylation occurs in about 1% of
random yeast and human cDNA clones 20, 29. Furthermore, species like yeast and plants
have poorly conserved poly(A) signals, indicating that polyadenylation may be occurring at
alternative sites more often than thought 29 Through premature polyadenylation, nonstop
mRNAs may be generated perhaps 5 to 10% of the time 20, 30. Cryptic poly(A) sites have
been found in about 1% of S. cerevisiae cDNAs upstream of the termination codon 20.

Given that cryptic polyadenylation occurs, one should expect that organisms use this to
regulate genes under certain physiological conditions. Indeed, the premature
polyadenylation of four yeast genes has been shown to be regulated by nutrient source 31.
Transcripts for CBP1 AEP2/ATP13 are known to be involved in respiration, so it is no
surprise that these would be regulated with different nutrient sources. However RNA14 and
SIR1 have no apparent involvement in respiration and, interestingly, respond to different
types of carbon sources. It is still unclear mechanistically how gene expression is regulated
through premature/alternative polyadenylation, and furthermore how nonstop decay may be
coupled.

Premature polyadenylation is not restricted to yeast, but has also been described in
Arabidopsis using a transcriptome sequencing 32. Most transcriptome sequencing studies
focus on functional mRNAs and therefore filter out mRNAs that result from polyadenylation
within the coding region. However, the study from Hunt and coworkers indicates that such
premature polyadenylation sites reflect widespread premature polyadenylation. In
Arabidopsis about 10% of all the mapped poly(A) sites mapped within coding regions of
more than 4000 genes. We anticipate that what is true for yeast and Arabidopsis is also true
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for other eukaryotes, but most of the available transcriptome data have not been analyzed in
way that would discover these.

In addition to premature polyadenylation of endogenous genes, this phenomenon has also
been shown to be a problem in expressing exogenous genes. For example, transgenic crops
expressing a toxin from Bacillus thuringiensis are widespread in agriculture. These crops all
contain codon optimized genes because the original gene failed to be expressed. Premature
polyadenylation, and subsequent rapid degradation of the mRNA severely limits the
expression of the Bt toxin 33, 34.

THE MECHANISM OF NONSTOP DEGRADATION IN YEAST
Nonstop mRNAs are degraded in the cytoplasm

An initial hint that nonstop mRNAs are rapidly degraded came in 1989 when Herrick and
Jacobson described two chimeric mRNAs between the yeast ACT1 and HIS3 genes 35. One
of these mRNAs contained the HIS3 stop codon and was stable (half-life of 79 minutes),
while the other lacked an in-frame stop codon due to a 4-nucleotide deletion and was
unstable (half-life of 9 minutes). Independently, this was also shown for yeast PGK1
mRNA, and this reporter was used for a more mechanistic analysis of nonstop mRNA
decay 20, 21. The PGK1-nonstop reporter was shown to degrade with a half-life of less than 2
minutes in wild-type yeast cells, while it is stabilized to a half-life of 15 minutes in a yeast
strain with a point mutation in the exosome. The exosome, a complex of ten essential
proteins, contains only one catalytic subunit, Rrp44. Recently, it was shown that the
exosome has two catalytic sites in Rrp44, an exonucleolytic and an endonucleolytic
domain 36–38. Surprisingly, either the endo- or the exonuclease activity can promote the
degradation of the nonstop transcript 39.

In addition to requiring the exosome, nonstop mRNA decay requires the Ski7 protein and
the Ski complex. The Ski complex is composed of the DEVH-box RNA helicase Ski2, the
tetratricopeptide repeat protein Ski3 and two copies of the WD repeat protein Ski813, 40–43.
The SKI genes were initially identified as part of an antiviral mechanism of the yeast S.
cerevisiae and later identified as cofactors required for the cytoplasmic functions of the
exosome 7, 12, 14, 44–46. Specifically, Ski2, Ski3, Ski8, and Ski7 physically and functionally
interact with the exosome and promote the exosome-mediated degradation of normal and
aberrant mRNAs in the cytoplasm 21, 22, 46. It is not completely clear what the specific
function of each of these Ski proteins in nonstop decay, however all four are required for
nonstop mRNA degradation.

The nonstop decay pathway is different from the general mRNA decay mechanism and the
nonsense-mediated degradation (NMD) pathway. Dcp2, Xrn1, and Upf1, which are proteins
involved in general cytoplasmic mRNA decay and NMD, are not required for nonstop decay
(see fig 1) 20. The mechanism for nonstop decay is also distinct from the exosome-mediated
decay of normal mRNAs in three aspects (see figs 1 and 2 for comparison). First, nonstop
decay occurs without prior deadenylation of the mRNA 21. Second, nonstop mRNA decay
requires the C-terminal domain of Ski7, which is dispensable for exosome-mediated decay
of normal mRNAs 21 (see below). Third, as mentioned above, nonstop mRNAs can be
efficiently degraded by either the endo- or the exonuclease activities of the exosome, while
exosome-mediated decay of normal mRNAs requires only the exonuclease activity 39.

Nonstop mRNA degradation may be initiated when Ski7 recognizes a stalled ribosome
Translation of the nonstop transcripts is required for initiation of the nonstop decay
pathway 20. This conclusion is based on the observation that treatment with cycloheximide
which prevents translation elongation, stabilizes nonstop transcripts 20. Furthermore,
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addition of a stop codon just upstream of the poly(A) tail also blocked nonstop decay 20.
During in vitro translation, nonstop transcripts form stable complex with ribosomes 47, 48

indicating that unlike RNA or DNA polymerases, the ribosome does not dissociate from its
template when it reaches the end. Furthermore in vivo sucrose gradient experiments confirm
that nonstop mRNAs remain associated with polysomes 26. These observations suggest a
model where nonstop decay requires at least one round of translation, whereby the ribosome
travels to the 3′ end of the transcript and stalls.

Genetic evidence and sequence similarity suggests that Ski7 recognizes ribosomes stalled on
nonstop mRNA through its C-terminal domain, and promotes the exosome-mediated
degradation of the transcript 21. The C-terminus of Ski7 is a member of a family of
ribosome-associated GTPases, which also include the eukaryotic elongation factor 1α
(eEF1α), the eukaryotic release factor 3 (eRF3), and the no-go decay protein Hbs149 All
three of these factors recognize the ribosome, depending on what codon is in the ribosomal
A-site. During translation elongation the A-site contains a sense codon, which is recognized
by an aminoacyl-tRNA/eEF1a complex. During translation termination the A-site contains a
stop codon, which is recognized by the eRF1/eRF3 complex. Finally, when the ribosome
stalls during translation elongation, it is recognized by the Dom34/Hbs1 complex 19, 50–53.
(Please see 24 for more details on no-go decay)

Based on the similarity between Ski7 and these translation factors, it was proposed that the
C-terminal domain of Ski7 recognizes a stalled ribosome on a nonstop mRNA 21. As
predicted, C-terminal truncations of Ski7 affect nonstop decay without disrupting the
general cytoplasmic function of the exosome 21. Alternatively, mutations in SKI7 that
disrupt Ski7 binding to the exosome and the Ski complex (N-terminal truncations) affect
both normal and nonstop mRNA degradation 21. Thus, genetic evidence suggests that the C-
terminal part of Ski7 may be responsible for recognizing ribosomes stalled on nonstop
mRNAs.

Although Ski7 shares characteristics with the translation factors eEF1a, eRF3 and the no-go
decay factor Hbs1, two differences are striking. First, eEF1a, eRF3, and Hbs1 each act as a
heterodimer, with an interacting partner responsible for recognizing the state of the ribosome
(tRNA, eRF1 and Dom34, respectively). No such interacting partner has been identified for
Ski7, and thus it is not clear why Ski7 is specific for ribosome stalled on nonstop mRNAs.
Second, GTPase activity is critical for the specificity of eEF1a, eRF3, and Hbs1, and
requires a conserved active site His residue 54–56. This residue is not conserved in Ski7, and
thus Ski7 may accomplish this function without the use of energy provided by GTP.
Biochemical characterization of Ski7 and its interaction with the ribosome will be needed to
further understand the recognition of nonstop mRNAs during translation.

Additional mechanisms may down-regulate nonstop gene expression
As described above, one consequence of detecting the lack of a stop codon in an mRNA is
the rapid degradation of the mRNA This aspect is fairly well understood, but may not be the
only manner in which the cell limits the consequences of these aberrant mRNAs. For
example, translation of the nonstop transcript may be repressed, possibly due to the
translation of the poly(A) tract 26, 57 and several studies have argued that the protein
translated from nonstop mRNA is also very rapidly degraded (see below). One caveat of this
statement is that it is difficult to decipher whether these consequences are due to the absence
of a stop codon in the mRNA or unrelated to the absence of the stop codon. For example,
nonstop reporter mRNAs are typically generated by mutating the normal sop codon in the
mRNA, causing the 3′ UTR and poly(A) to become part of the open reading frame. The
protein encoded by such transcripts has a C-terminal extension with a poly-Lysine tail. The
encoded protein is generally unstable, which in several cases has been attributed to the
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absence of a stop codon, but contribution of the C-terminal extension or poly(Lys) tail have
not been ruled out in all cases. For example, it has been shown that a poly(Lys) tail can
contribute to rapid protein decay, but a poly(Arg) tail, and several other Komopolymers
were also effective 57, 58.

The abundance of the protein translated from nonstop mRNAs is much lower than can be
explained simply from the lower mRNA levels 57. Protein degradation significantly
contributes to the low levels of reporter expression. It has been shown that the proteasome
inhibitor MG132 increases expression of the protein encoded by the nonstop mRNA 58.
Wilson and coworkers showed that mutations of a proteasome subunit (pre9Δ), two
proteasome assembly factors (umplΔ and irc25Δ, a.k.a. poc3Δ, pba3Δ and dmp2Δ) and a
RING ubiquitin E3 ligase (IntIΔ, a.k.a. rkr1Δ) cause the stabilization of proteins translated
from two different nonstop reporter mRNAs 59. The function of the Lnt1 was confirmed by
a subsequent study that also showed that Lnt1 specifically promotes the ubiquitination and
proteasome-dependent degradation of the nonstop product 60. Additional results indicate that
Lnt1 mediates cotranslational recognition of the poly(Lys) tail on the nascent peptide.
Notably, this recognition occurred both when poly(Lys) was encoded by a poly(A) tail, or
by 12 AAA or AAG codons followed by a stop codon 58. Thus, recognition of the nascent
peptide triggers Lnt1-mediated protein decay, independent of the lack of a stop codon. In
addition, the effect of ski7Δ is additive with the pre9Δ or IntIΔ effect, indicating that the
exosome-mediated decay of nonstop mRNAs and the proteasome-mediated decay of the
encoded peptide are independent of each other 59, 60. Interestingly, the poly(Lys) tail would
be inside the protein exit tunnel of the ribosome, and thus unavailable for direct co-
translational recognition. A reasonable model appears that some peptide sequences mediate
ribosome stalling, and the stalled ribosome is recognized by Lnt1, which mediates
ubiquitination and protein degradation. This phenomenon might also depend on protein
context, since a different set of experiments using different reporters suggest that (Lys)12-
triggered ribosome stalling led to degradation of the nascent peptide mediated by E3 enzyme
Not458. Ribosome stalling Triggered by features in the RNA is known to activate no-go
decay, so it will be interesting to see whether this generates additional substrates for Lnt1 or
Not4.

NONSTOP DECAY IN HUMAN CELLS
Nonstop decay factors are conserved throughout eukaryotes and important or human
health

The exosome and its cytoplasmic cofactors are conserved in all eukaryotes 61–64. Most of
the ten exosome subunits and four cytoplasmic cofactors each have one corresponding
human ortholog, suggesting that cytoplasmic exosome functions are also conserved between
yeast and humans. In addition the capacity of Ski2, Ski3, and Ski8 to form a Ski complex is
also conserved in humans 65. The molecular function of human Ski2, 3, and 8 has not been
studied in detail, but the function of the drosophila homologs is similar to the yeast genes.
Specifically, both the yeast and fly proteins have shown to be responsible for the
degradation of 5′ mRNA fragments generated by various endonucleases 22, 66–69. Thus the
function of the Ski complex and presumably the exosome in cytoplasmic mRNA decay was
already established in the common ancestor of fungi and animals.

The physiological function of the human Ski complex has been revealed by the observation
that loss of function mutations in the human SKI3 (TTC37) or SKI2 gene causes a rare
congenital disorder (Tricho-Hepato-Enteric Syndrome) 70–72 The major defect in Tricho-
Hepato-Enteric syndrome occurs in the small intestine, and therefore the initial presentation
of the syndrome is diarrhea starting shortly after birth, which can be treated by long-term
parenteral nutrition. These findings, suggest that some function of the human ski complex is
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especially important in the small intestine, although other symptoms can not be explained
defects in the small intestine. Whether Tricho-Hepato-Enteric syndrome is caused by a
defect in nonstop decay, or a more general cytoplasmic exosome disruption, remains to be
determined.

The two exceptions of a one-to-one correspondence between human and yeast cytoplasmic
exosome subunits and cofactors are the two proteins most central in the yeast nonstop decay,
namely the Ski7 nonstop mRNA recognition protein, and the Rrp44 RNase responsible for
degrading nonstop mRNAs. The human genome includes three homologs of Rrp44, named
hDis3, Dis3L1, and Dis3L273, 74. The functions of hDis3 and hDis3L1 have been studied to
some extent, and are more specialized than the single yeast homolog. While hDis3 functions
in the nuclear exosome, hDis3L1 localizes to the cytoplasm 73, 74. The reverse is true for
Ski7, which is a more specialized protein in a subset of the saccharomycete yeasts, but
whose function is carried out by a more general protein in other eukaryotes 75, 76.

Whole genome duplication (WGD) in Saccharomyces cerevisiae led to a specialized
nonstop decay factor-Ski7

Approximately 100 million years ago a genome duplication occurred in an ancestor of
Saccharomyces cerevisiae 77, 78 Initially the whole genome of S. cerevisiae was duplicated,
but subsequently most duplicated genes were lost, and a minority retained. Genomic and
molecular analyses that compared ancestors of S. cerevisiae pre-duplication with S.
cerevisiae have shed light to the gene specialization that occurred after this WGD 77, 79–81.
Prior to genome duplication, the genome of ancestors of the Saccharomyces complex
contained an ancestral gene, which we will refer to as SKI7/HBS1. WGD gave rise to
separate HBS1 and SKI7 genes, with HBS1 functioning in no-go decay and SKI7 in nonstop
decay. Lachancea kluyveri (previously named Saccharomyces kluveryi) diverged from S.
cerevisiae just before genome duplication and thus has only a single SKI7/HBS1 gene. The
L. kluyveri SKI7/HBS1 gene can complement both a ski7Δ and an hbs1Δ, strongly
suggesting that this gene functions in both no-go and nonstop decay. Furthermore, other
eukaryotes including humans, Drosophila, Arabidopsis, and Trypanosoma each have a
single SKI7/HBS1 gene like L. kluyveri, which presumably functions in both nonstop and
no-go decay. It remains to be elucidated whether and how this gene specialization of SKI7
and HBS1 conferred an increased fitness for the Saccharomyces species.

Nonstop mRNAs are rapidly degraded in mammalian cells without prior deadenylation
Nonstop reporter mRNA are also preferentially degraded in human cells, but whether all
aspects of the nonstop decay mechanism are conserved, remains to be elucidated. An initial
analysis of the stability of a nonstop mRNA reporter in HeLa cells showed that its
cytoplasmic steady state levels were reduced about 3-fold 20. A second paper used a nonstop
α-globin-nonstop reporter mRNA as a control in a study of a different mRNA decay
pathway 25. α-globin-nonstop mRNA was very rapidly degraded in human HeLa cells, as
well as mouse MEL and C127 cells (half-life of 2h versus 11.5h). Similarly to yeast nonstop
mRNA decay, the rapid degradation of the nonstop transcript was not preceded by
deadenylation and dominant negative versions of the deadenylase enzyme had no effect on
the stability of α-globin-nonstop mRNA 25. This study however did not analyze whether
rapid decay of these nonstop reporter mRNAs requires ongoing translation. A different study
using a nonstop version of the human RPS19 mRNA, showed that the rapid degradation of
the nonstop transcript is blocked by cycloheximide 82. Thus, translation-dependent, but
deadenylation-independent rapid decay of nonstop mRNA seems to be conserved in yeast
and mammals. Whether the mammalian decay also required the exosome and its cofactors
has not been tested, but it was shown to not require the nonsense-mediated decay factor
Upf125.
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Rapid degradation of nonstop mRNAs contributes to several human diseases
With the understanding that the steady state level of RNAs contributes greatly to gene
expression, researchers are paying more attention to RNA stability. Gene therapy that
attempts to disrupt the normal stability of mRNAs through miRNAs continues to be a hot
topic in the cancer research field. Likewise, mutated genes that produce mRNAs with altered
stability have been shown to contribute to human diseases.

As explained above, mutations in the human ski complex cause Tricho-Hepato-Enteric
Syndrome. A second connection between nonstop decay and disease results from a growing
number of reports that link nonstop mutations in specific genes to disease. By far the most
prevalent nonstop mutation, perhaps affecting 100’s of millions of people, was reported for
the DEFB126 gene 83. The encoded β-defensin protein is important for human sperm
function 83–86, but 20% of males are homozygous for a nonstop mutation in DEFB12683. A
population study of Chinese couples with and without this polymorphism showed that the
nonstop mutation in the DEFB126 gene causes lower fertility which manifests as a longer
time to achieve pregnancy 83. More rare instances of nonstop mutations are listed in table
182, 83, 87–95. In most of these cases the nonstop mutation correlates with reduced mRNA
levels. Importantly, the nonstop mutation leads to reduced levels of a C-terminally extended
protein and in these cases the lack of protein is the main cause for the symptoms. In some
cases the mutant protein is functional, so that increased stability of the nonstop proteins and
increased production of the protein could provide therapeutic benefit.

Two different genome-wide analyses have been performed on either mutations that cause
disease or on SNPs 96, 97. Each of them identified over 100 mutations where a stop codon is
changed to a sense codon. In a subset of these, no other in frame stop codon is found in the
3′UTR, and thus these mutations generate a nonstop mRNA, which may cause disease 96. In
contrast, mutating stop codon that was followed by an additional next in frame stop codon
within 50nt appears less likely to cause deleterious/clinically relevant phenotype 97. More
careful characterization of these cases will be required to fully understand the impact of
nonstop mRNA decay on human genetic diseases.

CONCLUSIONS AND FUTURE DIRECTIONS
Great advances have been made in the past ten years, unveiling and deciphering the nonstop
degradation pathway. We have only begun to scratch the surface in understanding the
mechanisms of nonstop decay. Other surveillance pathways such as no-go and the
prokaryotic trans-translation pathway have detailed structural and functional mechanisms
elucidated, the lack of structural and biochemical data on Ski7, the SKI complex and their
interactions with the stalled ribosome and the exosome limit our understanding of nonstop
decay at the molecular level.

Learning how to suppress the nonstop decay pathway will have important implications in
treating the aforementioned diseases. Recently, genetic therapies that suppress NMD, are
being analyzed in clinical trials to prevent/treat Cystic fibrosis and Duchenne’s muscular
dystrophy among other genetic diseases 98. Likewise, nonstop decay could be targeted to
prevent mRNA and/or protein degradation. There is still a long and exciting road ahead to
fully understand and learn how to control the mechanism of nonstop mRNA and peptide
degradation.
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Sidebar

Trans-translation versus nonstop decay

Similarly to the eukaryotic nonstop decay, bacteria have a surveillance mechanism to
relieve the cell of stalled ribosomes. Trans-translation is the process whereby mRNAs
that lack a termination codon are released from the ribosome and targeted for
degradation. The recycling of ribosomes is a necessary feature for the cells to continue
efficient translation of other transcripts. The details of the trans-translation have been
reviewed by Barends et al. 99. Briefly, trans-translation uses a tmRNA molecule, which
functions as both a tRNA and a mRNA. The tmRNA is required for recognition of the
stalled ribosome with the peptidyl-tRNA bound to the P-site. The “tRNA” side of the
tmRNA binds the A-site of the ribosome and donates its charged alanine to the still
bound polypeptide, which triggers the release of the tRNA from the P-site. While
tmRNA is now bound to the polypeptide, the ribosome continues to translate the
“mRNA” side of the tmRNA, which encodes a protein degradation tag and a stop codon.
Translation termination occurs normally with the stop codon from the tmRNA and the
tagged polypeptide is targeted for degradation by specific proteases.

Recognition and degradation of bacterial and eukaryotic nonstop mRNAs requires
homologous factors

Both trans-translation and nonstop decay are triggered by stalled ribosomes caused by the
lack of stop codons. tmRNA is delivered to the ribosome by EF-tu, the same GTPase that
delivers tRNAs during translation elongation. EF-tu is a distant relative of Ski7. Whether
this involvement of a GTPase is a conserved feature of bacterial trans-translation and
eukaryotic nonstop mRNA decay or whether bacteria and eukaryotes have independently
recruited a GTPase to these processes is not clear. Additionally, there is no evidence of
Ski7 associating with a homologous eukaryotic tmRNA molecule. Furthermore, there is
no evidence of a transpeptidation reaction occurring in eukaryotic nonstop decay like it
does in trans-translation. After transpeptidation the tmRNA is positioned in a way that
allows the release of the aberrant mRNA and proper placement of the “mRNA” side of
the tmRNA in decoding center of the ribosome. The released mRNA is then targeted for
degradation by RNase R, a homolog of Rrp44, the catalytic subunit of the exosome 100.
SimNar to EF-tu and Ski7 involvement RNase R and Rrp44 involvement may reflect
conservation from an ancient ancestor, or a case where bacteria and eukaryotes have
recruited similar proteins for similar functions.

Release and degradation of nonstop peptide in trans-translation and eukaryotic
nonstop decay

One clear difference between the trans-translation and nonstop decay mechanism is that
fact that in the bacterial system addition of a proteolysis tag is intimately linked
recognition of the stalled ribosome. In contrast to bacterial mRNAs eukaryotic mRNAs
carry a long poly(A) tail. This distinction may explain why the eukaryotic mechanism
does not require a tmRNA, since this C-terminal poly(lysine) tail may provide the tag for
protein.

Finally, it is unclear how the mRNA, ribosomal subunits and the peptide are released in
the eukaryotic nonstop decay pathway. In the trans-translation translation termination
occurs normally with the help of the stop codon encoded by the tmRNA molecule.
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Figure 1.
Pathways for the degradation of normal yeast mRNAs. See text for details.
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Figure 2.
nonstop mRNAs are rapidly degraded, and may also trigger translational repression and
proteolysis. See text for details.
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