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Abstract
Schistosomiasis caused by Schistosoma spp. is a serious public health concern, especially in sub-
Saharan Africa. Praziquantel is the only drug currently administrated to treat this disease.
However, praziquantel-resistant parasites have been identified in endemic areas and can be
generated in the laboratory. Therefore, it is essential to find new therapeutics. Antioxidants are
appealing drug targets. In order to survive in their hosts, schistosomes are challenged by reactive
oxygen species from intrinsic and extrinsic sources. Schistosome antioxidant enzymes have been
identified as essential proteins and novel drug targets and inhibition of the antioxidant response
can lead to parasite death. Because the organization of the redox network in schistosomes is
significantly different form that in humans, new drugs are being developed targeting schistosome
antioxidants. In this paper the redox biology of schistosomes is discussed and their potential use as
drug targets is reviewed. It is hoped that compounds targeting parasite antioxidant responses will
become clinically relevant drugs in the near future.
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Schistosomiasis (also known as bilharzia) is caused by blood-dwelling flatworms of the
genus Schistosoma. Schistosomiasis is the second most important human parasitic disease
after malaria, with an estimated 200 million people infected and greater than 200,000 deaths
annually in tropical and subtropical areas [1–3]. Nearly 800 million people are at risk of
infection in seventy-two counties [1]. In addition, schistosome infections lead to largely
underreported chronic disabilities and morbidities, such as caloric malnutrition, growth
stunting, anemia, and poor school performance, which lead to decreased quality of life and
perpetuation of poverty [1–3]. The chronic morbidities associated with schistosomiasis can
be exacerbated by co-infections with other helminths (parasitic worms, e.g., hookworms) [4]
and schistosome infections can have significant impacts on the susceptibility and
transmission of other infections, e.g., HIV [5, 6] and malaria [7, 8], and on immune
responses to childhood vaccines [9]. Furthermore, S. haematobium is considered as a group
1 carcinogen leading to the development of urinary bladder cancer [10–12]. Intestinal
schistosomiasis has been linked to hepatocellular carcinoma and colorectal cancer [13, 14],
though this is not definitive.
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Five species of Schistosoma parasitize humans including S. mansoni, S. japonicum, S.
haematobium, S. intercalatum, and S. mekongi; the first three species have the widest
geographic distribution whereas infections with the last two species only occur locally [15].
The life cycle of Schistosoma ssp. is complex [16, 17] and is divided into sexual and asexual
cycles. In the asexual cycle, eggs are released into water with feces or urine of infected
individuals. Miracidia hatch from the eggs and then locate and infect snails, the intermediate
hosts. Within the snail the miracidium develops into a sporocyst, in which thousands of
cercariae develop through asexual reproduction. The mature cercariae are released from the
snails into water. Humans exposed to water contaminated with cercariae become infected
when cercariae penetrate directly into their skin. In the process, the cercariae lose their
bifurcated tails and become schistosomula. Schistosomes, unlike most parasitic flatworms,
which are hermaphrodites, are dioecious and in humans they start their sexual cycle. After a
few days in the skin, larval parasites enter the general circulation and are carried to the lungs
(5–7 days post infection) and then they migrate to the liver where they undergo rapid
development, mature, and pair. Paired S. mansoni, S. japonicum, S. intercalatum, and S.
mekongi move to the mesenteric veins, whereas S. haematobium migrates to the perivesical
and periurethral vessels. Pathology is caused by eggs produced by paired worms; a worm
pair can produce 300–2000 eggs each day [18]. Eggs are deposited in the lumen of the vein
and then transverses host tissues encapsulated in an immune-generated granuloma; half of
eggs pass into bladder mucosa (S. haematobium) or intestinal mucosa (other species) and are
then excreted into environments via urine or feces. The remainder of the eggs is trapped in
different organs. In S. mansoni and S. japonicum infections eggs accumulate mainly in the
liver while in S. haematobium infections they accumulate in the bladder wall and rectal and
genital tissues. The trapped eggs are attacked by host immune cells, thereby forming tissue
granulomas resulting in inflammation and scarring [19]. The granulomas are responsible for
tissue-damaging pathology associated with schistosomiasis.

Control of transmission of schistosomiasis through reduction of snail densities is possible,
but has been abandoned due to the expense and environmental problems associated with the
widespread use of molluscicides [20]. In the mid-1980s, the World Health Organization
(WHO) began using chemotherapy to control morbidity due to schistosomiasis [15]. Over
the last few decades, several drugs have been used to treat the disease [16, 21]. Here, we
provide brief overview of the previous and current antischistosomal drugs.

Praziquantel (PZQ, 2-(cyclohexylcarbonyl)-1,2,3,6,7,11b-hexahydro-4H-pyrazino(2,l-
alpha)isoquinoline-4-one) (Figure 1) is essentially the only drug currently administrated to
treat schistosomiasis. Commercial PZQ contains a racemic mixture of levo (−) and dextro
(+) isomers; only the levo isomer has antischistosomal activity [22, 23]. PZQ is active
against all schistosome species [16]; humans tolerate high doses of PZQ with little to no
toxic side effects [24, 25]. It is thought that the antischistosomal activity of PZQ is due to
the disruption of Ca2+ homeostasis in the parasites: PZQ treatment in vitro results in an
increase the influx of Ca2+ [26, 27]. PZQ specifically targets the interface between α1 and β
in the voltage-gate Ca2+ channels from schistosomes, and not in mammalian channels,
leading to parasite death [26]. However, other studies suggest that calcium influx itself may
not be the sole cause of the schistosomicidal activity of PZQ; pre-incubation with
cytochalasin D, which completely suppresses the killing activity of PZQ, has no effect on
calcium uptake in schistosomes exposed to PZQ [28]. Furthermore, even though larval
parasites are largely insensitive to PZQ, a large calcium influx occurred in these worms after
exposure to PZQ. Additional suggested mechanisms of PZQ action are that it causes damage
to the worm’s surface (tegument) leading to changes in antigen presentation and the host’s
immune responses against the parasite [16] and that it inhibits adenosine and uridine uptake
in schistosomes leading to worm death [29].
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An alternative to PZQ is oxamniquine (6-hydroxymethyl-2-isopropyl-aminomethyl-7-
nitro-1,2,3,4-tetrahydroquinoline) (Figure 1). Because it is only active against S. mansoni
[21] and is more expensive than PZQ, its use has been restricted to Brazil and other
countries in South American [30]. It should be noted that in many endemic areas S. mansoni
has developed oxamniquine resistance [31, 32]. It has been postulated that oxamniquine is a
pro-drug and requires a sulfotransferase activity to convert it to its active form [33]; this
activity appears to be present only in S. mansoni. The mechanism of action proposed is that
the resultant oxamniquine ester binds covalently to and inactivates macromolecules in S.
mansoni [21, 34].

The organophosphate metrifonate (2,2,2-trichloro-1-hydoxylethyl dimethyl phosphonate)
(Figure 1) is effective only against S. haematobium [16, 21]. Its metabolite, dichlorvos
(Figure 1), has been shown to exhibit its antischistosomal activity by inhibiting
acetylcholinesterase, thereby paralyzing the parasites [35]. It has been proposed that
metrifonate is effective against S. haematobium due to differences in anatomical location
between schistosome species. Paralysis by metrifonate results in S. haematobium worms
being forced by the blood flow to the lungs where it is trapped [36]. In contrast, paralysis of
S. mansoni and S. japonicum results in a shift to portal vein and liver and after recovery
from the affects of the drug, the worms are able to migrate back to the mesenteric veins [21,
36]. Additionally, it has been suggested that S. mansoni has higher glutathione S transferase
(GST) activity, which detoxifies dichlorvos resulting in drug resistance [37].

Lucanthone (miracil D, 1-{[2-(diethylamino)ethyl]amino}-4-methyl-9H-thioxanthen-9-one;
Figure 1) was initially found to display antischistosomal activity against S. mansoni and S.
haematobium (but not S. japonicum) only when it was administrated orally, suggesting that
biotransformation by the host results in activation of the pro-drug [21]. Later, it was found
that hycanthone (Figure 1), a major metabolite of lucanthone, is more active against
schistosomes [38] and hycanthone replaced lucanthone in clinical practice thereafter. Like
oxamniquine, activation of lucanthone by enzymatic mechanisms leads to a reactive species
capable of alkylating parasite macromolecules [39, 40]. The activating enzymes are present
only in drug sensitive schistosomes. However, it was observed that hycanthone can cause
acute hepatic toxicity and could be a carcinogen [21, 41]. In addition, the parasites
developed drug resistance in both animal models and clinical practice [42–45] and,
therefore, this drug is no longer used in clinical therapy.

Artemisinin (Figure 1) and its derivatives are widely used to treat malaria. Thirty years ago
it was found also to be active against schistosome infections [46]. Since artemisinin has low
solubility in water or oil, its water-soluble artesunate and oil-soluble artemether (Figure 1)
derivatives were developed [47]. In animal experiments, artemether has been shown to be
effective against S. mansoni, S. japonicum, and S. haematobium [20, 48, 49]. The juvenile
stage of schistosomes, which is less sensitive to treatment with PZQ, (e.g., 5-21-day-old S.
japonicum and 7-28-day-old S. mansoni) is most sensitive to artemether [20, 48]. In humans,
oral administration of artemether can decrease incidence of infection of S. japonicum, S.
mansoni and S. haematobium [20, 50, 51], although other studies have found lower efficacy
suggesting that different dosing for the two parasite infections may be needed [52].
However, the drug should be used with caution, especially in monotherapy, in malaria-
endemic areas to prevent the development of artemisinin-resistant malaria parasites [53].
There is evidence that malaria control programs using artesunate combination therapies may
have the added bonus of reduction in schistosome infections [54]. Artemisinin derivatives
induce morphological alternations and damage to the tegument of schistosomula and adult
worms [20, 55], may affect the glycolysis of the parasites, and/or can interact with heme in
the worm gut leading to its conversion to an unstable species capable of generating reactive
oxygen species leading to worm death [20, 56].
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Antimony potassium tartrate (tartar emetic) (Figure 1), introduced in 1918, and other
trivalent antimonials, were used to treat schistosomiasis for over 50 years. However, these
are toxic drugs and cause significant side effects including nausea and vomiting, diarrhea,
fever, muscle and joint pains, skin rashes, hepatitis and headaches. The mechanism of
antimonial compounds has been proposed: it inhibits phosphofructokinase which is involved
in glycolysis [16, 21, 57]. Recently antimony potassium tartrate has been found to inhibit
thioredoxin glutathione reductase with nanomolar efficiency [58], indicating that its
mechanism of action requires further study.

Niridazole (Figure 1) is more effective against S. haematobium than S. mansoni or S.
japonicum [16, 21, 57].The mechanism of action of niridazole has been suggested: the drug
requires nitroreduction to generate reactive intermediates which covalently bind to the
macromolecules of schistosomes [59, 60].

Praziquantel is the only drug currently administrated to treat schistosomiasis. Although PZQ
resistance does not appear to be clinically relevant today, it is not good policy to rely on
only one drug. Indeed, PZQ-resistant parasites have been selected for in laboratories and
identified in some endemic areas [25, 30]. Thus, it is essential to develop new therapeutics
for schistosomiasis treatment to replace PZQ should resistance become widespread or to be
used in combination with PZQ to delay the evolution of resistance. There is compelling
evidence that schistosome antioxidants are essential parasite proteins and suitable drug
targets. Therefore, in this paper we will discuss redox biology of Schistosoma and its
potential for the development of new antischistosomal drugs.

Reactive oxygen species
Reactive oxygen species (ROS) include the superoxide anion (•O2

−), hydrogen peroxide
(H2O2), singlet oxygen (1O2

−), and hydroxyl radical (•OH). Superoxide anion cannot cross
membranes because of its negative charge. Superoxide anion is considered to be a primary
ROS because it can interact with other molecules to form secondary ROS [61]. Superoxide
anion can disproportionate to form H2O2 and oxygen in aqueous solutions, especially at
lower pH or can be dismutated catalytically by superoxide dismutase (SOD) [62]. Hydrogen
peroxide can cross biological membranes and although it is less chemically active than the
superoxide anion, hydroxyl radials can be generated from it in the presence of transition
metals, e.g., Fe (II) (Fenton reaction; Reaction 1) and Cu (I). The product, ferric ion (Fe III),
then interacts with superoxide anion to return to ferrous ion (Fe II) (Reaction 2). The net
reaction of Reaction 1 and 2 is called Haber-Weiss reaction (Reaction 3). Hydroxyl radicals
are highly reactive reacting with various macromolecules such as DNA, lipids and proteins
in cells. The chemistry of ROS has been recently reviewed [61, 63, 64].

(1) (Fenton reaction)

(2)

(3) (Haber-Weiss reaction)

Surviving in human hosts, schistosomes are challenged by ROS generated by different
mechanisms in the parasite as well as by activated host immune cells. ROS is generated by
the mitochondrial respiratory system: 1–3% of electrons passing through the respiratory
chain react with oxygen before the terminal oxidase resulting in the formation of superoxide
anion [65]. In addition, hemoglobin is digested in parasite gut generating Fe (II)
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protoporphyrin IX, which subsequently can be oxidized to Fe (III) protoporphyrin IX by
oxygen producing superoxide anions [66, 67]. Furthermore, ROS generated by immune cells
also challenges schistosome worms. For example, it has been shown that parasites at
schistosomula stage are killed by host immune cells through an antibody-dependent cell-
mediated cytotoxicity in which host white cells (e.g., eosinophils) generate ROS (e.g.,
superoxide anions and hydroxyl radicals) through an oxidative burst to kill the parasites [68–
70].

In order to neutralize ROS, most organisms have an antioxidant network composed of
enzymatic and non-enzymatic components. Enzymatic antioxidants include SOD, catalase,
and members of the glutathione and thioredoxin systems. Non-enzymatic antioxidants are
redox active small molecules such as ascorbic acid, uric acid, and vitamin E. As indicated
earlier, superoxide anion can be dismutated to H2O2 and O2 by SOD (Reaction 4). Hydrogen
peroxide can be removed by catalase (Reaction 5), glutathione peroxidase (GPx) and
peroxiredoxin (Prx) (Reactions 6 and 7). Reducing equivalents for GPx and Prx are provided
by glutathione (GSH) or thioredoxin (Trx), respectively, via pathways with dedicated
flavoenzyme oxidoreductases, glutathione reductase (GR) and thioredoxin reductase (TrxR).
Reducing equivalents are ultimately derived from NADPH.

(4)

(5)

(6)

(7)

Antioxidants in schistosomes
Compared to their human hosts, schistosomes have limited antioxidant capacity. The
parasites lack catalase [71] and schistosome GPx proteins have lower activity with hydrogen
peroxide [72]. Therefore, schistosome worms appear to be more sensitive to hydrogen
peroxide than humans and redox pathways are thought to be weak points in parasite biology
and good drug targets [70]. Redox activity is developmentally regulated in schistosomes and
antioxidants such as GST, cytosolic SOD (CT-SOD), peptide-containing SOD (SP-SOD)
and GPx have their lowest expression in the schistosomula and their expression increases
during development in the mammalian host resulting in increased resistance of the parasites
to hydrogen peroxide [73, 74]. Generally, based on the abundance of respective mRNAs, the
expression of antioxidant proteins is: GST > CT-SOD > SP-SOD > GPx [74]. Therefore,
during development in humans larval parasites are susceptible to ROS generated in the skin
and lung by activated immune cells, whereas adult worms are more resistant to ROS because
they have higher levels of antioxidants [70].

Superoxide oxide dismutase
As described above, SOD proteins (EC 1.15.1.1) catalyze the production of hydrogen
peroxide from superoxide anion (Reaction 4). SODs are classified based on their location:
cytosolic SOD (SOD-1/CT-SOD), mitochondrial SOD (SOD-2) and extracellular SOD
(SOD-3/SP-SOD) [75]. In addition, based on the type of metals bound in their active sites,
SODs are classified into two further groups, the Cu/Zn SOD class, and the Mn-SOD and Fe
-SOD class. Cu/Zn-SODs are found in the cytosol and secretions of eukaryotic cells whereas
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Mn-SODs and Fe-SODs are usually found in prokaryotic cells and subcellular organelles of
eukaryotic cells [75, 76]. Two Cu/Zn SOD isoforms have been identified in S. mansoni: CT-
SOD and SP-SOD [77–79]. A hydrophobic leader sequence is present in SP-SOD as well as
an N-linked glycosylation site, which are also found in human SOD-3 [77]. In terms of
sequence identify, CT-SOD is more similar to human SOD-1 than its own extracellular form
[80]. The 3D-structure of S. mansoni CT-SOD is similar to SODs from other species
including humans, having a flattened, eight-stranded, Greek-keyβ-barrel in its structural
core. The active site is located in the bottom of a shallow channel formed by two loops from
β-barrel; the function of the shallow channel is to guide substrates to access the active site
via the electrostatic interaction between the channel and substrates [80, 81]. There are
differences between S. mansoni CT-SOD and other SODs in the residues present in the
electrostatic loop of S. mansoni CT-SOD, suggesting that the loop is a potential drug target
[80]. CT-SOD was found to be express in all life stages of S. mansoni and reach the highest
expression in adult worms [77]. CT-SOD and SP-SOD were found to be expressed in
tegument and gut epithelium in adult male S. mansoni; the presence of these enzymes in
tegument and gut epithelium may protect the parasites from oxidative stress generated from
the immune cells of hosts [74]. Recently it was found that SP-SOD is also expressed in
reproductive system in female worms, specifically in immature regions of the vitelline
glands, suggesting that this enzyme may be associated with reproduction functions [82].

Studies have been performed to investigate whether vaccine potential of SOD. DNA
vaccination with CT-SOD and SP-SOD has been shown to exhibit protection of 44–60 %
and 22–45%, respectively against cercariae challenges [83]. DNA vaccination with CT-SOD
resulted in 36–43% decreases in worm burdens in mice challenged by adult worms that were
surgically transferred into mesenteric veins; such protection was mediated by Th1-type host
immune responses [84]. Mostly importantly, it has been shown that even though CT-SOD
from S. mansoni shares high similarity with the human ortholog, antibodies from CT-SOD-
immunized mouse and human exposed to naturally S. mansoni cannot recognize non-
denatured human SOD (i.e., no cross-activity) suggesting that vaccines targeting CT-SOD
would be expected to induce minimal host-protein reactivity [85].

The glutathione system
Glutathione (GSH), which exists ubiquitously in all domains of life, is the tripeptide γ-L-
glutamyl-L-cysteinyl-glycine, with an uncommon gamma bond between glutamate and
cysteine. GSH is the most abundant antioxidant in cells [86]. Because of the chemical
properties of sulfur in cysteine, GSH can directly neutralize hydroxyl radicals [87]. Also,
GSH can pass reducing equivalents to GPx and GST to detoxify reactive oxygen species.
Cellular GSH levels are maintained through a balance between its synthesis, its degradation,
its utilization as a conjugating agent, and its recycling from the oxidized form, GSH
disulfide (GSSG). In many organisms, the last process (GSSG + 2H+ + 2e− → 2GSH) is
carried out by GSH reductases (GR) with reducing equivalents from NADPH. However,
schistosomes lack an authentic GR and GSSG reduction is carried out by a unique, hybrid
enzyme, thioredoxin glutathione reductase (TGR) [88]. Disruption of the glutathione system
is known to trigger S. mansoni death. Indeed, the anthelmintic oltipraz (OPZ; Figure 1)
causes oxidative stress, decreased GSH concentration and glutathione reductase activity, and
increased GPx activity [89, 90]. The drug is also known to have an effect on GST activity,
although results of different studies are somewhat contradictory. Treatment of worms with
OPZ can produce a decrease in GST activity resulting from the non-competitive inhibition
of GST activity by OPZ [89, 91] or an increase in GST activity in a concentration and time-
dependant manner [90], depending on the study. Furthermore, OPZ is an inhibitor of
schistosome TGR [58]. Overall, these effects are thought to increase parasite susceptibility
to oxidative stress and to be responsible for the antischistosomal action of OPZ.
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γ-glutamylcysteine synthetase and glutathione synthase
De novo GSH biosynthesis proceeds via a two-step pathway involving the enzymes γ-
glutamate cysteine ligase (GCL, also known as γ-glutamylcysteine synthetase, EC 4.4.1.1),
the rate-limiting step, and GSH synthase (GS, EC 4.2.1.22). GCL catalyses the ATP-
dependent condensation of L-cysteine and L-glutamate to form the dipeptide γ-
glutamylcysteine. GS catalyses the condensation of γ-glutamylcysteine and glycine to yield
GSH (Figure 2). Both enzymes have been identified in the genomes of S. mansoni [92] and
S. japonicum [93] but to date they have not been characterized. Both GS and GCL of S.
mansoni and S. japonicum display less than 60% identity with their human orthologs. Their
potential as drug targets is worth investigating as has been done for the parasite Plasmodium
falciparum, where it was found that de novo GSH appears to be essential to the parasite [94].
In addition, in P. falciparum GCL may play a role in drug resistance: higher levels of GSH,
driven by high levels of GCL activity confer a more effective detoxification of heme and
thus may be a major reason for resistance to chloroquine [95]. Depletion of GSH might be a
chemotherapeutic strategy for malaria treatment, and GCL is proposed as a potential drug
target. Chemotherapeutic effects of buthionine sulfoximine (BSO), an inhibitor of GSH
synthesis, on trypanosomiasis has been reported [96]. In Schistosoma, it is not known
whether GSH depletion results in parasite death. Cultured ex vivo worms can survive in the
presence of the specific GSH synthesis inhibitor buthionine sulfoximine [97][Rigouin and
Williams, unpublished]. However, during infection when the organism requires high levels
of reduced GSH to fight oxidative stress, the depletion of GSH would likely affect parasite
survival as suggested by studies with OPZ and with TGR (see below).

Glutathione peroxidase
Glutathione peroxidase (EC 1.11.1.9) catalyzes the reduction of hydrogen peroxide and/or
organic peroxides to water or the corresponding alcohols using reduced GSH (Figure 2,
reaction 6 and Figure 3). Many GPx are selenoproteins: they contain a selenocysteine (Sec)
residue in the active site that is required for full catalytic activity [98]. Recently several non-
selenium GPx, showing different cellular activities, have been identified [99]. The
superfamily of GPx comprises ubiquitous enzymes widely distributed in Nature as isomeric
forms; their classification is based on their amino-acid sequence, substrate specificity, and
subcellular localization [98].

In S. mansoni two selenium-containing class-4 GPx isoforms have been described: GPx-1, a
monomeric protein of about 20 kDa [100] and GPx-2 [72], having respectively 53% and
55% identity with the human GPx4 protein. Kinetic analysis and substrate specificity of
schistosome Gpx-1 showed that the enzyme is involved in the reduction of lipid
hydroperoxides rather than inorganic peroxides, displaying similar activity as mammalian
phospholipid-hydroperoxide glutathione peroxidase GPx4 [101]. Because S. mansoni GPx-2
has high sequence similarity with S. mansoni GPx-1 and mammalian phospholipid
hydroperoxide GPx4, it is predicted to also have higher specificity activity toward
phospholipid peroxides and poor reactivity toward H2O2 [72]. Other studies have shown
GPx-1 to be developmentally regulated, with higher specific activities being found in the
tegument-enriched Nonidet P-40 extract of adult worms and significantly higher activity
with cumene hydroperoxide than with hydrogen peroxide [102]. Therefore, because of this
peculiar activity and its localization to the tegument and gut epithelium [103], it is likely that
schistosome GPx play an exclusive role in the protection of biological membranes from
oxidative damage. GPx-1 has been studied as a vaccine candidate. Although immunization
with GPx-1 resulted in a 43.4% reduction in worm burdens when mice were challenged with
S. mansoni cercariae, no protection was observed against adult worms in existing infections
[103]. Nevertheless, it has been proposed that because of its localization and involvement in
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parasite membrane protection, GPx should act as a first line of enzymatic cellular defense
against tegument attack by host immune cells [103]. For this reason, it is likely that by
inhibiting GPx the sensitivity of adult worms to oxidative stress would be enhanced.

The structure of S. mansoni GPx-1 has been determined providing insights into its
mechanism of catalysis and confirming the schistosome GPx are most closely related to the
mammalian GPx4 class [104]. Like other GPx4 enzymes, S. mansoni GPx-1 is a monomeric
protein. The cysteine residue in the active site of the Sec43Cys mutant crystallized
undergoes spontaneous oxidation to a sulfonic acid. This property of the schistosome
enzyme, not seen in the structure of a similar human GPx4 mutant, combined with
differences in the surface charge and hydrophobicity suggests special redox/catalytic
properties of the worm enzyme that may support the rational design of specific inhibitors
[104].

Glutathione S-transferase
The antioxidant molecule GSH also plays an important role in parasite defenses via the
activity of GSTs (EC 2.5.1.18). These enzymes carry out a wide range of functions from the
detoxification of exogenous electrophilic compounds (xenobiotics) (Figure 2, reaction 3),
the inactivation of endogenous metabolites products of oxidative stress (lipid hydroperoxide
and reactive carbonyl), the biosynthesis of signaling molecules (prostaglandins,
leukotrienes), to the transport of ligands [105]. In general, GSTs share the same tertiary and
quaternary dimeric structure. The monomer is made of two domains: the N-terminal region,
which carries the GSH binding site and the C-terminal region responsible for the binding of
the hydrophobic substrate [106]. The superfamily of GSTs comprises ubiquitous enzymes
distributed in nature as isomeric forms. GST classification has first been established with
mammalian enzymes and is based on several criteria including localization, amino acid
nucleotide sequence, immunological, kinetic, and tertiary quaternary structural properties.
The review of Sheehan [107] indicates the criteria on which GSTs have been classified thus
far and highlights the fact that identification of new GSTs in groups like insects, plants, and
helminths raised independent classification because of their unusual properties and
overlapping activities.

GSTs have been detected in all helminths and are the most extensively characterized
enzymes of detoxification pathways. Because parasitic helminths appear to lack or have very
low levels of the phase I detoxification enzymes (cytochromes P450, cytochrome b5) [108],
GSTs are likely to be the major enzymes involved in detoxification [109, 110]. Therefore,
their study has raised real interest for the development of antischistosomal vaccines and
drugs. In S. mansoni, four GST genes have been identified, GST1/2/3 of subunit size 28 kDa
and two 26 kDa isoforms [37, 111–113], both belonging to the mu class, but also with
similarities to the alpha and pi class GSTs, as well as one GST of the omega class [54]. In S.
japonicum, at least two isoforms of GST have been identified that correspond to 28 kDa
GST and 26 kDa GSTs of S. mansoni [112]. Only the 28 kDa isoform of S. haematobium
has been identified [114]. These isoforms display different kinetic properties; their relative
reactivity with a number of substrates and inhibitors varies, suggesting a distinct function of
each isoform in the parasite. As demonstrated by Walker et al., [115], whereas the main
isoform, S. mansoni 28 kDa GST, displays strong conjugation activity with xenobiotic
substrates and reactive carbonyls products of lipid peroxidation, its shows only limited
abilities to act as GSH peroxidase with lipid hydroperoxides. The 26 kDa GST isoforms
seems to be more effective catalysts of reactive carbonyl-conjugation. Activities with
hydroperoxides and reactive carbonyls show that, as with GPxs, GSTs are part of the
biological response of the parasite to counteract oxidative stress. Girardini et al. [116]
demonstrated that while the S. mansoni omega GST isoform has very low activity toward
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classical GSTs substrates, it has significant GSH-dependent dehydroascorbate reductase and
thiol transferase activities. Moreover, GSTs are known to have binding functions: they are
inhibited by a range of endogenous hydrophobic ligands such as bilirubin and haematin
[115]. This binding function could be a passive detoxification mechanism of intracellular
compounds or could involved GSTs in the transport of ligands. This provides evidence that
GSTs interfere in vivo with a wide range of compounds that can modulate its activity.

The contribution of the different isoforms to a given metabolic pathway in schistosomes is
reinforced by their different localization in the parasite. While both major isoforms (28 kDa
GST and 26 kDa GST) are located in the tegument and in subtegumentary parenchymal
cells, the 26 kDa GST is present in the cytoplasmic digitations localized in the apical
chamber delineated by the flame cell body and the 28 kDa GST is present in immature
germinal cells in both sexes and the ootype in the female genital system [117,
118].Therefore, it is likely that GST inhibition would disrupt metabolism in several key
areas.

GSTs have been widely investigated because of their immunogenic character. The antigenic
and protective properties of S. mansoni 28 kDa GST were discovered in 1987 by Balloul et
al., [119] and has led since to its development as a vaccine candidate. The leading vaccine
candidate, S. haematobium 28 kDa GST, has completed Phase I and II clinical trials but has
yet to progress to Phase III trials [120]. Experiments in a variety of animal models of
schistosome infection have demonstrated partial protection against infection by S.
japonicum, S. mansoni, S. haematobium, and S. bovis [121–123]. Studies attempting to
investigate the mechanism of immune response to S. mansoni 28 kDa GST revealed that at
least a part of its protective effect could be due to immune-mediated inactivation of the
enzyme. Functional analysis revealed that IgA antibodies to the protein displayed potent
neutralizing activity on the enzymatic properties of the molecule leading to impaired
schistosome fecundity, limited egg laying, and hatching capacity [124]. Furthermore, S.
mansoni 28 kDa GST may play a crucial role in the production of prostaglandin D2, which
may be important in the regulation of the immune response during schistosomiasis by
altering the response of activated Langerhans cells in the epidermis during early phases of
infection [125]. These data suggest that the inhibition of S. mansoni 28 kDa GST could lead
to the stimulation of protective immunity against schistosomes. This raises the point that
GSTs should be envisaged not only as an antigenic molecule, but also as a potential drug
targets.

Because GSTs belongs to the family of xenobiotic metabolizing enzymes, GST activity may
protect parasites from toxic effects of anthelmintics. Induction of GST occurs when worms
are treated with drugs and might represent a defense strategy [126]. Because GSTs display a
wide range of activities and substrate specificities, the different types of interaction between
an anthelmintic compound and a GST can occur. An anthelmintic can be inhibitor of a GST
or modulator of GST activity and compounds have been described to have such an effect on
schistosome GSTs: the drug oltipraz interacts with thiol group of the GST and inhibits the
transferase activity but not the peroxidase activity of the enzyme [91]. Artemether can
decrease S. japonicum GST activity and at a lesser extent to SOD activity, suggesting that
increasing schistosome oxidative stress might be responsible for the known antischistosomal
action of the compound [127]. Artemether may be a non-substrate ligand processed by GST,
through GST’s known role as an intracellular transporter could either potentiate the drug’s
cytotoxicity or passively detoxify the compound. It has been shown that PZQ can bind
schistosome GSTs [128], but in vitro studies have demonstrated that PZQ does not inhibit
GST activity [129]. Alternatively, an anthelmintic may be a substrate for GST and its
conjugation to GSH and further enzymatic processing would lead to its inactivation,
degradation, and secretion. In this case GST affects the efficacy of the pharmacotherapy of
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the drug. Developing GST inhibitors would prevent any side effects attributed to drug
metabolites leading to pharmacodynamic changes of the compound. Such inhibitor drugs
would be use as a complement agent to an anthelmintic and would help to overcome drug
resistance as well as increase drug efficacy.

Because of the various activities carried out by GSTs, their targeted inhibition may be
advantageous as it could deprive parasites of their major defense against oxidative stress,
prevent the synthesis or the transport of metabolites essential for the parasite survival,
prevent xenobiotic elimination that would cause harm or potentiate antihelmintic drugs, as
well as modulate the immunological response of the host to the parasite. However, no
studies have reported the identification and analysis of GST inhibitors against schistosome
infections. This may be because, although GST inhibitors have been identified [130], GST
inhibitors that are relatively nontoxic, isoenzyme specific, and active in vivo have not yet
been developed. Primary amino acid sequence alignment of helminth GSTs with
mammalian GSTs indicates that non-mammalian GST superfamilies are represented in these
parasites. Since S. mansoni 28kDa GST and 26kDa GST exhibit a combination of alpha-,
mu- and pi-type amino acid sequence similarities and biochemical characteristics it may
prove possible to inhibit both enzymes selectively with respect to mammalian pi class, the
major isoenzymes in human extrahepatic tissues [115]. The increasing information available
on crystal structures and activity properties helps the rational design of specific inhibitors.
The three dimensional structure for the main isoforms of S. haematobium (28 kDa GST) and
S. japonicum (26 kDa GST) have been elucidated. In all cases, structural comparisons of the
parasitic enzymes to their mammalian homologues gives evidence on the conservation of the
GSH-bonding site but highlights many structural differences in the xenobiotic binding sites,
which provide opportunities to develop specific inhibitors[128, 131–133]. Jao et al. [134]
have combined both structure-based drug design and the concept of polyvalency to discover
a series of potent S. japonicum GST inhibitors, but the compounds have yet to be tested
against parasites. The same group has further evaluated the participation of a set of
compounds in GSH conjugate formation through NMR based-technique and uncovered
specific potent inhibitors of S. japonicum GST [135]. Interestingly, high throughput assays
are well established to measure GST activity, for example, Yasgar and colleagues [136]
have described the utility of a luminescent assay by profiling a select group of inhibitors
against mouse GST A4-4, human GSTs A1-1, M1-1, P1-1, and the S. japonicum 26 kDa
GST.

Phytochelatin synthase
Another enzyme involved in GSH metabolism, likely to be important but still under-
investigated in helminths, is phytochelatin synthase (PCS). Thus far, PCS have been widely
studied in plants, yeast, algae, and fungi [137–141], and more recently they have been
identified in bacteria [142, 143] and animals, especially in worms [144–147]. Surprisingly,
many animals, but not vertebrates, have PCS genes. PCS is a γ-glutamylcysteine
dipetidyltranspeptidase (EC 2.3.2.15) displaying a bi-functional activity. Analysis of the 3D
structure of Nostoc PCS showed that the enzyme belongs to the papain superfamily of
cysteine proteases with conservation of the catalytic triad of cysteine, histidine and aspartate
and potential mechanism of catalysis involving an alkylated enzyme intermediate [148]. The
enzyme displays two activities depending on the substrate available: it acts as a peptidase
using GSH S-conjugates as substrates, catalyzing the removal of the glycine residue and
yielding the corresponding γGlu-Cys-S-conjugates and it acts as a transpeptidase using
GSH as a substrate in the synthesis of GSH-derived peptides called phytochelatins [149]
(Figure 2, reaction 5). Due to this bi-functionality, the role of PCS in GSH metabolism is of
great interest. Because PCS is absent from the human genome, PCS may be a suitable drug
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target for the treatment of diseases caused by pathogens expressing PCS. Its potential as a
target for schistosomiasis treatment has been recently discussed [147].

Peptidases involved in xenobiotic metabolism?
In mammals, after conjugation of GSH to electrophilic compounds by GSTs, GSH-S-
conjugates may be excreted or further metabolized to the mercapturic acid derivatives by
enzymes of the xenobiotic degradation pathway. In helminths, and more particularly in
schistosomes, because there is a lack of evidence regarding the involvement of phase I
detoxification enzymes in xenobiotic metabolism [110, 150], it is thought that schistosomes
use mainly the hydrolytic pathway involving GST conjugation activity to eliminate
xenobiotic rather than oxidation/reduction reactions catalyzed by cytochrome P450s. In this
regard, it is likely that enzymes acting downstream of GST, in tandem or independently,
namely γ-glutamyltranspeptidase (γ-GT, EC 2.3.2.2) and PCS [151], lead to xenobiotic
metabolism and could play a major role in xenobiotic elimination. γ-GT catalyzes the
transfer of the γ-glutamyl moiety of GSH or GSH S-conjugates to an acceptor, which may
be an amino acid, a peptide, or water (Figure 2, reaction 4). Such activity has been described
in the worms Ascaris suum [152], Moniezia expansa, and Necator americanus [153]. The
gene encoding the γGT has been identified in S. mansoni [92] and S. japonicum [93], but to
date, no study has described its activity or its role in GSH S-conjugate hydrolysis in
schistosomes species or other helminthes. The gene encoding PCS has been identified in S.
mansoni [147] and S. japonicum. Although the role of PCS as a GSH S-conjugate hydrolytic
enzyme in Schistosoma species and in animals generally is unknown, its involvement in the
detoxification pathway in plants and yeasts has been reported [154, 155]. Current studies on
recombinant S. mansoni PCS provide evidence for hydrolytic activity of the enzyme on
GSH S-conjugates and an increase in PCS mRNA levels is seen when worms are cultured
with drugs (Rigouin and Williams, unpublished results). Inhibition of either γGT or PCS
may lead to the accumulation of toxin-derived compounds that could be harmful to the
parasite, establishing these peptidases as novel potential targets for drug development,
especially for PCS which has no equivalent in human. In addition, these enzymes are
interesting targets to prevent drug resistance in parasites, as described above for GSTs.

Are transpeptidases involved in metal scavenging?
Essential heavy metals such as copper and zinc are required cofactors in redox reactions,
ligand interactions and a number of other reactions. However, non essential heavy metals,
such as arsenic, cadmium, lead, and mercury, are highly reactive and can be toxic through
the displacement of endogenous metal cofactors from their binding sites in proteins and in
the formation of reactive oxygen species through the Fenton reaction or by the inhibition of
enzymes involved in reducing oxidative stress (see preceding text). Organisms must be able
to control the cellular uptake and respond to the accumulation of heavy metals. This is
accomplished by producing metal-binding ligands, most notably the metallothioneins and
the phytochelatins. Schistosomes do not appear to synthesize metallothioneins or to have
genes encoding them. This suggests that other proteins or factors play important functions in
metal availability in schistosomes; PCS may be the major enzyme responsible for parasite
protection against metal toxicity [147]. Phytochelatins (PCs) synthesized by PCS are a
condensation of GSH moieties with the structure (γ-Glu-Cys)n-Gly, where n ≥ 2. A number
of studies implicate the activity of PCs in heavy metal detoxification: PCs are immediately
produced after exposure to a range of heavy metal ions [141] and confer to the metal-
sensitive organism a tolerance or a resistance to the element. Organisms deficient in PCS
display hypersensitivity to cadmium or become unable to tolerate cadmium toxicity, for
instance, in C. elegans silencing PCS expression by RNA interference leads to a cadmium-
hypersensitive phenotype[145].
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Recombinant expression of S. mansoni PCS in a yeast system leads to an increase in
cadmium tolerance (< 50 μM to > 1,500 μM) due to the synthesis of phytochelatins [147].
The role of metals in the induction of PCS expression differs among organisms, but the
metal that seems unequivocally involved is cadmium. The function of PCS in schistosome
biology is not clear as there is no evidence that schistosomes are exposed to significant
amounts of cadmium in their definitive host. However, schistosomes degrade host
hemoglobin and may use phytochelatins to neutralize heme toxicity. As indicated above,
reduced iron in heme liberated from hemoglobin can react with oxygen to generate oxygen
radicals and other toxic reactive species. Although schistosomes produce hemozoin, a
crystalline, particulate form of heme, to avoid heme toxicity [156] it is speculated that iron
flux must be tightly regulated. The mechanism of iron uptake and metabolism is still not
well understood but has been proposed to be a potential target for novel therapeutics against
schistosomes [157, 158]. In addition, although the mechanism of action of artemether
against schistosomes is still under investigation, it is believed to have iron-dependant
antiparasitic activity. The cleavage of artemether into an active metabolite responsible for
parasite killing is induced by hemin or another iron-containing molecule [127]. Furthermore,
evidence that phytochelatins could play a role in iron homeostasis in the parasite come from
its increased expression in worms cultured in the presence of iron [147]. This hypothesis is
supported by the recent discovery that GSH plays a vital role in iron metabolism in that an
iron starvation-like response constitutes the near-unique genome-wide consequence of GSH
depletion in yeast [159]. These investigators propose that GSH is split between an essential
function in iron metabolism and a thiol-redox maintenance function that serves as a backup
of the thioredoxin pathway but requires much higher levels of GSH [159]. If this is true of
schistosomes, it is likely that, as with GSH, phytochelatins may be involved in metal
detoxification and/or homeostasis. Therefore, depriving the parasite of such a defense or
control system would be deleterious for the parasite.

The thioredoxin system
Thioredoxin

Thioredoxin proteins are small, ~100 amino acids, and act as electron vectors in a number of
redox reaction via the reversible oxidation and reduction of the reactive-site cysteine pair
(Figure 3). Thioredoxin from S. mansoni has been found to be expressed in all stages of
worm development tested and to be present in the egg secretory products [160]. Two
isoforms of Trx-1 exist in different life stages: an adult form and a juvenile form with an N-
terminal extension of four amino acid residues (Gln-Leu-Val-Ile) [161]. Based on the
genome of S. mansoni, there are two additional Trx genes, a second cytoplasmic Trx and a
mitochondria-targeted Trx (Williams, unpublished results). Recently, the structure of S.
mansoni Trx-1 has been explored and found to be similar to Trx proteins from other
organisms with a typical Trx fold [161]. Like other Trxs, Trx-1 is able to reduce insulin in
the presence of dithiothreitol (ΔA650nm=0.35 min−1, cf. 0.41 min−1 for human Trx),
whereas lower activity was found when the reducing agent was GSH [160, 161]. It has been
shown that Trx-1 is able to reduce GSSG with kcat values of 0.085 s−1 [161] and 0.014 s−1

[162] when GSSG concentrations are infinite. However, in dipteran insects (e.g., Drosophila
melanogaster and Anopheles gambiae) where GR is absent, a high ratio of GSH to GSSG is
maintained by the nonenzymatic reduction of GSSG by Trx (a rate constant of 170 M−1 s−1

(or 0.01 μM−1 min−1) for D. melanogaster Trx reacting with approximately 20 μM GSSG)
[163, 164]. These results indicate that in schistosomes Trx would only reduce GSSG under
extreme oxidative stress; therefore, it is not clear whether reduction of GSSG catalyzed by
Trx-1 is physiologically relevant in S mansoni. In contrast, in Echinococcus granulosus, a
tapeworm parasite with a redox network similar to that found in schistosomes [165], it has
been shown that that Trx is able to reduce GSSG and to catalyze deglutathionylation
reactions at high concentrations of GSSG in which the activity of its TGR would be
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inhibited [166]. These results suggest that redox pathways may vary in different
Platyhelminthes parasites.

Schistosome Trx-1 has only two cysteine residues, both occurring in its active site (Trp-Cys-
Gly-Pro-Gly), whereas human cytosolic Trx-1 has three additional cysteine residues
(Cys-62, Cys-69 and Cys-73) outside of its active site (Cys-32/Cys-35). These three
additional cysteine residues have distinct biological functions. For example, Cys-62 and
Cys-69 can form an intramolecular disulfide bond under oxidative stress; this mechanism
can transiently impair Trx activity [167]. Because the redox potential of Cys-62/Cys-69 is
more negative than Cys-32/Cys-35 in the active site, the disulfide bond between Cys-62 and
Cys-69 is formed after the cysteine pair in the active site is oxidized. The formation of the
intramolecular disulfide (Cys-62 and Cys-69) results in the disruption of Trx folding, which
further prevents the interaction of Trx with TrxR (or other substrates). This mechanism
could prevent overoxidation of Trx, which may lead to the loss of activity of Trx-1 under
oxidative stress [167]. In addition, mammalian Trx-1 forms a homodimer via an
intermolecular disulfide via Cys-73. The dimerization has been proposed to be a regulatory
mechanism [168]. Furthermore, Trx can regulate the intracellular concentration of nitric
oxide via S-nitrosylation of Cys-69 [169]. Because S. mansoni Trx-1 has no noncatalytic
cysteine residues it may be more susceptible to oxidative and nitrosative stress than human
Trx-1. S. mansoni Trx provide electrons to oxidized Prx during the neutralization of H2O2
and other hydroperoxides [170]. It has been suggested that Trx-1 and Prx-1 protect eggs
trapped in granulomas from oxidative stress resulting from the host’s immune reactions
[160]. After passing reducing equivalents to its various substrates, oxidized schistosome Trx
proteins can be reduced by TGR [88].

Thioredoxin glutathione reductase
In many organisms oxidized Trx and GSSG are reduced by TrxR and GR, respectively. In S.
mansoni and other flatworm parasites (e.g., E. granulosus, Taenia crassiceps, and Fasciola
hepatica), authentic TrxR and GR proteins are absent [88, 165]. Instead, TGR (EC 1.8.1.9),
a multifunction enzyme, is able to reduce both GSSG and Trx (Figure 3). Mammalian cells
also have TGR; however, it is associated with reproduction and less important in general
redox protection in most cells. Mammalian TGR is predominately expressed in testis and its
proposed function is to facilitate sperm maturation with GPx-4 [171–173]. Cloning of S.
mansoni TGR lead to the prediction that the enzyme was a selenoprotein [88]. The absence
of authentic TrxR and GR proteins and the central role of TGR in the redox biology of
schistosomes was established using biochemical approaches. Immunoprecipitation of TGR
with antibodies produced against the recombinant protein removed GR, TrxR, and
glutaredoxin (Grx) activities, while Western blotting of the precipitated proteins identified a
single protein of the size expected for TGR (larger than known GR, TrxR, and Grx
proteins), suggesting that TGR was responsible for all activities in the worm [88]. Using the
specific inhibitor auranofin, reduction of both GSSG and oxidized Trx in worm
homogenates was equally inhibited, again suggesting that a single protein was responsible
for both activities [88]. The absence of authentic GR and TrxR genes was confirmed by the
S. mansoni genome sequence [92].

Like selenoprotein TrxRs [174], S. mansoni TGR has broad substrate reactivity reducing
H2O2, sodium selenite, lipoamide, and tert-butyl hydroperoxide [58]. Recently it has been
shown that the Sec597Cys mutant of S. mansoni TGR is able to reduce these substrates,
albeit with lower efficiencies, showing that the selenocysteine is important but not essential
for the activity of TGR [175]. Unlike mammalian TrxR however, S. mansoni TGR is unable
to reduce ubiquinone or dehydroascorbic acid [58, 174, 176]. S. mansoni TGR also catalyzes
deglutathionylation reactions [58, 175]. Under oxidative stress and resulting high GSSG
concentrations, cysteine residues in proteins can become S-glutathionylated. This is thought
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to protect redox-sensitive cysteines from becoming irreversibly over-oxidized to sulfinic or
sulfonic acids with consequent loss of protein activity [177]. Deglutathionylation (Grx)
reactions are important regulatory mechanisms in cells to restore glutathionylated proteins to
full activity after return to normal cellular redox status.

Because TGR in schistosomes plays a central role in redox homeostasis, redox regulation,
and maintaining reduced pools of glutathione and thioredoxin for numerous essential
biochemical processes, it is undoubtedly important to the survival of the parasites. Indeed,
TGR has been validated by both chemical and reverse genetic approaches as an essential
protein in S. mansoni. Exposing cultured, ex vivo adult worms to 10 μM auranofin, a potent
TGR inhibitor [88], inhibits TGR activities, reduces the ratio of reduced to oxidized
glutathione, and leads to worm unpairing and death [58]. Skin-stage parasites and juvenile
liver-stage parasites are killed by 5 μM auranofin. In addition, decreased worm burdens
were found in infected mice treated with auranofin (59–63% decrease). RNAi silencing of
TGR in cultural, larval parasites led to decreases in TGR activity and parasite survival [58].
This affect was seen in parasites cultured both aerobically and anaerobically, indicating that
TGR function is broader than simply protecting worms from redox stress. The specificity of
auranofin and RNA silencing was shown by a synergistic effect of their combined activity
against cultured parasites [58].

In order to identify compounds specifically targeting S. mansoni TGR, it is necessary to
better understand its catalytic mechanisms. Because of its high sequence similarity (~50%)
and active sites that are virtually identical to other dimeric NADPH-oxidoreductases such as
GR and TrxR [58, 175, 178–180], S. mansoni TGR is thought to have similar catalytic
mechanisms. TGR is a homodimeric flavoprotein with a head-to-tail monomer arrangement
with each monomer containing both TrxR and Grx domains [181]. As has been proposed for
mammalian TGR [172, 179], the active sites of S. mansoni TGR are thought to be
contributed by residues from both monomer subunits: an FAD, an adjacent redox-active
cysteine pair (Cys-154 and Cys-159) in the TrxR domain and a cysteine pair (Cys-28 and
Cys-31) in the Grx domain from one subunit act in concert with the C-terminal cysteine-
selenocysteine pair (Cys-596 and Sec-597) of the other subunit. It is thought that during the
catalytic cycle reducing equivalents from NADPH are passed to FAD, then to the Cys-154/
Cys-159 couple, then to Cys-596′/Sec-597′ in the other subunit. This redox-active couple is
required for the reduction of Trx as a truncated form in which Sec-597 and Gly-598 are
missing lacks any TrxR activity [181]. The reduced C-terminal active site is then proposed
to pass electrons to a substrate (e.g., oxidized Trx) or to the Cys-28/Cys-31 couple in the
other subunit [175, 182]. Through structural and modeling studies it has been suggested that
the C-terminal tail containing Cys-596′/Sec-597′ undergoes conformational changes to
allow electron transfer to Cys-28/Cys-31 [181–183]. Spectroscopic analyses of anaerobic
NADPH titrations support this hypothesis [175]. DTNB (5,5′-dithiobis-(2-nitrobenzoic
acid); Ellman’s reagent) is used as a model substrate to determine TrxR activity of authentic
TrxR enzymes [174]. It was found that S. mansoni TGR can reduce DTNB via its Cys-596/
Sec-597 active site (as in authentic TrxR proteins) as well as at its Cys-28/Cys-31 active site
[175].

Authentic TrxR proteins cannot reduce GSSG [174, 184]. This suggests that in TGR
proteins GSSG reduction occurs at the Grx domain cysteine couple (Cys-28/Cys-31) and/or
at the cysteine couple proximal to the NADPH binding site (Cys-154/Cys-159), which
occurs within an amino acid sequence that is identical to that found in many authentic GR
proteins [175, 181, 185]. In order to determine the site of GSSG reduction, S. mansoni TGR
proteins with cysteine to alanine or cysteine to serine mutations were generated and
characterized. The GR activity of the Cys28Ala variant was only 3–4 % of wild-type
activity, while the Cys31Ala mutant had ~20% and the Cys31Ser mutant had >100% of
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wild-type GR activity, respectively, indicating that Cys-28 is the residue responsible for the
nucleophilic attack on GSSG. The role of Cys-31 appears to be to facilitate the formation of
the nucleophilic thiolate on Cys-28. The Cys-154/Cys-159 couple may provide the residual
GR activity in the Cys28Ala variant as the electrostatic environment around this redox
couple is similar to that in GR proteins and may facilitate the binding of GSSG [175, 181,
185]. In several characterized TGR proteins high concentrations of GSSG result in a
transient inhibition of GSSG reduction and a delay in attaining full GR activity [178, 180,
186]. The lag time in reaching full activity could be eliminated by the addition of GSH to
reactions leading to the hypothesis that the lag was due to glutathionylation of cysteines in
TGR [178, 180]. Proteomic analysis of TGR from E. granulosus isolated during this lag
phase found that Cys-88 and Cys-354 were glutathionylated [180]. However, these two
cysteine residues are relevant to the structural integrity of TGR, are unlikely to be involved
in the catalytic cycle of TGR, and are not found in all TGR proteins that show this lag effect
[175, 186]. Kinetic analyses of the S. mansoni Cys-31 mutants found that the lag time in GR
activity disappeared entirely, suggesting that the lag may be due to glutathionylation on
Cys-31 [175]. Under oxidative stress (high GSSG/GSH) glutathionylation of key cysteine
residues in TGR proteins may be a mechanism to prevent their overoxidation thus
preventing potential permanent loss of activity. Mammalian TGR proteins have a Cys-Xaa-
Xaa-Ser motif is the Grx domain. To the best of our knowledge, no lag in GR activities have
been found in mammalian TGR proteins. Therefore, the active site of Grx domain of
mammalian TGRs may be more susceptible to oxidative inactivation. However, because
TrxR and GR are present in mammalian cells, loss of TGR activity would be compensated
by these enzymes.

As mentioned previously, unlike TrxR and GR, TGR also catalyzes deglutathionylation
reactions. The deglutathionylation activities of wild-type TGR and its Grx-domain variants
have been characterized. Two catalytic mechanisms are involved in deglutathionylation
reactions of TGR: the active site in the Grx domain can be reduced by TrxR domain of the
dimer or by free GSH [175]. At high ratios of GSH/GSSG (i.e., reducing conditions), TGR
undergoes a monothiol mechanism. The thiol anion on Cys-28 undergoes nucleophilic attack
on the mixed-disulfide between GSH and proteins (or peptides), forming a glutathionylated
Cys-28 TGR intermediate and free proteins/peptides. The glutathionylated Cys-28 is then
resolved by GSH, generating GSSG and free Cys-28. At low ratios of GSH/GSSG (i.e.,
oxidizing conditions), the TGR Cys-28–peptide intermediate is resolved by Cys-31, thereby
forming an intramolecular disulfide (Cys-28–Cys-31). The mixed disulfide is then reduced
by electrons from NADPH via the TrxR domain of the protein. These mechanisms suggest
that TGR is able to catalyze deglutathionylation reactions when the parasites are challenged
by ROS and under oxidative stress. Recently, Bonilla et al., found that the Grx activity of
TGR from E. granulosus requires both Sec and the Grx domain and catalyzes
deglutathionylation only via a monothiol mechanism. The difference between the
deglutathionylation reactions of E. granulosus TGR and S. mansoni TGR may be explained
by different distances between cysteines in the Grx active sites of the two proteins. In E.
granulosus TGR, the distance between Cys-31 and Cys-34 is longer than that between
Cys-28 and Cys-31 in S. mansoni TGR and, therefore, the accessibility of Cys-34 to Cys-31
may be somewhat limited in E. granulosus TGR [166, 175].

Because S. mansoni TGR has been validated as an essential protein and drug target, studies
have been undertaken to identify TGR inhibitors. Because active sites of TGR are similar to
that of mammalian TrxR and GR, known inhibitors of these proteins may be useful starting
points to identify TGR inhibitors. Gold-containing compounds (e.g., auranofin,
aurothioglucose, aurothiomalate), which are good mammalian TrxR inhibitors [187, 188],
inhibit schistosome TGR [58]. However, while platinum drugs RMA 19 and RMA 35 inhibit
mammalian TrxR, only RMA35 but not RMA19 inhibits S. mansoni TGR [58]. This
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indicates that differences in structural and catalytic proprieties between TrxR and TGR exist
and could be used for the design of TGR-specific inhibitors. Structural analyses of
auranofin-S. mansoni TGR complexes found that gold was removed from auranofin and
bound at three different sites in the TGR protein: (1) Cys154/Cys-159, the redox center
adjacent to FAD, (2) the putative NADPH binding site, and (3) complexed with Cys-520/
Cys-574 [189]. The last cysteine couple had not previously been implicated in the catalytic
activity of TGR. Recent studies show that this cysteine pair is involved in the structure
integrity of schistosome TGR, rather than catalysis [175]. In addition, several studies
suggest that inhibition of selenoproteins by gold and platinum containing compounds is
selenocysteine-dependent, i.e., they are prodrugs that require selenocysteine for conversion
into active species [188, 190–194] and that specific reactivity with TrxR and not with GR
was due to the absence of selenocysteine in GR [187]. However, selenocysteine was found
not to be essential for inhibition of S. mansoni TGR by auranofin. Furthermore, a
selenocysteine-deficient variant of S. mansoni TGR and yeast GR were inhibited by
auranofin, but at much lower rates than selenocysteine-containing TGR [175, 189]. The
kinetics of inhibition of selenocysteine-deficient TGR and GR could be increased to wild-
type levels in the presence of exogenous selenium [189]. Further studies have found that in
addition to auranofin, oxadiazole 2-oxides and antimony potassium tartrate can inhibit wild-
type TGR and the Sec597Cys variant with the same efficiency, confirming that
selenocysteine is not essential for inhibitory effects of many drugs [175].

In order to identify compounds inhibiting the redox pathway of schistosomes a quantitative
high-throughput screen has been performed against the reconstructed pathway shown [195–
197]. In the assay, S. mansoni Prx-2 uses GSH as an electron donor to reduce H2O2. The
resulting GSSG is reduced by TGR utilizing NADPH and the reaction progress was
monitored by following the change in NADPH fluorescence (Figure 4). The coupled
enzymatic assay was miniaturized and used to screen 70,000 compounds in the NIH
Molecular Libraries Small Molecules Repository [197]. Once compounds were found to
inhibit the coupled reaction, Prx-2 and TGR target-deconvolution assays were used to
identify the target of the compounds. Derivatives of phosphinic amides, oxadiazole-2-oxides
and isoxazolones were found to inhibit TGR with low μM to nM inhibitory constants [197].
The efficacies and activities of phosphinic amides and oxadiazole-2-oxides were further
tested [198]. 4-phenyl-1,2,5-oxadiazole-3-carbonitrile-2-oxide (4-phenyl-3-
furoxancarbonitrile or furoxan) was identified to be a irreversible inhibitor of S. mansoni
TGR. Most importantly, furoxan resulted in 100% parasite death at 10 μM within 24 hours
and within 120 hours at 2 μM. In addition, it is active against multiple developmental stages
of S. mansoni and adult worms of S. japonicum and S. haematobium. Furthermore,
treatment of skin-stage parasites, juvenile, liver-stage parasites and adult worms with
furoxan resulted in highly significantly decreased worm burdens in infected mice [198].
Nitric oxide released from furoxan through the action of TGR has been demonstrated to S-
nitrosylate cysteine residues of TGR, resulting in its inhibition and parasite death [198, 199].
A SAR (structure-activity relationship) study found that the N-oxide is essential for furoxan
activity and worm killing as the furazan analogue is inactive and that the analogue with the
N-oxide regiochemically transposed is also inactive (Table 1) [199]. Replacing the 3-cyano
group of furoxan with a groups that are less electronegative (3-methyl or 3-hydroxymethyl)
also results in loss of compound activity (Figure 5 and Table 1) [199]. Although more
electronegative substitutions (3-formyl, 3-carboxyl) in this position are more active than
furoxan as TGR inhibitors, these analogs have no worm-killing activity, probably due to
limitations in bioavailability (Table 1). The 3-carboxamide derivative of furoxan retains
significant activity and may have better drug properties than the 3-cyano analog, but this
remains to be determined. Electron-withdrawing groups in R2 position also slightly enhance
potency (Figure 5) [199]. Currently, a number of furoxan analogs are being characterized
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with respect to their inhibition of TGR, worm killing capacity, cytotoxicity, stability to
microsomal breakdown, and drug (ADME) properties.

Peroxiredoxins
As mentioned previously, schistosomes have limited capacity to neutralize H2O2 because
they lack catalase and their GPx proteins have low activity with H2O2 [72, 170]. It has been
proposed that schistosomes use Prx (EC 1.11.1.15) to reduce H2O2 and, along with GPx and
GST, to neutralize lipid hydroperoxides (Figure 2, reaction 6 and Figure 3) [72, 200]. Three
Prx classes with distinct catalytic mechanisms have been identified in a multitude of
organisms: the classic 2-Cys Prxs, atypical 2-Cys Prxs and 1-Cys Prxs [201, 202]. The three
Prx genes found in S. mansoni encode typical 2-Cys Prx proteins and their sequences are
highly similar (ca. 65% similarity at the amino acid level) [72, 170]. S. mansoni Prx-3 is
predicated to be targeted to the mitochondria and is found specifically in mitochondrial
fractions of adult worms [170]. Based on transcript abundance, S. mansoni Prx-1 is the
generally the most highly expressed species, with highest expression in eggs and adult
female worms. Prx-2 expression is very low in cercariae, but its expression increases
significantly within 24 hours of transformation and gradually increases during worm
development. Prx-3 expression is low in all stages with the highest expression found in adult
female worms [72].

The catalytic mechanism of typical 2-Cys Prx has been investigated. Typical 2-Cys Prx
proteins form homodimers and function in multimeric forms of five or six dimers (decamers
and dodecamers, respectively) [203–205]. These decamers/dodecamers form a higher-order,
toroid structures [204, 205]. Oligomerization of the multimeric forms results in stacks of
toroids and changes Prx activity from a peroxidase to a stress-regulated chaperone [206,
207]. In the peroxidase catalytic cycle of typical 2-Cys Prx proteins, the thiol group of the
N-terminal peroxidative cysteine is oxidized to a sulfenic acid after reacting with H2O2.
Subsequently, the C-terminal resolving cysteine from the other subunit reacts with the
sulfenic acid of the peroxidative cysteine forming an intermolecular disulfide. The resulting
mixed disulfide is resolved by Trx in most cases [201, 202, 208]. Interestingly, S. mansoni
Prx-2 and Prx-3 can use both Trx and GSH as electron donors whereas Prx-1 has better
activity with Trx [170]. In addition, S. mansoni Prx-1 demonstrates a typical Prx kinetic
behavior (ping-pong, unsaturable) whereas Prx-2 and Prx-3 display unusual kinetics [170].
A C-terminal extension of ~22 amino acids exists in both S. mansoni Prx-2 and Prx-3, which
is absent from Prx-1, and has been shown to confer the unusual kinetic behavior and
increased activity with GSH [170].

In addition to its toxic effects, H2O2 is an important signaling molecule [209]. In addition to
their role as antioxidants Prx proteins have been shown to play important functions to
regulate H2O2 signaling. Active Prx proteins maintain low resting levels of H2O2. When
H2O2 is produced during signaling events, Prx are inactivated through the overoxidation of
their peroxidatic cysteine to a sulfinic acid, leading to focally increased H2O2 levels and
signal transduction can proceed; Prx effectively act as a molecular floodgate [210–212].
Wood and coworkers [211] postulated that an internal loop containing a Gly-Gly-Leu-Gly
motif and the C-terminal helix containing a Tyr-Phe motif pack next to each other and bury
the active site helix containing the peroxidatic cysteine stabilizing the oxidized enzyme and
preventing easy reduction of the peroxidatic cysteine sulfenic acid (-SOH), which can then
be oxidized by H2O2 to the inactive sulfinic acid (-SO2H) form. Analysis of the schistosome
Prx sequences indicated that the Gly-Gly-Leu-Gly motif is present in all three schistosome
Prx sequences [170]. Although the C-terminal helix and its Tyr-Phe motif are present in
Prx-2 and Prx-3, it is absent from Prx-1. Analysis of the proteins propensity to oxidative
inactivation found that Prx-1 was resistant and Prx-2 was sensitive. Transfer of the C-
terminal 22 amino acids with the Tyr-Phe motif of Prx-2 to Prx-1 converted Prx-1 into an
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overoxidation-sensitive enzyme. Likewise, C-truncated Prx-2, which lacks the C-terminal
helix and Tyr-Phe motif, is a robust enzyme, with resistance to oxidative inactivation similar
to Prx1. Since Prx-1 may protect schistosome eggs from oxidative stress [213], it should be
less sensitive to oxidative inactivation in the oxidizing extracellular environment of the
granuloma.

Three Prx genes have also been identified in S. japonicum: Prx-1 and Prx-2 are cytosolic
forms and Prx-3 is a putative mitochondrial form [214]. Prx from S. japonicum have high
sequence identity with their orthologs from S. mansoni (85–90%). All three forms are
expressed in the egg, cercariae, and adult stages. S. japonicum Prx-1 is more highly
expressed in eggs than in cercariae and adult worms, while its Prx-2 in predominately
expressed in adult worms [214]. As in S. mansoni, S. japonicum Prx-1 is secreted by eggs
and may protect eggs from oxidative stress [160, 214]. In addition, it was found that S.
japonicum Prx-1 is in worm tegument, whereas Prx-2 is in sub-tegumental layers,
parenchyma, vitelline, and gut epithelial tissues in adult worms [214]. It was shown that
Prx-1, but not Prx-2, in schistosomula can neutralize exogenous hydroperoxides and organic
peroxides; however, neither S. japonicum Prx is able to neutralize nitric oxide [215].

Methionine sulfoxide reductase
Under oxidative stress conditions some methionine (Met) residues in proteins may become
oxidized to methionine sulfoxide (Met-O), the formation of which may impair the structural
integrity and activity of proteins. Methionine sulfoxide reductase proteins (Msr) reduce Met-
O back to Met with electrons from Trx (Figure 6). Msr proteins have been found to be
important in a variety of different organisms to manage oxidative stress and repair damaged
proteins [216–218]. Also, it has been proposed that Met residues on proteins may act as
ROS scavengers. After reacting with ROS, Met can be converted to Met-O; the resultant
Met-O can be re-reduced to Met by Msr [218, 219]. Met-O residues exist in two
stereoisomeric forms, the S epimer (Met-S-O) and the R epimer (Met-R-O) and Msr proteins
are classified into two types based on their substrate stereospecificity. Typically, MsrA
forms reduce peptide-Met-S-O and free Met-S-O, while MsrB proteins reduce peptide-Met-
R-O and have week activity with free Met-R-SO [218, 220]. Two MsrB-like genes have
been found in S. mansoni [220]. While in humans two types of MsrB proteins have been
identified, selenocysteine- and Cys-containing MsrB forms [221, 222], both MsrB proteins
in S. mansoni (MsrB1 and MsrB2) are Cys-containing. MsrB1 has two cysteine residues in
the active site whereas the active site of MsrB2 has one cysteine residue [220]. The catalytic
mechanisms of S. mansoni MsrB1 and MsrB2 have been proposed. In MsrB1, the catalytic
cysteine residue interacts with Met-O, generating a sulfenic acid intermediate on the MsrB1
catalytic cysteine residue releasing free or protein bound Met. The second (recycling)
cysteine of MsrB1 then attacks the sulfenic acid intermediate to form an intramolecular
disulfide. The disulfide in MsrB1 can then be resolved by reduced Trx. In MsrB2 the
resolving cysteine is replaced by a threonine, and therefore, Trx must directly reduce the
sulfenic acid intermediate on the catalytic cysteine residue [220, 223]. Both MsrB1 and
MsrB2 have a predicted, conserved zinc-binding motif essential to maintain their proper 3D
structure [220, 224]. MsrB1 and MsrB2 appear to have different substrate specificities with
MsrB1 preferring free Met-S-SO and MsrB2 preferring peptide-Met-S-SO [220]. MsrB1 and
MsrB2 are expressed in all parasite development stages investigated with the highest
expression seen in eggs and the lowest expression in schistosomula. Elevated expression of
Msr proteins in eggs may help to neutralize ROS in the granuloma produced by the immune
responses of hosts [220]. Similarity searches of the S. mansoni genome fail to identify any
MsrA orthologs. It remains to be determined if one of the MsrB proteins or if a
phylogenetically unrelated protein(s) in the S. mansoni genome have MsrA-like activity. It
is also not known if S. mansoni Msr proteins are suitable drug targets.
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Concluding remarks
Schistosomiasis causes serious public health issues in much of the developing world. Even
though PZQ is an effective treatment for this disease, there is a constant threat that the
parasites may evolve resistance to PZQ eliminating the main control measure. There is little
interest by pharmaceutical companies in developing drugs for schistosomiasis and other
neglected tropical diseases because of the low financial return. Because schistosomes reside
in an aerobic environment and are under oxidative stress they require adequate antioxidant
responses to neutralize ROS. Because the schistosome antioxidant network differs
significantly and is highly restricted compared to its human host, it may be the parasite’s
Achilles heel. Indeed, several recent studies indicate that antioxidants in schistosomes are
good drug targets and drug development based on these antioxidants is in process. In this
paper, we comprehensively discuss biochemical aspects of schistosome antioxidants and
their potential as drug targets. Future studies should be directed to provide a better
understanding of the schistosome redox network and toward the identification of effective
molecules targeting schistosome redox enzymes.
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List of abbreviations

GPx Glutathione peroxidase

GR glutathione reductase

GSH glutathione

GST glutathione S-transferase

Msr methionine sulfoxide reductase

OPZ oltipraz

PCS phytochelatin synthase

Prx peroxiredoxin

PZQ Praziquantel

SOD superoxide dismutase

TGR thioredoxin glutathione reductase

Trx thioredoxin

TrxR thioredoxin reductase
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Figure 1.
Structures of antischistosomal drugs previously and currently used in clinical practice.
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Figure 2.
Enzymes involved in the glutathione metabolism. Synthesis of glutathione. 1: condensation
of L-cysteine (C) and L-glutamate (γE) by γ-glutamate cysteine ligase (CGL) to form the
dipeptide γ-glutamylcysteine (γEC). 2: condensation of γ-glutamylcysteine (γEC) and
glycine (G) by glutathione synthase (GS) to yield GSH (γECG). Detoxification processes.
3: conjugation of GSH to electrophilic compounds (X) catalyzed by glutathione S-
transferase (GST). 4: cleavage of γ-glutamate from GSH or GSH conjugates (γECxG) by
γ-glutamyl transferase (γGT) yielding respectively CG and CxG. 5: cleavage of glycine
from GSH or GSH conjugates by phytochelatin synthase (PCS) to give respectively
phytochelatins (γ(EC)nG) and γEC-X. 6: reduction of H2O2 and lipid hydroperoxides
(LOOH) to water and the corresponding alcohols (LOH) and water with GSH by glutathione
peroxidase and peroxiredoxins.
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Figure 3.
The antioxidant protein network in Schistosoma mansoni. TGR catalyzes
deglutathionylation reactions of proteins and peptides(1). In addition, TGR not only reduces
GSSG and oxidized Trx but also low molecular weight compounds (e.g., hydrogen
peroxide)(2) utilizing NADPH. Prx proteins can receive electrons from either Trx or GSH to
neutralize H2O2 and lipid peroxides.
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Figure 4.
Assays used in high throughput drug screen. A coupled enzymatic assay was used in order
to screen compounds which are able to inhibit TGR and/or Prx-2. Prx-2 catalyzes
conversion of hydrogen peroxide to water utilizing GSH. The resultant GSSG from the
previous reaction is recycled to GSH by TGR using NADPH. The consumption rates of
NADPH were monitored with fluorescence of NADPH (excitation: 365 nm and emission:
450 nm). The figure is adapted from [198].
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Figure 5.
The general structure of oxidazole-2-oxides. The presence of electron-withdrawing groups at
positions R1 and R2 are essential to the activity of oxidazole-2-oxides.
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Figure 6.
The function of methionine sulfoxide reductase (Msr) in the redox network of Schistosoma
mansoni. Reactive oxygen species (ROS) can convert methionine (the free amino acid as
shown here or in a protein) to methionine sulfoxide. This may lead to inactivation of protein
function. Reduction of methionine sulfoxide and reactivation of the protein and prevention
of higher oxidation states of methionine can be carried out by Msr using reduced thioredoxin
(Trx(red)) as the electron donor producing oxidized thioredoxin (Trx(ox)). Reduction of
Trx(ox) by thioredoxin glutathione reductase (TGR) is accompanied by the consumption of
NADPH.
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Table 1

The activities of oxidazole-2-oxides against TGR enzyme and cultured ex vivo adult S. mansoni worms. The
table and data were adapted from [199].

Compound TGR Worms

Active Active

Inactive Inactive

Inactive Inactive

Inactive Inactive

Inactive Inactive

Active Inactive

Active Inactive
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