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Abstract
Conventional group analysis is usually performed with Student-type t-test, regression, or standard
AN(C)OVA in which the variance–covariance matrix is presumed to have a simple structure. Some
correction approaches are adopted when assumptions about the covariance structure is violated.
However, as experiments are designed with different degrees of sophistication, these traditional
methods can become cumbersome, or even be unable to handle the situation at hand. For example,
most current FMRI software packages have difficulty analyzing the following scenarios at group
level: (1) taking within-subject variability into account when there are effect estimates from multiple
runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a
within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or
the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with
estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases
of missing data in longitudinal studies; and (6) group studies involving family members or twins.

Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional
group analysis approach to analyze many complicated cases, including the six prototypes delineated
above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks
such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework
lies in its flexibility to model and estimate the variance–covariance structures for both random effects
and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model
with crossed random effects, even at the presence of confounding fixed effects. The simulations of
one prototypical scenario indicate that the LME modeling keeps a balance between the control for
false positives and the sensitivity for activation detection. The importance of hypothesis formulation
is also illustrated in the simulations. Comparisons with alternative group analysis approaches and
the limitations of LME are discussed in details.
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Introduction
Group analysis of FMRI datasets typically follows a two-tier approach. At the first level, the
effects of interest are estimated voxel-wise in a time series regression model for each individual
subject. At the second level, the effect estimates of interest are summarized and inferences
generalized across subjects. The typical FMRI group analysis methodologies have matured
over the past twenty years, especially using basic types of statistical tests (also known as
ordinary least squares model) such as paired, one-sample, or two-sample Student t-test. With
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more complex designs, multi-way ANOVA models can help. Such models allow for purely
categorical (qualitative, nominal, discrete, ordinal, or binary) variables that usually have two
or more levels to be modeled. In addition, other traditional models such as ANCOVA and
multiple regression analysis may also be adopted.

Even though it was historically developed independently from linear models or regression
analysis, ANOVA can be seen as syntactic sugar for a special subgroup of linear models.
Originally created by R. A. Fisher, significance testing involved in ANOVA requires cell means
in a rigid and complete data structure and the decomposition of the sums of squared deviations.
Of the virtues of ANOVA are the intuitive layout, technical simplicity, and computational
frugality. However, this comes at the cost of design rigidity and simplistic assumptions about
the variance-covariance structures. ANOVA offers limited flexibility in partitioning the
variance components in the hierarchical structure of multi-levels, and corrections for the
violation of assumptions such as compound symmetry,1 and homogeneity. With both
categorical and quantitative variables involved, the traditional ANCOVA framework becomes
further cumbersome in handling the variance sources. These complications, plus software
design flaws or users’ poor understanding, add to the difficulties and misuses of AN(C)OVA
(McLaren et al., 2011) often occurring in brain imaging.

More complex experimental designs become cumbersome or impossible to handle within the
traditional methods. For example, methods in most of the current FMRI software packages
have difficulty handling the following scenarios at the group level: (1) taking within-subject
variability into account when there are effect estimates from multiple runs or sessions; (2)
continuous explanatory variables (covariates) modeling in the presence of a within-subject
(repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the
mixture of the two; (3) subject-specific adjustments in covariate modeling; (4) group analysis
with estimation of hemodynamic response (HDR) function by multiple basis functions; (5)
various cases of missing data in longitudinal studies; and (6) group studies involving family
members or twins.

To motivate the present exposition of the linear mixed effects approach (LME), we present a
real FMRI group study to demonstrate a design complexity that requires the adoption of LME.
Briefly, the experimental design involved two subject-grouping factors, age (two levels: youth
and adults) and diagnosis (two levels: healthy and patients), dividing 82 subjects into four
groups: 14 patient youth, 15 patient adults, 25 healthy youth, and 28 healthy adults. Stimuli
were morphed images containing varying blends of two stimulus features and divided into
eleven levels based on the feature blend. Stimuli were randomly presented during blocks where
subjects were required to focus their attention on one of the three tasks (threat appraisal, explicit
memory, and perceptual discrimination). Detailed scanning and stimulus parameters can be
found in Britton et al. (under review).

The subjects were scanned in a mixed event-related and block-design experiment. Parameters
for whole brain BOLD data on a 3.0 T scanner are: voxel size of 2.5×2.5×2.6 mm3, 36
contiguously interleaved slices, and repetition time (TR) of 2300 ms (TE=25 ms, FOV=240
mm, flip angle=90°). Two runs of data were acquired for each subject, and each run lasted for
11 min 8 s with 290 brain volumes. Each of the two runs included 12 randomly-ordered blocks
where subjects were required to focus their attention on one of the three tasks. The tasks were

1The compound symmetry assumption requires that the variances and covariances of the different levels of a repeated-measures factor
are homogeneous (identical), while the sphericity (or circularity) assumption states that all the variances of the level differences are equal.
Although sphericity is the necessary and sufficient condition for the F-statistics in traditional repeated-measures ANOVAs, compound
symmetry is much easier to verify, and is a special case of the sphericity assumption, thus a sufficient but not necessary condition: If
compound symmetry is satisfied, then sphericity is met. On the other hand, sphericity “almost” means compound symmetry: it is possible,
but rare, for data to violate compound symmetry even when sphericity is valid.
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randomly presented, and each was repeated four times per run. Each block randomly presented
eleven distinct stimuli varying along a linear gradient of similarity, along with two blank trials
to facilitate event-related analyses. The eleven stimuli represented morphed images containing
varying blends of two stimulus features, ranging over 0%, 10%, …, 100%. Each stimulus lasted
for 3000 ms with a 500 ms inter-stimulus interval.

At the group level, six explanatory variables considered are: 1) three subject-grouping
(between-subjects) factors: age (two levels: youth and adults), diagnosis (two levels: healthy
and patients), and scanner (subjects were scanned in two different scanners), 2) one within-
subject (repeated-measures) factor: task with three levels, and 3) two quantitative variables:
morphing levels and number of days between two phases of the experiment. Of special interest
in the study are both linear and quadratic trends for the morphing effects and their interactions
with the following three factors: age, diagnosis, and task. For example, does the FMRI data
support the hypothesis that adolescents and adults with anxiety disorders are incapable of
discriminating threat and safety cues under ambiguous situations? And what brain regions are
deficit in detecting, appraising and differentiating threat? The fixed effects under consideration
can be expressed as age*diagnosis*attention *morphing + age*diagnosis * attention *
morphing2 + scanner + days, where, in following notional convention in R (R Development
Core Team, 2011), operator * for variables a and b in ‘a*b’ is interpreted as ‘a+b+a:b’, and
‘+’ and ‘:’ represent addition and interaction of all the variables including factors appearing in
the term respectively.

The complexity and challenge for the analysis are five-fold: 1) the total number of variables
involved, 2) the mixture of three types of variables: quantitative variables, within- and between-
subjects factors, 3) the unbalanced data structure: unequal number of subjects across groups,
4) appraising and teasing apart the four-way interactions: age*diagnosis*attention*morphing,
and age*diagnosis*attention*morphing2, and 5) modeling the random effects: in addition to
handling the potential correlation among the three tasks, the analyst should realize that each
subject may deviate from the overall intercept, linear and quadratic fitting for the morphing
effects. That is, we need to consider the covariance structures for the three tasks and for the
three coefficients in the second-order polynomials. These intricacies are beyond the capabilities
of traditional tools such as ANOVA, ANCOVA, or a general linear model (GLM, see Appendix
A), but an LME framework can handle such a model.

When variance–covariance assumptions are violated, traditional ANOVA models that are
special cases of LME models, can lead to inflated statistical power, as demonstrated in McLaren
et al. (2011), Glaser and Friston (2007). The LME modeling strategy has recently been applied
to simple cases such as the longitudinal volume changes of a brain region and cortex thickness
(Bernal-Rusiel et al., 2012). The main thrust of our presentation, however, is not merely about
the utility of LME under simple violations of ANOVA assumptions; rather, we introduce the
LME framework as an additional tool to the brain imaging community for those cases where
the traditional approach fails or does not apply at all.

The layout of the paper is as follows. First, we introduce the LME model formulation with
GLM and conventional FMRI group analysis approaches as special cases. Intraclass correlation
(ICC) can be defined in an LME model. Second, six prototypical examples of FMRI group
analysis are outlined to showcase the uniqueness and flexibility of LME modeling strategy.
Third, the implementation of LME modeling strategy in AFNI (Cox, 1996) was applied to real
experimental data to overcome deficiencies with conventional GLM framework; and
simulation data were used to reveal how the LME modeling performs in terms of type I error
controllability and power relative to alternative approaches. Finally, we discuss its comparisons
with other methodologies and the limitations of the LME approach.
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Method
LME model formulation

The LME model decomposes the mi-dimensional response or outcome vector  of the ith
subject as (Pinheiro and Bates, 2000),

(1a)

where  are mi effect estimates from the ith subject, a=(α0,…,αp)T codes
for p+1 fixed effects, di represents q random effects that are assumed to follow N(0, Ψ),
columns of matrices Xi (of size mi×(1+p)) and Zi (of size mi×q) are fixed-effects and random-
effects regressors respectively, and residual term ei is the mi-dimensional within-subject
residual vector that follows N(0, Σi). All the fixed effects have been incorporated in Xia, thus
the random effects di have a mean of 0, and the columns in Zi are usually a subset of columns
in Xi (i.e., q≤p+1). The two random effect components, di and ei, are assumed independent
across subjects and independent of each other for the same subject. In practice the cross-
subjects variance–covariance matrix Ψ (of size q×q) can be patterned or restricted in some
special form such as diagonal matrix (with q parameters), compound symmetry (with q+1
parameters), or general positive-definite symmetry (with q(q+1)/2 parameters). Similarly, for
the structure of the within-subject variance-covariance matrix Σi (of size mi×mi) that shows
the correlations among the within-subject residuals from the ith subject. The typical patterned
structures seen in the literature for Σi are diagonal matrix (σ2Imi, one parameter) associated
with spherical distribution, autoregressive (AR) model (with two parameters) or autoregressive
moving average (ARMA) structure, compound symmetry (with two parameters), or a general
symmetric, positive semi-definite matrix (with mi(mi+1)/2 parameters). The response vector

 in FMRI usually codes for either task/condition effects relative to the baseline or linear
combinations of effects among two or more tasks/conditions.

It is noteworthy that our notation for the response or outcome variable,  (or its vector form

), instead of the conventional letter y (or y), reflects the following two characteristics of FMRI
group analysis: 1) It is the regression coefficients (or their linear combinations) from individual
subject analysis, often referred to as β values, that are taken to the group level in the

conventional two-stage FMRI analysis; 2) each regression coefficient  is an effect estimate
(thus the hat notation ̂ ) for BOLD response strength and is accompanied with certain reliability
information.

With the subject index i hidden, the model (1a) can be further reformulated through stacking,

(1b)

where  (of size Σmi×1), X (of size Σmi×(1+p)), d and e are the sequential stacking of , Xi,
di and ei respectively across all n subjects, and sparse matrix Z is a block-diagonal matrix with
blocks of Z1, Z2,…, Zn on the diagonal. That is,
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where vec and ⊕ are operators for column stacking and direct sum. It is typically assumed that

d~N(0, ZGZT), and e~N(0, R), thus , where G is a block-diagonal matrix
with blocks of n repetitive Ψ matrices on the diagonal representing the variance-covariance
structure at the group level, and R is a block-diagonal matrix with blocks of Σ1, Σ2, …, Σn on
the diagonal representing the variance–covariance structure of the residuals. That is, G=diag
(Ψ, Ψ, …, Ψ)=In⊕Ψ, and R=diag(Σ1, Σ2, …, Σn), where⊕is the Kronecker product2

operator. In a balanced situation where all subjects have the same amount of data (e.g.,
ANOVA), m1=m2=… mn=m, Σ1=Σ2=…=Σn=Σ, and R=diag(Σ, Σ, …, Σ)=In⊕Σ. In the model
formulation (1b), the random effects Zd are sometimes called “G-side” effects with “G” for
grouping terms in general or group level in the context of FMRI data analysis, while e is termed
as “R-side” effects with “R” for residuals.

There are several ways to characterize and differentiate the fixed- and random-effects (Gelman,
2005). A fixed effect measures the outcome at population level that is characterized by a
coefficient associated to a factor level, the contrast of two factor levels, or a covariate. In
contrast, a random effect indicates the deviation of each subject from the population average.

To account for the observed phenomena , we may poetically say that the fixed effects Xa can
be viewed as capturing the immutable and universal constants of a hypothetical population,
the random effects Zd show the durable characteristics of individual subjects, and residuals e
are but evanescent aberrations of the moment (Crowder and Hand, 1990). The outstanding
difference between the LME model (1) and the traditional GLM (Appendix A) is that, in
addition to a fixed-effects design matrix, a random-effects matrix Z is present in the LME
model (1b) in which each indicator variable represents subject allocation to the levels of a
random-effects component and allows one to model and then estimate the correlation structure,
for example, among the multiple levels of a within-subject factor. Such explicit expression of
random effects allows for multilevel and hierarchical experimental designs or data structure.
Unlike GLM, LME is a nonlinear system due to the presence of multiple variance parameters,
and is handled specially from both theoretical and numerical perspectives. The shrinkage
phenomenon (shrinking toward zero for the random-effects estimates compared with each
individual subject’s fit) in the LME system reflects a compromise between the random and
fixed effects, pulling the individual fits toward the population averages (Pinheiro and Bates,
2000). Moreover, the shrinkage toward the fixed effects in the pooling process of solving LME
is an indication of robustness against outlying behavior of individual subjects.

The unique feature of LME lies in its flexibility of modeling the two variance-covariance
structures: Ψ and Σi. More specifically, when we apply the LME model (1) to group analysis

of FMRI data, the vector  contains mi effect estimates of interest or connectivity measures
from the ith subject. The columns of the fixed-effects regressor matrix Xi code for categorical
(e.g., positive, neutral and negative conditions in an emotion experiment, or three genotype
groups – two homozygotes and one heterozygote – of subjects) and/or continuous explanatory
variables (covariates). The residual term ei measures the within-subject variability across the
p+1 fixed effects, which is most often considered to have a spherical Gaussian distribution.
Similarly, the columns of the random-effects matrix Zi model the amount of deviations each
subject is relative to the corresponding group effects (e.g., positive, neutral and negative
condition) represented in the columns of fixed effect matrix Xi.

Conventional approaches as special cases of LME
The linear mixed-effects meta (or multilevel) analysis (MEMA) model (Appendix A) can be
treated as a special scenario of the general LME model (Demidenko, 2004; Viechtbauer,

2Also termed as tensor or direct product in literature.
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2007) in the sense that the within-subject variance estimate, , is available and mi=1. In other
words, when one incorporates the within-subject variability of each effect estimate into the
group model, the analysis is statistically more robust (Worsley et al., 2002; Woolrich et al.,
2004; Chen et al., 2012), and can be formulated under the LME scheme (1).

The traditional FMRI group analysis methods such as ANOVA, ANCOVA, multiple
regression, paired, one- and two-sample Student t-tests can also be subsumed as special cases
of the LME platform. For example, the LME model (1) reduces to a simple linear model with
a one-sample (or paired) Student t-test with mi=1, since each subject contributes only one effect
(or contrast in the case of paired t-test) estimate, resulting in p=0, Xi=Zi=1, di=0, ei~N(0,
σ2), or G=σ2In. The same is true for a two-sample Student t-test, except for the fixed-effects

matrix Xi =(1, 0), (0, 1) or (1, 1) depending on the coding strategy and 

assuming heterogeneous variances  and  between the two groups with n1 and n2 subjects
respectively. In a balanced design with no missing cell or data, the traditional ANOVA assumes
that the variance-covariance matrix Σ of the residuals ei is of a special form such as compound
symmetry (homogeneous variance and covariance across all levels of a factor), sphericity/
circularity (homogeneous correlation between any two levels of a factor) and/or a stratification
structure such as homo- or hetero-scedasticity in the within-subject residuals ei involving
multiple groups of subjects (Pinheiro and Bates, 2000). For example, the conventional two-
way within-subject ANOVA can be reformulated under both GLM and LME (Appendix B).
When covariates are considered, the conventional ANCOVA is quite easy to handle with the
LME scheme, but difficult to implement under a regression framework such as GLM,
especially when a within-subject variable is involved and requires the specifications of both
within- and cross-subject variability.

Overall, the LME framework offers multiple advantages over the conventional AN(C)OVA
scheme for its ability to handle: 1) mixture of quantitative and qualitative variables, 2) mixture
of within- and between-subject variables, 3) unbalanced designs, such as unequal number of
subjects or missing data, 4) no bound on the number of explanatory variables provided that
enough sample size exists (e.g., at least five observations per variable), 5) multilevel (or
hierarchical) variance structure, and 6) certain variance-covariance structures that violate the
conventional AN(C)OVA assumptions. When economical and parsimonious assumptions such
as compound symmetry or sphericity are violated, corrections such as methods proposed by
Kenward and Roger (1997) inflate the estimated variances and then adjust the degrees of
freedom through Satterthwaite (1946) correction. Instead of approximation, the flexibility in
specifying the variance-covariance structures Ψ and Σi, or G and R in the LME model (1),
allows one to assume alternatives such as AR and ARMA models, or a more relaxed structure
such as a constant, symmetric, positive semi-definite variance-covariance matrix (the so-called
“unstructured” variance-covariance matrix in the SAS terminology3) if enough data are
available. For example, the residual variance–covariance matrix Σ in a traditional one-way
repeated-measures (or within-subject) ANOVA is assumed to have a parsimonious structure
of compound symmetry with two parameters that need to estimate (assuming k levels in the
factor),

3To some extent an “unstructured” variance-covariance structure is a misnomer because such a matrix has to meet the basic characteristics
of symmetry and positive semi-definiteness.
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In contrast, when multiple samples for each factor level are available from each subject, the
LME framework (1) of the corresponding model allows one to specify the residual variance–
covariance structure Σ with various options such as the simplest (diagonal matrix with only
one parameter), compound symmetry with two parameters, all the way up to the most general
structure (general positive-definite symmetry with the most possible, k(k+1)/2, parameters),

It is noteworthy that the term Zd and e in the LME framework (1b) embody what are usually
referred to as within- and between-subjects error terms under GLM and AN(C)OVA. The error
partition correspondence can be seen from the LME formulation of the traditional two-way
within-subject ANOVA (Appendix B). It is also this reformulation that lends it versatility in
modeling both data stratifications and variance–covariance structures, and enables its
applications to broader situations. With this subsumption of traditional approaches underneath
the LME framework, differentiation is no longer needed in terms of the quantitative nature
(categorical or continuous) of a variable and whether an explanatory variable is of interest to
the researcher or not. This unified model provides us a convenient framework under which
most analyses can be performed in one numerical scheme. We will show in the next section
six prototypical examples where LME framework handles cases that are either cumbersome
or even impossible to handle under the GLM context.

ICC formulated under LME
To investigate the test–retest reliability of FMRI data, the investigator may use the ICC to
quantitatively measure the extent to which the individual levels of a grouping variable (e.g.,
session, scanner, site, subject) are related to each other. In other words, the ICC value reveals
the consistency or reproducibility of the signal for each factor under consideration. The
traditional approach to computing ICC relies on the partitioning of the total variance under the
ANOVA framework (e.g., Shrout and Fleiss, 1979). For example, the popular usage of ICC
(2,1) adopts a two-way random-effects single-measure ANOVA to assess the resemblance
across the levels within each of the two factors (Shrout and Fleiss, 1979).

However, there are three aspects with the traditional ANOVA method in ICC assessment that
could be improved: 1) explanatory variables (fixed-effects factors or covariates) are usually
difficult to incorporate; 2) As in typical ANOVA, the decomposition of the total variance may
lead to negative ICC values that are difficult to interpret; 3) ICC computation with a different
number of variables requires a separate ANOVA model. These flaws can be avoided under the
LME scheme. Suppose that one investigates three sources of variability with data acquired
from different conditions, sites and subjects. In addition, age is suspected to have impact on
the response. A model can be formulated with crossed random effects as follows,
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where α0 is an unobserved overall mean, xk is the covariate value for the kth subject, bi, cj, and
dk are the unobserved random effects for the ith condition, jth site, and kth subject respectively,
and εijk is an unobserved residual term. The ICC values for the three sources can be defined
as

Implementation of LME modeling in AFNI
The LME framework has been implemented in a group analysis program 3dLME in AFNI in
the open source statistical language R (R Core Team, 2012), taking advantage of the linear and
nonlinear mixed-effects modeling packages nlme (Pinheiro et al., 2011) and lme4 (Bates et al.,
2011), and parallel computing on multi-core systems with snow package (Tierney et al.,
2011). Packages nlme and lme4 overlap in terms of LME modeling, but nlme exclusively has
the capability to model spatial and temporal correlation structures, while lme4 can model
crossed random effects and is computationally more efficient. Runtime varies from a few
minutes up to many hours, depending on the data size, model complexity, and number of
processors.

The fixed effects for a discrete variable (factor) in 3dLME are by default coded through dummy
coding (or treatment contrast) with the first level as reference or base, although all coding
strategies (Appendix C) are also available. In solving the LME system (1), the variance
components are estimated through the optimization of the profiled log-restricted-likelihood of
the model with a mixture of expectation-maximization (EM) and Newton algorithms. The EM
algorithm starts first with 25 iterations by default, refining the initial estimates before switching
to the more general Newton iterations (Pinheiro and Bates, 2000).

The conditional F-statistic for each explanatory variable is computed either sequentially (in
the order the fixed effects are arranged in the model) or marginally (in the order each fixed
effect enters the model as the last one).4 The interaction F-statistics are tested similarly. The
numerators and denominators of the F-statistics are constructed similarly as in conventional
ANOVA or GLM based on the random effect strata (or error partitions). In other words, the
same F-statistics would be obtained in LME for the conventional ANOVA models. The degrees
of freedom for the numerator and denominator of each F-statistic are also similarly determined
(Pinheiro and Bates, 2000).

4A thorny issue is the different types of sums of squares when computing the terms involved in F-statistics. Among the three popular
types, the sequential type (type I in SAS terminology) renders sums of squares for all the effects adding up to the total sums of squares,
a complete decomposition of the predicted sums of squares for the whole model; however, the terms depend on or are sensitive to the
sequence in which the effects are specified in the model. The hierarchical or partially sequential type (type II in SAS) is generally
considered inappropriate for factorial designs, and so is the marginal or orthogonal type (type III in SAS) for designs with missing cells.
When the data structure is rigid and balanced, they all render the same terms under LME regardless of the types for the sum of squares,
just as the case with the conventional ANOVAs. However, when data balance is broken, the result may be different across different types,
leading to inconsistent significance testing, inconclusive controversies, and intensive debates (Venables, 2000). 3dLME allows for both
sequential and marginal types.
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The fixed effect estimate and its significance for a continuous variable are straightforward
because they are the direct output of modeling from the nlme package. Post hoc pairwise
contrasts between two levels of a categorical variable can be obtained through direct estimation
through dummy coding with a reference level, but are practically tested through package
contrast (Kuhn, 2011) with conditional t-statistics. Each t-statistic tests the marginal
significance of a fixed effect in the sense that all other fixed effects are included in the model
already (Pinheiro and Bates, 2000).

With the capability to model crossed random effects through R package lme4 (Bates et al.,
2011), we have implemented an AFNI program 3dICC that can calculate ICC values with
unlimited number of variables, under the same platform of LME modeling through REML
algorithms, and that renders nonnegative ICC values.

Advantageous applications of the LME framework
Prototypical example 1: group analysis with effects from multiple runs or sessions at
individual subject level

FMRI data are usually acquired from each subject in multiple runs or sessions, and can be
analyzed through concatenation in time series regression analysis (Chen et al., 2012), resulting
in one effect estimate per condition. Alternatively, individual subject analysis can be performed
with one effect estimate per condition for each run or session separately. With multiple effect
estimates per condition, the common practice in FMRI data analysis is that the average effect
estimate across those estimates is computed at the subject level and then fed to the group
analysis. The average effect estimate per subject is typically obtained through equal weighting
or fixed-effects analysis with weighting based on within-run/session variability (Chen et al.,
2012; Lazar et al., 2002). The equal weighting approach makes the assumption that the cross-
run/session variability is the same among all subjects, which may or may not be true, especially
when the number of runs or sessions varies across subjects. A better approach is to incorporate
the cross-run variability in a model under the LME scheme. In doing so, we decompose the

effect estimate  from the ith subject during the jth run as

(2)

where α0 represents the average effect across n subjects, δi measures the deviation of the ith
subject from the group fit α0, εij is the residual (or cross-run random effect within each subject)

that indicates the deviation of effect estimate  from the average effect of ith subject α0+δi,
and mi is the number of runs/sessions in which the ith subject was scanned. It is reasonable to
assume that the two random variables δi and εij are independent from each other. Equivalently,
the model can be written in the standard LME formulation (1a) with

With the assumptions of Ψ=τ2, and Σi = σ2Imi in the model (1a), or G=τ2In and

 in the model (1b), the LME framework has the flexibility of handling
varying sample size mi across subjects and the capability of weighting among subjects in
estimating the within-subject variability σ2 (cf. σ2 is assumed the same across subjects in the
conventional group analysis).
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Even if the number of runs or sessions remains the same across subjects, it would be
advantageous to bring the effect estimates from individual runs or sessions to group level,
especially when the data structure is complex. For example, with effect estimates averaged
across runs or sessions, a conventional one-way within-subject ANOVA can be represented
under the GLM notation,

(3a)

where  is the effect estimate at the jth level of factor A for the ith subject, μ is the grand
mean free of any factor effect, αj is the jth level effect of factor A, bi is the deviation of the
ith subject, and εij represents the residual associated with the ith subject at the jth level of factor
A. Due to the fact that no data duplication exists, the conventional ANOVA with sphericity
assumption, although economical, is the only choice at voxel level.

However, if one takes the effect estimates from individual runs or sessions to group analysis,
the model (3a) changes to

(3b)

where k is the run or session index, and cij, absent in the model (3a), models the deviation of
the ith subject’s effect at the jth level of factor A. As shown in the model formulation (3b), the
across-run variability is accounted for under LME. Furthermore, instead of assuming
compound symmetry, one could further extend the model (3b), and account for unequal
correlations (and unequal variances) across the factor levels with a general positive definite
symmetric variance–covariance structure. However, such a covariance structure with the
model (3b) cannot be modeled under the conventional ANOVA or GLM framework, but
becomes straightforward as an LME instance. For simplicity, the model (3b) is presented with
a balanced data structure; however, LME modeling allows for unequal number of runs as well
as missing data (e.g., some subjects may not have effect estimates for all levels, cf. prototypical
example 5).

Prototypical example 2: subject-specific random effect in covariate modeling
Trend detection across conditions, runs, or sessions is of special interest because of the implied
effect of modulation, habituation, or saturation. Such trend analysis can be performed at
individual level through, for example, effect comparisons, weighted test across multiple effects,
or amplitude (or parametric) modulation. Furthermore, it would be usually desirable to
generalize the trend effect through group analysis. A prototypical example is an FMRI
experiment of n subjects with m stimuli along a linear gradient of similarity. Suppose that we

want to test whether the BOLD response estimate  of relevant regions in the brain of the ith
subject can be fitted, for example, in a quadratic fashion with respect to the jth image
degradation xj=(j–1)×10% (j=1, …, m) with the following model,

where εij is the residual (within-subject error), and the random effects of the intercept (δ0i),
slope (δ1i) and curvature (δ2i) in the model allow each subject to have a separate second-order
polynomial fitting from the group average intercept (α0), linearity (α1) and curvature (α2). In
other words, with these three random components the effect estimate from individual level,
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, is fitted with a subject-specific intercept (α0+δ0i), slope (α1+δ1i) and curvature (α2+δ2i).
The model can be repackaged as the LME model (1) with

In the model format (1b), G=In ⊕Ψ3×3, and R=σInm×nm. By default the intercept α0 is the
average group effect at no degradation, but the group average effect at any other specific
degradation can be inferred through properly centering the degradation variable xj. The
parameters to be estimated are fixed effects a, cross-subject variability Ψ, and within-subject
variability σ2. In this case the three random effect components (intercept δ0i, slope δ1i and
curvature δ2i) are more reasonably modeled with Ψ being a symmetric, positive semi-definite
variance–covariance matrix (with six unknown parameters) than some special structures such
as compound symmetry (same variance and covariance across the conditions). In other words,
it is difficult to à priori justify that the variance–covariance matrix for the random effects of
intercept, slope, and curvature has some preset structure. If the analysis is performed at one
specific voxel or a region of interest, one could assess and compare models with various
variance–covariance structures through likelihood ratio test and the comparisons of Akaike
information criterion (AIC) or Bayesian information criterion (BIC) (Pinheiro and Bates,
2000). However, when running simultaneous voxel-wise analysis for all the voxels in the brain,
such model tuning process is impractical from two reasons: a) the computation cost is generally
great; b) the optimal model may end up different across voxels or regions in the brain.

Alternatively, the linearity (α1) and curvature (α2) for each subject could be obtained at
individual level, and then the group effects are estimated separately with, for example, Student
t-test. However, such an approach is suboptimal and not as robust to individual outlying data
as the LME method. This is a feature of the shrinkage phenomenon of LME: the estimated
slope (α1+δ1i) and curvature (α2+δ2i) for each subject with LME tend to be pulled toward the
group effects (α1 and α2), compared with the estimates obtained from individual subject
analysis.

Prototypical example 3: covariate modeling in the presence of a within-subject factor
Suppose that a study recruits subjects for scanning under m different conditions (e.g., m=3
emotions: positive, neutral, and negative), and the model would be one-way repeated-measures
ANOVA at group level. We further assume that amplitude (or parametric) modulation is
performed with reaction time (RT) collected at trial level in individual subject analysis to
account for cross-trial variability. However, the average RT may vary across the m conditions
and across all subjects as well. The incorporation of the average RT at the condition level of
each subject in group analysis may further account for both within- and cross-subject
variability, improving the statistical power. Two aspects of effect testing could be of typical
research interest: a) whether the correlation between RT and BOLD response differs across
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the conditions; b) whether any difference exists among the condition after accounting for RT
effect and for both within- and across-subject variability in RT. Although beyond the scope of
the traditional ANCOVA framework that handles only between-subjects, not within-subject,
factors, it is relatively easy to analyze the situation under the LME scheme. In this case we

partition the effect estimate of the jth condition effect from ith subject, , as

where xij is the ith subject’s average RT under the jth condition, α0j represents the group effect
of the jth condition corresponding to reaction time x=0, α1j is the marginal effect of RT under
the jth condition at group level, δ1iXij measures the deviation of the linear fit of ith subject
from the group fit α1jXij, and εij is the residual term (within-subject error) that reflects the

deviation of  from the linear fit of ith subject. The above system allows a separate linear fit
per condition for the RT data, and the ith subject’s fit varies from the linearity with a random
slope δ1i. The model can be reformatted as under the LME formulation (1a) with

In the model (1b) formulation, G=In⊕Ψ2×2, and R=σ2Imn. Without loss of generality the model
can be expanded from linear to a higher order polynomial fit. On the other hand, the model can
be simplified if no interaction exists between the conditions and RT (dropping index j in α1j)
or when the covariate is measured at the subject level (e.g., age, IQ, etc.) (dropping index j in
α1j and Xij),

Prototypical example 4: hemodynamic response modeled with multiple basis functions
The hemodynamic response (HDR) is commonly presumed to have a relatively fixed shape in
modeling (Cohen, 1997; Henson et al., 2002), which works reasonably well especially with
block designs, thanks to the physiological effect of temporal blurring modeled through
convolution between stimulus timing and the assumed HDR function. However, it is not always
realistic to believe that the HDR shape does not vary significantly across subjects, brain regions,
tasks/conditions, and trials (Aguirre et al., 1998; Handwerker et al., 2004). One way to capture
such shape variability is through the use of multiple basis functions (e.g., deconvolution or
finite impulse response (FIR) modeling) in the time series regression analysis (Henson and
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Friston, 2007; Saad et al., 2006), which results in several consecutive effect estimates at
individual subject level, showing the progression of the HDR corresponding to each condition/
task.

At group level the shape differences are sometimes ignored by relying on a summarized effect
size such as the area under the curve (AUC) (Beauchamp et al., 2003) or the coefficient of the
principal basis function (e.g., Gamma variate) with other coefficients (e.g., time and dispersion
derivatives) being à priori assumed to contain little information. With the AUC approach, the
consecutive effects are summed over time to produce one value per condition, and then one
adopts the same group analysis strategy as the HDR modeling with a fixed shape. However,
the AUC approach can mask important information about HDR shape (e.g., HDR might have
delayed peak, slower upstroke, different signs or durations), nullifying the original goal of
modeling the HDR shape. Indeed, there have been instances where HDR shape differences are
the target of interest at group level (Alvarez et al., 2011; Geier et al., 2007; Weissman et al.,
2006).

In taking the m individual values of the reassembled HDR function, , to group
analysis, we set a zero intercept in the LME model (1a) with Xi=Im, Zi=1, di~N(0, τ2), and
ei~N(0, Σ); that is,

In addition, we use cell mean coding (Appendix C) for the convenience of interpretation,

The coefficient αj in the model conveniently shows the HDR effect for the jth time grid. Under
the model formulation (1b), G=τ2 In and R=diag(Σ, Σ, …, Σ)=In⊕Σ. Unlike the previous
prototypes, it makes more sense to assume a serially correlated variance-covariance structure
in the within-subject residuals ei such as AR(1) or ARMA(1,1) (with two and three parameters
respectively). One can make inference about the null hypothesis,

(4a)

When H0 is rejected with an F-test, the HDR is significant among at least one of the m locations.
This null hypothesis is similar to the one for omnibus F-test in a regression model or global
null hypothesis involved in appropriate conjunction analysis (Nichols et al., 2005). It is not
rare to see in the literature that the significance testing at group level with multiple basis
functions is typically performed with the following null hypothesis in the context of one- or
higher-way repeated-measures (or within-subject) ANOVA,

(4b)

However, the F-test associated with (4b) is inappropriate in the context, leading to questionable
inferences: if (4b) is rejected, it corresponds to the main effect of the m levels, and indicates
that the magnitude of HDR is significantly different across those m locations. Instead (4a)
should be considered in this scenario (Alvarez et al., 2011). In addition, when more than one
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group is involved, group comparisons can be analyzed; analysis with a within-subject factor
and covariate modeling are also possible.

To reiterate, the subtle difference between the two null hypotheses (4a) and (4b) is the
following: The rejection of (4a) occurs when any of the coefficients is significantly different
from 0, which would suggest a consistent response at least at one time point over the duration
modeled. This type of test is what is typically sought. The rejection of (4b) indicates that at
least one coefficient differed from the others, which indicates that the response was not constant
at some point over the duration modeled. The subtle differences will be highlighted in the
section Simulations comparing LME with traditional approaches in Applications and results.

Prototypical example 5: Missing data in longitudinal study
There are two different types of missing data in FMRI group analysis. The first one involves
missing effect estimates at voxel level from individual subjects that often occur in FMRI data
along the edge of the brain, due to factors such as data acquisition limitations, susceptibility
artifacts, and imperfect alignment in spatial normalization to standard space. The issue is even
more prevalent in electrocorticographical (ECoG) data in neurosurgical patients where not all
patients get the same cortical coverage and the subdural electrodes (SDEs) are implanted on
cortex only in the immediate vicinity (Conner et al., 2011). This type of missing data issue can
be handled at voxel level (Chen et al., 2012) or through multiple imputation (Vaden et al.,
2012).

The second type of missing data is at the whole brain level. In a typical longitudinal study each
subject is observed repeatedly over long periods of time, or before and after some treatment
(exercise, drug intake, surgery, etc.). Participant dropout is a prevalent phenomenon in such
studies, which complicates the statistical analysis due to the broken balance of the data
structure. Even in an experiment involving multiple tasks, some subjects may fail to perform
one of the tasks, and such subjects are usually removed from the conventional group analysis
with ANOVA or paired t-test due to the loss of balance in data structure.

The essential issue about the second type of missing data in LME modeling is whether they
can be considered as missing at random (MAR) or missing completely at random (MCAR). If
the data is systemically missing (e.g., all female subjects did not perform task #3) including
covariate-dependent dropout (CDD) and non-ignorable missingness (NI), subsequent analysis
with LME would lead to biased inferences. Handling such a scenario requires alternate daunting
computations and various imputation methods (e.g., Allison, 2001; Little and Rubin, 2002;
Schafer, 1997) that are not currently applied in the neuroimaging community. However when
the situation is truly MCAR/MAR, LME overcomes the difficulty of the conventional ANOVA
or GLM where missing data breaks the rigid variance-covariance structure of the model. In
ANOVA or GLM, the effect estimates and their standard errors are based on observed and
expected mean sum of squares (or partitioned error strata), and the integrity in data balance is
essential in partitioning the error terms. With enough subjects and observation per variable
(e.g., 10-30), MCAR/MAR would not lead to information loss (Keselman et al., 2001; Little
and Rubin, 2002). Parameters in the LME model are estimated through optimizing the
(restricted) maximum likelihood function where a balanced structure is not required. In other
words, the LME models are fitted using REML and produce results that are optimal with
relatively accurate and robust results in significance testing (Pinheiro and Bates, 2000).
Nevertheless, a simple and robust approach to a MCAR/MAR situation is to abandon those
subjects with the missing data, or to adopt a simple method such as a Student t-test, when
enough number of subjects remains.

For example, suppose that 20 children participated in an experiment that included two fear
conditions each of which was arranged in two separate sessions. For various reasons (e.g., data
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quality, head motion issues, failure to show up, etc.) 13 subjects had usable data for both
conditions, two and five subjects had data only for conditions 1 and 2 respectively. With the
traditional group analysis approach of paired t-test to comparing the two conditions, only the
data from those 13 subjects can be used, while the seven subjects that contain only one of the
two conditions could also be included under the LME modeling framework.

Prototypical example 6: Data analysis in family or twin studies
Due to genetic information flow and inheritance, data collected among family members can
be considerably correlated. FMRI data analyses of family members, including siblings and
especially monozygotic (MZ) or dizygotic (DZ) twins, are increasingly common (Stoffers et
al., 2012). To properly account for the heritability among the subjects, special handling has to
be employed in the model. Here we present two cases to demonstrate the LME flexibility in
analyzing data that involve family members. In the first, one focuses on the fixed effects while
in the other random effects are of research interest.

In the first case let us assume that the effect estimate from the jth member in the ith family,

, can be partitioned into

where α0 is the overall mean across all families, xij is a fixed-effects variable (e.g., behavioral
measure, control versus patients, or genotype coding), α1 indicates the covariate effect, δ0i
and δ1ixij embody the deviation of the linear fit of the ith family from the overall fit, and εij
codes for the within-subject residual term. Although one explanatory variable (besides the
intercept) is considered in the model above, the number of fixed-effects can be increased
without loss of generality. Compared to the previous prototypes, one unique feature about this
model is that the data structure hinges around families instead of individual subjects.

This model can be reformatted as under the LME formulation (1a) in a similar way to Prototype
3 (covariate modeling in the presence of a within-subject factor),

In the model (1b) formulation, G=In ⊗ Ψ2×2, and R=diag(∑, ∑, …,∑)=In⊗∑. As the
covariances (off-diagonal terms of ∑) in phenotypic effects across the m family members are
usually partitioned into additive genetic, dominance genetic, common environmental, and
unique environmental effects (Neale et al., 1989), the correlation (or kinship) is different
between parents, between a parent and a son/daughter, between siblings, and between DZ/MZ
twins. In this example, the correlations for additive genetic effect are 1, 0.5 and 0.5 between
MZ twins, between DZ twins, and between parent and son/daughter respectively, while the
correlations for dominance genetic effect is 1, 0.25, and 0 respectively (Falconer and MacKay,
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1996). Similar to the concept of kinship matrix in the mixed-effects modeling of association
mapping (Yu et al., 2006), a generic symmetric, positive semi-definite variance-covariance
matrix for both Ψ2×2 and ∑m×m is likely more reasonable than the presumption of compound
symmetry for whole-brain analysis.

When missing data occur or when families have unequal number of members, the within-family
variance–covariance is structured as R=diag(∑1, ∑2, …, ∑n), and the LME framework should
work well if the situation can be considered as MAR. If only DZ twins are involved in the

study, the variance-covariance structure ∑ can be simplified to , and, with the assumption

, the correlation between a DZ twin pair in the ith family is thus modeled

as . The approach has effectively been applied to a twins study with
resting-state network analysis (Stoffers et al., 2012).

In the second scenario the identification of variance sources is of research interest. Suppose
that m effect estimates (BOLD response, DTI data, or structural images) are collected from
twin pairs who are either MZ or DZ. The kth measure (k=1, 2, …, m) from the jth twin (j=1,
2) of the ith pair (i=1, 2, …, n) can be fitted with an LME model (Min et al., 2012),

where the random effects pij, zi(j), eij, and εijj are pair (shared by a twin pair, regardless of
zygosity), zygosity (common to an MZ pair but not by a DZ pair), individual environment, and
residual effects, respectively. The variance partition is different from but related to the popular
ACE or ADE model (Nicholson et al., 2011).

Under the above LME model, the familiality (the familial proportion of biological variance)

can be obtained as  where  indicates the combined phenotypic variance of
genetic and common environmental effects between a DZ pair regardless of zygosity. While
DZ pairs are common to half of the additive variance and their common environmental
variance, the MZ pairs have an additional component, the other half of the additive variance,

which is modeled by . Therefore the heritability can be estimated as  (Min et
al., 2012). It is noteworthy that both familiality and heritability are essentially two ICC
measures as discussed in section ICC formulated under LME. A recent development (Wang et
al., 2011) recommended a likelihood ratio test with a mixture of χ2-distribution for the
significance of familiality and heritability.

Applications and results
LME with real data

The following two candidate models were initially adopted to fit the data presented in
Introduction,
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(5a)

(5b)

The “fixed effects” in the model included age*diagnosis* attention*morphing
+age*diagnosis*attention * morphing2+scanner+days, where, following notional convention
in R, operator * for variables a and b in ‘a*b’ is interpreted as ‘a+b+a:b’, and ‘+’ and ‘:’ are
addition and interaction of all the variables and factors appearing in the term. The indices i, j,
k, l and m code for subject, age, diagnosis, attention and morphing respectively (i=1, 2, …, 82;
j=1, 2; k=1, 2; l=1, 2, 3; and m=1, 2, …, 11). The notation i(jk) implies each subject is nested
within the two subject-grouping factors, age (j) and diagnosis (k). The difference between the
two models (5a) and (5b) is that each subject has a unique intercept (or baseline) in the former
while the latter allows variability for intercept, linear and quadratic fitting across subjects. To
improve interpretability and reduce the amount of collinearity in the model, both quantitative
variables (morphing xm and number of days) were centered on their respective mean, and the
second order orthogonal Legendre polynomials were used to fit for the morphing effect.

The random effects in the above two models (5a) and (5b) can be formulated respectively under
the LME scheme (1a) with

(6a)

(6b)

where i=1, 2, …, 82. Furthermore, δ0i,1, δ0i,2, and δ0i,3 are random effects for the three

attention levels with a variance–covariance structure , and δ0i, δ1i, and δ2i code for
random intercept, slope and curvature of the ith subject with a variance–covariance structure

 or .

Although not practical for whole brain analysis due to high computation cost and heterogeneity
across voxels, model building can be performed at a specific voxel or region. To demonstrate
the building process and the LME flexibility, we fitted the two models (5a) and (5b) with the
data from a voxel at the subgenual anterior cingulate (−9, 26, −9), with each model further split
into different variance–covariance structures for random effects (G) and residuals (R) (Table
1). Models with different random effects can be compared through either the lesser of the
information criteria or likelihood ratio test with chi-square distribution (with the degrees of
freedom being the difference in the number of parameters used in the models) (Pinheiro and
Bates, 2000). The results indicate that the model (5a) with random-effect specification (6a)
struck a better balance with the experiment data at this voxel; specifically the variance–
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covariance matrix  for the three attentions was assumed to have a symmetric, positive
definite structure with G=I82⊗Ψ, while ∑=σ2 I33 (fitting A in Table 1).

At the whole brain level the model (5a) with random-effect specification (6a) was fitted with

the experiment data. The variance–covariance matrix  was assumed to have a symmetric,
positive definite structure with G=I82⊗Ψ, while ∑=σ2I33 (fitting A in Table 1). The analysis,
unfeasible under the GLM framework, was performed with 3dLME with 2706 effect estimates
(regression coefficients) from individual subject analysis (82 subjects×3 attentions×11 morphs/
subject).

Two regions, subgenual anterior cingulate and ventromedial prefrontal cortex were identified
to have four-way interaction age×diagnosis×attention×morphing2 (Fig. 1 and Table 2). The
localization of these two regions was further used to guide ROI analysis and show consistency
with behavioral data results.

Simulations comparing LME with traditional approaches
Simulated data were generated using prototypical example 4 (serially correlated HDR results)
so that the LME approach could be directly compared to the conventional ANOVA method.
The simulations were designed to assess power and controllability for type I errors from the
following three perspectives: a) the amount of serial correlation in the residuals of HDR
estimates, b) the violation of assumption about the residuals (two levels: AR(1) and sphericity),
and c) null hypothesis (two levels: proper and improper hypothesis (4a) and (4b)). The two
factors in b) and c) form a 2×2 factorial design, leading to four analysis approaches with the
aim to examine the performance of the conventional approaches when their underlying
assumptions are violated or when an improper null hypothesis is tested:

1. LME+AR(1)+N0: LME with AR(1) assumption of the residuals testing the hypothesis
(4a),

2. LME+AR(1)+N1: LME with AR(1) assumption of the residuals testing the hypothesis
(4b),

3. LME+AR(0)+N0: LME with white noise assumption testing the hypothesis (4a), and

4. LME+AR(0)+N1: the conventional ANOVA with sphericity assumption testing the
hypothesis (4b).

Here N0 and N1 indicate that the null hypotheses correspond to the LME models without and
with an intercept respectively. The approach of LME+AR(0)+N1 can also be framed under the
GLM formulation.

Three sample sizes (number of subjects) were considered: n=10,15, and 20. The simulated data
were in the units of percent signal change. Nine effect estimates were created with a Gamma
variate function (Cohen, 1997) peaked at an amplitude of 1, simulating an HDR spanning 16
s with TR=2 s. Additional AR(1) noise with variance of 1 was added to the nine effect estimates
of each subject at one of the ten equally-spaced serial correlations: 0.0, 0.1, …, 0.9. With 5,000
datasets generated, type I error rate and power were assessed through counting the datasets
with the perspective F-statistic surpassing the threshold corresponding to the nominal
significance level of 0.05.

The simulation results are summarized with plots in Fig. 2 for n=15 subjects. In general, LME
+AR(1)+N0 achieves the best balanced compromise between type I errors and power than the
other three methods. More specifically, it demonstrates the overall controllability in false
positives across the whole range of serial correlations. When no serial correlation exists in the
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noise, all four methods have reasonable control for false positives; however, the improper
hypothesis (4b) leads to underpowered inferences. When serial correlation exists in the noise,
the AR(1) modeling largely provides proper control for the false positives, and the slightly
liberal type I error rate may be due to the fact that the variance estimates have to be nonnegative
while the sum of squares for some terms in the conventional ANOVA is allowed to become
negative so that individual sums of squares can add up to the total. In contrast, the type I errors
in the two methods with AR not modeled are not properly controlled when the serial correlation
in the residuals goes beyond 0.2. For all four methods, the power mostly deteriorates as the
serial correlation in the residuals increases. When the AR(1) parameter is below 0.6, the
improper hypothesis (4b) largely under-powers the significance testing, while the temporal
correlation, if not modeled, significantly inflates the power. LME+AR(0)+N0 achieves the
highest power (at the cost of poor type I error control), ANOVA is the worst, and the other two
are in between. When serial correlation is present in the noise, methods without AR modeling
inflate the statistical power at the cost of poor type I error control. As the AR(1) parameter
goes above 0.6, methods with serial correlation modeled overtake the other two without AR
modeling in power performance. Nevertheless, LME+AR(1)+N0 outperforms the
conventional ANOVA in power achievement across the whole correlation spectrum. The above
assessments and trends are roughly the same with the simulations of n=10 and 20 subjects.
These simulation results highlight the importance of forming a proper hypothesis, and
demonstrate the impact of assumption violation: poor controllability for type I errors and
inflated power.

Discussion
The conventional statistical analysis that is still popular in general statistical education
emphasizes the dichotomy of categorical and quantitative (or continuous) variables, while the
differentiation of fixed versus random effects is usually minimally discussed. In addition, the
balance of data structure (without missing data) is usually a prerequisite for the traditional
approaches such as paired t-test, ANOVA structure and GLM approach when within-subject
factors are involved.

The LME modeling scheme provides a different perspective in the sense that the boundary
between categorical and quantitative variables is blurred and the full integrity of data structure
is not needed. Instead, the emphasis is placed on the fixed/random effects dichotomy, the
hierarchical structure of random effects, and the model building process in which the modeler
engages the analysis interactively with the data. It is this paradigm shift that engenders the
modeling flexibility that cannot be reached under the conventional framework. When few
regions are to be tested, (i.e. ROI-based analysis), unlike the decomposition of the sums of
squared deviations under the rigid framework of the conventional approach, the LME scheme
offers model selection by fine-tuning the variance–covariance structure at both cross- and
within-unit (subject, family) levels, while counterbalancing between model complexity and fit
through likelihood ratio test (e.g., Table 1).

Modeling flexibility of LME platform
The LME approach provides a platform that describes a relationship between a response
variable (e.g., BOLD response) and some explanatory variables that have been observed along
with (e.g., face vs. house stimuli), or are believed to have impact upon (e.g., males vs. females),
the response variable. Under the LME scheme, the response variable is usually collected from
multiple observational units (e.g., subjects or families), and the fixed effects are considered
coming from the reproducible components of the explanatory variables such as the levels of a
factor or the effect of a quantitative variable. In contrast, random effects represent the deviations
of the samples (e.g., subjects) from the fixed effects.
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All the conventional approaches such as t-tests, linear models, and AN(C)OVA can be
subsumed into the LME framework. While more complex to set up and less computationally
efficient, the LME methodology shines with the following advantages: 1) the flexibility of
allowing both categorical and quantitative variables, 2) modeling the correlation structures of
those random effects, 3) the capability in handling scenarios such complex designs, crossed
random-effects variables, and absence of data balance, as demonstrated in the six prototypical
examples, and 4) the capability to accommodate nonlinear dynamics (e.g., psychophysics,
behavioral measures) using systems such as asymptotic, bi-exponential, logistic, or Michaelis–
Menten relationship.

Importance of model specifications
The importance of model specifications can be demonstrated with prototypical example 1 in

which the effect estimate  of the ith subject during the jth run is modeled with the LME
formulation (2). For comparison, we drop the deviation δi of the ith subject’s effect from the
group mean α0, and replace (2) with a fixed-effects model,

(2a)

The fixed-effect model (2a) can be treated as a special case of the LME model (2) in which
the random effects are constrained by δi=0, i=1, …, n. It may sound surprising and puzzling
to note that the fixed-effect model (2a) renders a smaller standard error for the group mean
α0, leading to a higher t-statistic value than the LME model (2). The pivotal difference is that
each subject is allowed to have a unique average effect α0+δi in the LME model (2). In other
words, the overall effect α0 in the LME model (2) is simply estimated not as one common
within-subject effect as in the fixed-effect model (2a), but the average of the varying (or
random) effects across all subjects. A natural (and maybe seemingly counterintuitive) question
is, why does a better (or more precise) model not lead to a more precise or reliable estimate
for the effect of interest? The answer lies in the underlying assumption of the fixed-effect model

(2a): the mi effect estimates,  (j=1, …, mi) of the ith subject from all the mi runs are mistakenly
assumed to be independent although they are not independent. Such an inappropriate
assumption leads to the underestimation of the reliability (or standard error) of the overall effect
estimate.

A model with broader flexibility gives more room for data variability and correlation
stratifications. As an appropriate model characterizes the uncertainty of effect estimate more
accurately than its alternatives, the flexibility may have to pay at the cost of effect estimate
with a lower, not higher, precision. The moral of the above counterintuitive phenomenon is
that modeling should not be plainly considered as a process that hinges on the statistical power,
but focuses more on an appropriate model with adequate assumptions. Under inappropriate
assumptions, a statistical analysis may inflate the statistical power as previously demonstrated
in McLaren et al. (2011) even under relatively simple scenarios. Some publications in
neuroimaging adopted the model (2a) with effect estimates directly from multiple runs or
sessions, leading to highly inflated significance (McLaren et al., 2011). Although not optimal
as the LME model (2), using the average effect estimates across runs or sessions from each
subject would at least avoid this inflation problem.

Different approaches to modeling fixed and random effects
The selection of explanatory variables in GLM is as much an art as modeling in general. If one
empirically believes that specific variables can mostly account for the data variability, a model
can be à priori applied without any building process. This is largely the case in FMRI individual
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analysis where task-related effects, slow drift, and head motion are typically plugged into the
model even though some effects (e.g., head motion) are not necessarily always present. On the
other hand, when such prior information is lacking or uncertainty exists, the selection of
explanatory variables may be limited by the number of data points or degrees of freedom
available, and the risk of over-fitting may occur. Various techniques can assist the investigator
in the model building process. For example, data examination through visualization or plotting
can and should play a more crucial role in data preprocessing and modeling than what is
practiced in reality. Stepwise methods (forward selection and backward elimination) are
sometimes employed although they may be controversial. These considerations apply to the
covariate selection at group level as well. One could consider infinite covariates in group
analysis, for instance, age, psychometric measures, sex, genotype, education level, brain
volume, cortical thickness, Big Five personality traits, cultural, ethnic, and socioeconomic
attributes, etc. However, the typical number of subjects for group analysis does not allow one
to have the luxury to exhaust the possible modeling strategies.

The same considerations apply to modeling random effects as well. If prior information is
available (e.g., serial correlation in HDR estimates), one may adopt a parsimonious model with
relatively meager parameters. When only one effect estimate per condition or task is available,
the investigator is limited to a rigid covariance structure such as compound symmetry
assumption in a voxel-wise model involving a within-subject factor, as shown in the
conventional ANOVAs. If prior information about correlation structure is lacking, one can
resort to the data and adopt a less constrained model for random effects (cf. the six prototypical
examples). When multiple effect estimates per condition (e.g., from multiple runs) are
available, one would have bigger wiggle room in parameterizing the covariance structures. The
counterbalance between the two extreme approaches can be achieved and measured through
criteria such as AIC and BIC, or likelihood ratio tests that are typically employed in model
comparisons.

Comparisons of LME with other approaches to FMRI group analysis
In the conventional GLM (see Appendix A) an explanatory variable can be a subject-grouping
factor, but not a within-subject (or repeated-measures) factor in which all the levels could be
correlated to some extent. Such limitation can be overcome (Rutherford, 2001) to include
within-subject factors by considering subject as a variable in the model through, for example,
effect coding (see Appendix C). However, the coding process for subjects and their interactions
with fixed-effect factors becomes relatively tedious, especially when more than one categorical
factor is involved. Furthermore, the error terms have to be properly separated for effect testing
when more than one factor is involved; otherwise inflated significance may occur (McLaren
et al., 2011). These are the reasons that only one within-subject or one-way between-subject
AN(C)OVA is usually considered with this approach in FMRI group analysis, as shown in
SPM and FSL implementations.

The traditional suite of group analysis programs (3dttest++, 3dMEMA, 3dANOVAx, and
GroupAna) in AFNI can analyze data structure with t-tests, ANCOVA with between-subjects
factors, up to four-way ANOVA. A recent new program 3dMVM (http://afni.nimh.nih.gov/
sscc/gangc/MVM.html) has been developed with multivariate GLM approach that can handle
the conventional AN(C)OVA without bound on the number of explanatory variables provided
that the sample size is appropriate (e.g., at least five observations per variable). In addition, it
allows unequal number of subjects across groups.

As another recent extension of the GLM approach to FMRI group analysis, a Matlab package
called GLM Flex (http://nmr.mgh.harvard.edu/harvardagingbrain/People/AaronSchultz/
GLM_Flex.html) takes up to six-way interactions. More importantly, the error terms are
properly partitioned across factors using the covariance estimates pooled across voxels.
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Covariate modeling is also possible with GLM Flex, but not allowed in the presence of a within-
subject variable (i.e., repeated-measures ANCOVA), which requires the LME approach as
shown in prototypical example 3. Under slightly different assumptions, GLM Flex and
3dMVM can handle cases 1 and 4 of the six prototypical examples.

Another recent development (Skup et al., 2012) uses multi-scale adaptive regression model
(MARM) and its variants that address two major issues: potential problems involving spatial
smoothing and voxelwise versus spatial modeling. The approach was developed specifically
to deal with structural data such as T1 images or DTI data where the traditional method with
volume data may suffer from poor alignment, and this point is highlighted by its major
applications with the real data examples. Nevertheless, the methodology could be applied to
group analysis of functional FMRI data; for example, twin studies (e.g., prototypical example
6) may benefit from the adoption of MARM (Li et al., 2012). It remains to be seen how MARM
compares to the LME framework in terms of application breadth and modeling flexibility.

Limitations of LME
The LME flexibility to modeling data with complex structure comes with the difficulty in
assigning the degrees of freedom for each testing statistic. The number of degrees of freedom
is the dimension of the subspace under the null hypothesis when the data are projected on the
linearly spanned space of the model matrix. With a balanced data structure with simple
covariance layout and no missing data, the degrees of freedom can be clearly defined, and the
F-statistics are truly F-distributed under the Gaussian assumption, as shown in the traditional
ANOVA computations. However, with sophisticated covariance structure, missing data, or
crossed random effects, the LME framework is not really a linear system in the sense that the
presence of multiple variance parameters allows only for asymptotic approximations. The
asymptotic property leads to not only the occasional failure of numerical convergence, but also
the challenges in deciding the degrees of freedom; that is, the F-values are asymptotic as well.

Currently the degrees of freedom in 3dLME are based on the inner/outer property of each term
relative to the random factor (e.g., subject) adopted in the R package nlme (Pinheiro and Bates,
2000). However, such an assignment approach for the degrees of freedom is controversial for
a few scenarios. For example, when two or more within-subject factors are involved or when
data structure is not balanced, the assignment tends to be inaccurate. Parametric bootstrapping
(Halekoh and Højsgaard, in press) and Markov chain Monte Carlo (MCMC) simulations
sampling (Baayen, 2011; Bates et al., 2011; Skaug et al., 2012) have been available for a more
accurate significance testing, but they are not practical for FMRI group analysis due to the very
high computational cost. A promising approach with the Kenward–Roger adjustment is
currently under development (Halekoh and Højsgaard, in press) that may hold promise in
improving the accuracy of significance testing for 3dLME in the future. As a rule of thumb, a
higher number of subjects (e.g., 20 or more) would provide more robust analysis with
3dLME.

Conclusions
LME is a flexible modeling approach that handles complex experimental designs that Student
t-test, AN(C)OVA frameworks cannot. LME can model a variety of variance–covariance
structures, covariate modeling with multiple factors including either within-subject (or
repeated-measures) or between-subjects (subject-grouping or independent-measures) factors,
or both.

The six prototypical FMRI group analysis scenarios were presented to exemplify the unique
advantages of the LME approach. ICC values can also be computed under the LME paradigm
that can account for confounding effects. Our simulations indicate that the LME modeling
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strategy, when applied to FMRI group analysis, shows reasonable control for false positives
and achieves sizeable statistical power.
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Appendix A: General linear model (GLM)
The concept of general linear model provides a broad platform that subsumes Student t-test,
F-test, ANOVA, ordinary linear regression, ANCOVA, MANOCA, and MANCOA. A GLM
framework for FMRI group analysis can be formulated for the conventional group analysis of
p+1 fixed effects with FMRI data of n subjects,

(7a)

where response variable  is the effect estimate from the individual analysis of the ith subject,

 denotes the intercept (xi0=1) and p explanatory variables, a=(α0,…,αp)T

contains the p+1 fixed effect or regression coefficients, and δi is the subject-specific random
component that is assumed to follow N(0, τ2). We can rewrite the GLM in a concise matrix
formulation,

(7b)

where , and In is an
n×n identity matrix. A one-sample Student t-test corresponds to model (7) with p=0. If p≥1,
xij can be an indicator (dummy) variable coding, for example, the group to which the ith subject
belongs, or a continuous variable, or an interaction among fixed effects. If τ2 is significantly
different from 0, the presence of d in (7b) may indicate either a heterogeneous group of subjects,
or heterogeneity due to some unknown or unobservable factors. The former possibility may
necessitate considering some subject-specific modulators. Furthermore, the effect estimate

 typically replaces the corresponding “true” effect βi in “summary statistics” approach (Penny

and Holmes, 2007) with the sampling error or estimate precision of  ignored in the fixed-
effects regression model (7). Most group analysis approaches can be formulated under the
GLM framework (7), such as one-sample and paired t-tests, analyses with two ormore groups
(e.g., two-sample t-test), and with continuous explanatory variables (e.g., age, IQ, etc.).

A statistically more robust model than (7) would be one that incorporates the within-subject
variability, such as linear mixed-effect meta analysis (MEMA) (Worsley et al., 2002; Woolrich
et al., 2004; Chen et al., 2012). More specifically, when the precision information (or variance)

of the effect estimate  is incorporated in the GLM (7), we have a mixed-effect multilevel
system,

(8a)

or,
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(8b)

where , and  is the estimated variance for  from

the individual analysis of the ith subject with the assumption  (Chen et al.,
2012).

The principal difference between the GLM(7) and MEMA (8) is that the latter model explicitly
includes estimated within-subject variability (instead of presuming equal reliability across
subjects), renderingmore accurate estimate and significance testing of group effect. However,
a difficulty with such a robust approach with the MEMA model (8) occurs in handling the
correlation structure among the multiple levels of a within-subject (or repeated-measures)
factor.

Appendix B: LME formulation of two-way within-subject ANOVA
The conventional two-way within-subject (or repeated-measures) ANOVA can be formulated
with a cell mean model under the GLM framework,

(9)

where  is the effect estimate at the jth level of factor A and the kth level of factor B for the

ith subject, μ is the grand mean free of any factor effect,  is the jth level effect of factor

A,  is the kth level effect of factor B,  is the interaction effect at the jth level of factor
A and the kth level of factor B, bi is the deviation of the ith subject, rij is the interaction effect
between the ith subject and the jth level of factor A, cik is the interaction effect between the
ith subject and the kth level of factor B, and εijk represents the residual associated with the ith
subject at the jth level of factor A and the kth level of factor B.

The above GLM setup (9) for two-way within-subject ANOVA can be treated as an LME
model of crossed random effects with exactly the same formulation (Pinheiro and Bates,
2000) with μ, αj, βk and γjk representing the fixed effects and bi, rij and cik coding the random
effects. And the formulation (9) can also be reformulated as (1a) with the following notations,
5

where Ik is an identity matrix of size k, and 1k denotes for a column vector of ones with its
subscript k indicating the length. If a block diagonal variance–covariance structure is assumed

5To ensure identifiability of the fixed effects, a proper coding for the levels of a factor is required (see Appendix C). One option is to
use dummy coding with the last level of each factor as the reference, and thus we have αl=βm=γlk=γjm=0 for j=1, 2, …, l, k=1, 2, …,
m.
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for the random effects di, , the LME model is essentially
equivalent to the traditional two-way within-subject ANOVA with a compound symmetry
structure for the random effects. However, the LME platform allows more room for flexibility
in modeling the randomeffects. For example, the strict assumption of compound symmetry for
Var(di) can be relaxed if justified. In addition, the rigid ANOVA data structure is not required
under LME; that is, missing cells are allowed (e.g., no data is available from one subject at the
level j0 of factor A and level k0 of factor B). Alternatively, the LME model for two-way within-
subject ANOVA can be reduced to a random intercept model (without random terms rij and
cik, for example) when necessary.

Appendix C: Coding a discrete variable
Both the fixed- and random-effect matrices Xi and Zi in the LME model (3) involve quantifying
categorical variables as indicators through various coding schemes, and deserve a brief
description here. These indicator variables represent subject allocations to the k levels of a
categorical variable (or factor). Although theoretically there are infinite approaches to coding
or parameterizing a categorical variable x, three popular coding methods are typically seen in
the literature due to their convenient interpretability.

A) Dummy coding (or treatment contrast). This scheme takes 0 and 1 values to allocate subjects
among the k levels of a factor. Due to the presence of default intercept or constant in the model,
only (k-1) indicators are considered to avoid multicollinearity and assigned by 1s, and one level
is chosen to serve as a reference or base level and coded with

(10a)

implies that the corresponding effect shows the difference between the jth level (j=1, 2, …,
k) and the reference (e.g., kth) level. The fixed-effect matrix Xi (of size k×k) for ith subject is
of the structure (assuming the absence of other within-subject factors), in which each row
corresponds to a level of the factor and the first column is associated with the intercept while
the other (k-1) columns represent the (k-1) indicator variables,

B) Effect (or deviation) coding. Instead of setting one level of the factor as reference or base
that is denoted by all indicator variables taking value 0, the indicator variables in effect or
deviation coding take the value −1 for the reference level. With the kth level as a reference,
the coefficient associated with

(10b)

represents the difference between the jth level effect (j=1, 2, …, k) and the overall mean.6 The
fixed-effects matrix Xi (of size k×k) for the ith subject is of the structure (assuming the absence
of other within-subject factors),
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C) Cell mean coding. When the intercept in the LME model (3) is left out, a convenient coding
with

(10c)

allows one to directly interpret the coefficient as the effect for the jth level. The corresponding
fixed-effect matrix Xi (of size k×k) for the ith subject can be represented as identity matrix,
Xi = Ik×k.

Appendix D: Interface for running 3dLME
Program 3dLME is run, for example, on a tcsh terminal with a command line such as

3dLME model_spec.txt diary.txt
Here file diary.txt records the progression of the running process while file model_spec.txt
specifies the modeling details and data structure. The data structure is presented through a
matrix-like table, the concept of data frame in R, with each column coding an explanatory
(categorical or quantitative) variable except for the last column that lists all the input files.

Data_type:Volume

Output:Results

MASK:mask+tlrc

Model:

 Days+Scanner+Health*Age*Att*Morph+Health*Age*Att*Morph*Morph COV:

RanEff: 1, 0+Att

VarStr: 0

CorStr: 0

SS:marginal

Clusters:4

Subj Health Age Att Morph Days Scanner InputFile

S1 heal Adu A 0 13 −1 stats.s1_0+tlrc

S1 heal Adu A 10 13 −1 stats.s1_10+tlrc

S1 heal Adu A 20 13 −1 stats.s1_20+tlrc

…

S1 heal Adu A 100 13 −1 stats.s1_100+tlrc

…

S37 pat Kid H 0 20 1 stats.s37_0+tlrc

6Another popular effect coding, especially for a factor with two levels, is ½, 0, and −½ instead of 1, 0 and −1 for xij. A convenient feature
with such coding is that the corresponding coefficient is the difference (not half) between the two levels of the categorical variable.
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S37 pat Kid H 10 20 1 stats.s37_10+tlrc

…
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Fig. 1.
Four-way interactions (diagnosis×age group×cognitive instruction×quadratic trend) were
detected with LMEmodeling in two regions, the subgenual anterior cingulate (−9, 26,−9) and
the ventromedial prefrontal cortex (4, 49, −6). Image displayed in radiological convention
(left=right) with colors indicating the F (2, 2592)-statistic range with FWE corrected p=0.05.
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Fig. 2.
Simulation results for type I error and power with 15 subjects. Nine effect estimates from each
subject were created to simulate the HDR over 16 s and contained AR(1) residuals with serial
correlation at 10 equally-spaced values (0, 0.1, ..., 0.9). Four analysis approaches were
considered with 2 (with serial correlation modeled and without)×2 (proper and improper
hypothesis) factorial layout. The curves were fitted through loess smoothing with the second
order of local polynomials
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Table 1

Comparisons among models at a voxel in sgACC with different variance–covariance structures for random effects
and residuals.

Model
Formulation (6a) (6b)

Fitting A B C D

Ψ

Attention

Ψ1)
structure pdSymm pdCompSymm pdSymm pdSymm

parameters 6 2 6 6

Morph

Ψ2)
structure intercept intercept pdSymm pdCompSymm

parameters 1 1 6 2

DF 46 42 51 47

AIC 1431.455 1444.031 1440.332 1433.455

BIC 1624.398 1620.196 1654.246 1630.592

logLik −669.7277 −680.0156 −669.1657 −669.7277

LR (relative to model A), p - 20.57585, 0.0004 1.124, 0.95 0, 1

1)
Coding: Specifications for variance–covariance structure used in nlme package: pdSymm– general positive-definite symmetry; pdCompSymm –

compound symmetry; intercept – random effect for intercept only (without linear and quadratic random effects)

2)
DF – degrees of freedom; AIC – Aikaike Information Criterion; BIC – Bayesian Information Criterion; logLik – log restricted maximum likelihood;

LR: likelihood ratio test with χ2(k) comparing two models (where k is the DF difference between the two models), and p – probability corresponding

to the χ2(k) value.
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Table 2

Tests for all the main effects and their interactions at a voxel in sgACC.

Term F-value Significance

Age 0.125 (1, 76) 0.724

Diagnosis 1.577 (1, 76) 0.213

Attention 3.962 (2, 2592) 0.019

Morph 0.278 (1, 2592) 0.598

Morph2 0.604 (1, 2592) 0.437

Age: diagnosis 0.032 (1, 76) 0.859

Age: attention 3.005 (2, 2592) 0.050

Age: morph 0.009 (1, 2592) 0.924

Age: morph2 7.488 (1, 2592) 6.25e–3

Diagnosis: attention 0.501 (2, 2592) 0.606

Diagnosis: morph 0.144 (1, 2592) 0.704

Diagnosis: morph2 5.578 (1, 2592) 0.018

Attention: morph 0.687 (2, 2592) 0.503

Attention: morph2 4.610 (2, 2592) 0.010

Age: diagnosis:attention 0.419 (2, 2592) 0.658

Age: diagnosis: morph 0.041 (1, 2592) 0.840

Age: diagnosis: morph2 13.079 (1, 2592) 3.04e–4

Age: attention: morph 1.159 (2, 2592) 0.314

Age: attention: morph2 6.478 (2, 2592) 1.56e–3

Diagnosis: attention: morph 0.100 (2, 2592) 0.905

Diagnosis: attention: morph2 4.261 (2, 2592) 0.014

Age: diagnosis: attention: morph 0.444 (2, 2592) 0.642

Age: diagnosis: attention: morph2 8.285(2, 2592) 2.59e–4

Scanner 0.272 (1, 76) 0.604

Days 0.684 (1, 76) 0.411

The two numbers within parentheses in the F-value column are the numerator and denominator degrees of freedom respectively
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