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Abstract
A direct reconstruction algorithm for complex conductivities in W2,∞ (Ω), where Ω is a bounded,
simply connected Lipschitz domain in ℝ2, is presented. The framework is based on the uniqueness
proof by Francini [Inverse Problems 20 2000], but equations relating the Dirichlet-to-Neumann to
the scattering transform and the exponentially growing solutions are not present in that work, and
are derived here. The algorithm constitutes the first D-bar method for the reconstruction of
conductivities and permittivities in two dimensions. Reconstructions of numerically simulated
chest phantoms with discontinuities at the organ boundaries are included.

1 Introduction
The reconstruction of admittivies γ from electrical boundary measurements is known as the
inverse admittivity problem. The unknown admittivity appears as a complex coefficient γ(z)
= σ(z) + iωε(z) in the generalized Laplace equation

(1)

where u is the electric potential, σ is the conductivity of the medium, ε is the permittivity,
and ω is the temporal angular frequency of the applied electromagnetic wave. The data is
the Dirichlet-to-Neumann, or voltage-to-current density map defined by

(2)

where u ∈ H1(Ω) is the solution to (1). By the trace theorem Λγ: H1/2(∂Ω) → H−1/2(∂Ω).

In this work we present a direct reconstruction algorithm for the admittivity γ. The majority
of the theory is based on the 2000 paper by Francini [21] in which it is established that if σ,
ε ∈ W2,∞(Ω), where Ω is a bounded domain in ℝ2 with Lipschitz boundary, then the real-
valued functions σ and ε are uniquely determined by the Dirichlet-to-Neumann map,
provided that the imaginary part of the admittivity is sufficiently small. The proof in [21] is
based on the D-bar method and is nearly constructive, but equations linking the scattering
transform and the exponentially growing solutions to the Dirichlet-to-Neumann data are not
used in the proof, and so it does not contain a complete set of equations for reconstructing
the admittivity. In this work, we derive the necessary equations for a direct, nonlinear
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reconstruction algorithm for the admittivity γ. Furthermore, we establish the existence of
exponentially growing solutions to (1), which prove to be useful in relating the Dirichlet-to-
Neumann data to the scattering transform. The reconstruction formula in [21] is for the
potential Qγ, whose relationship to γ is described below. We provide a direct formula for γ
from the D-bar equations in [21], which is computationally advantageous as well.

The inverse admittivity problem has an important application known as electrical impedance
tomography (EIT). The fact that the electrical conductivity and permittivity vary in the
different tissues and organs in the body allows one to form an image from the reconstructed
admittivity distribution. In the 2-D geometry, EIT is clinically useful for chest imaging.
Conductivity images have been used for monitoring pulmonary perfusion [9, 23, 48],
determining regional ventilation in the lungs [24, 22, 52], and the detection of pneumothorax
[16], for example. In three dimensions, conductivity images have been used, for instance, in
head imaging [51, 50] and knowledge of the admittivity has been applied to breast cancer
detection [8, 31, 32].

Reconstruction algorithms based on a least-squares approach that reconstruct permittivity
include [19, 8, 30]. The aforementioned algorithms are iterative, whereas the work presented
here is a direct method that makes use of exponentially growing solutions, or complex
geometrical optics (CGO) solutions, to the admittivity equation. The steps of the algorithm
are to compute these CGO solutions from knowledge of the Dirichlet-to-Neumann map, to
compute a scattering transform matrix, to solve two systems of ∂̄ (D-bar) equations in the
complex frequency variable k for the CGO solutions to a related elliptic system, and finally
to reconstruct the admittivity from the values of these solutions at k = 0. In this work, we
provide a complete implementation of this algorithm and present reconstructions of several
numerical phantoms relevant to medical EIT imaging. The phantoms we consider here are
discontinuous at the organ boundaries, which is actually outside the theory of the algorithm.
The work [26] contains computations of smooth admittivities and validates our formulas and
computations by comparing the results of the intermediate functions (CGO solutions and
scattering transforms) with those computed from knowledge of the admittivity.

We briefly review the history of results using CGO solutions on the inverse conductivity
problem in dimension 2. The inverse conductivity problem was first introduced by A.P.
Calderón [12] in 1980, where he proved that, in a linearized version of the problem, the
Dirichlet-to-Neumann map uniquely determines the conductivity, and he proposed a direct
reconstruction method for this case. An implementation in dimension two for experimental
data is found in [6]. In 1996, Nachman [44] presented a constructive proof of global
uniqueness for twice differentiable conductivities using D-bar methods. The D-bar algorithm
following from [44, 46] has been applied to simulated data in [39, 41, 27, 38] and to
experimental data on tanks and in vivo human data in [28, 29, 42, 18]. While the initial
scattering transform was regularized using a Born approximation, a more recent paper [40]
contains a full nonlinear regularization analysis, including estimates on speed of
convergence in Banach spaces, for twice differentiable conductivities. The regularity
conditions on the conductivity were relaxed to once-differentiable in [10]. The proof uses D-
bar techniques and formulates the problem as a first-order elliptic system. A reconstruction
method based on [10] can be found in [33, 34, 35]. Francini [21] provided a proof of unique
identifiability for the inverse admittivity problem for σ, ε ∈ W2,∞ (Ω), with ω small. Her
work provides a nearly constructive proof based on D-bar methods on a first-order elliptic
system similar to that in [10]. A non-constructive proof that applies to complex admittivities
with no smallness assumption is found in [11]. Astala and Päivärinta provide a CGO-based
constructive proof for real conductivities σ ∈ L∞(Ω), and numerical results related to this
work can be found in [3, 4].
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The paper is organized as follows. In Section 2 we describe the direct reconstruction
algorithm, which is comprised of boundary integral equations for the exponentially growing
solutions to (1) involving the Dirichlet-to-Neumann data, boundary integral equations
relating those CGO solutions and the CGO solutions Ψ of the first order system, equations
for the scattering transform involving only the traces of Ψ, the ∂̄k equations established in
[21], and the direct reconstruction formula for Qγ and thus γ. Derivations of the novel
equations are found in this section. Section 3 describes the numerical implementation of the
algorithm. Results on noisy and non-noisy simulated data of a cross-sectional chest with
discontinuous organ boundaries are found in Section 4.

2 The Direct Reconstruction Algorithm
In this section we will provide the equations for the direct reconstruction algorithm,
completing the steps for the proof in [21] to be completely constructive. In particular,
boundary integral equations relating the CGO solutions to the Dirichlet-to-Neumann (DN)
map are derived.

Let Ω ⊂ ℝ2 be a bounded open domain with a Lipschitz boundary. Throughout we assume
that there exist positive constants σ0 and β such that

(3)

and

(4)

We extend σ and ε from Ω to all of ℝ2 such that σ ≡ 1 and ε ≡ 0 outside a ball with fixed
radius that contains Ω, and (3) and (4) hold for all of ℝ2. In fact, all that is required is that γ
is constant outside that ball of fixed radius; for convenience we look at the case where γ ≡
1.

The proof in [21] closely follows that of [10] for conductivities σ ∈ W1,p(Ω), p > 2. The
matrix potential Qγ is, however, defined slightly differently, and since the potential in [21]
is not Hermitian, the approach in [21] is to consider the complex case as a perturbation from
the real case provided the imaginary part of γ is small. Define Qγ(z) and a matrix operator
D by

(5)

Thus we define

(6)

and equivalently we can write
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(7)

or

(8)

Defining a vector

(9)

in terms of the solution u to (1), one sees that

The uniqueness result in [21] is

Theorem 2.1. (Theorem 1.1 [21])—Let Ω be an open bounded domain in ℝ2 with
Lipschitz boundary. Let σj and εj, for j = 1, 2 satisfy assumptions (3) and ||σ||W2, ∞ (Ω), ||
ε||W2, ∞(Ω) ≤ β. There exists a constant ω0 = ω0(β, σ0, Ω) such that if γj = σj + iωεj for j = 1,
2 and ω < ω0 and if

then

2.1 CGO solutions
Francini shows in [21] that for ω sufficiently small and γ satisfying (3) and (4) there exists a
unique 2 × 2 matrix M(z, k) for k ∈ ℂ satisfying

(10)

that is a solution to

(11)

where Dk is the matrix operator defined by
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and “off” denotes the matrix consisting of only the off-diagonal entries of M. The system
(11) is equivalent to the following set of equations, included for the reader’s convenience

(12)

Thus, there exists a unique matrix Ψ(z, k) defined by

(13)

that is a solution to

(14)

or equivalently

(15)

These CGO solutions Ψ(z, k) are key functions in the reconstructions, but the proof in [21]
does not provide a link from these functions to the DN data. A useful link can be established
through exponentially growing solutions to the admittivity equation (1). For γ − 1 with
compact support, equation (1) can be studied on all of ℝ2, and introducing the complex
parameter k, two distinct exponentially growing solutions, which differ in their asymptotics,

exist. We will denote these solutions by u1 and u2 where  and  in a sense that is
made precise in Theorems 2.2 and 2.3, where the existence of such solutions is established.
The proof will make use of the following lemma proved in the real case by Nachman [44];
the complex version shown here also holds and was used in [21]. The lemma is also true if
∂̄z is interchanged with ∂z.

Lemma 2.1—Let 1 < s < 2 and .

1. If the complex function v ∈ Ls(ℝ2), then there exists a unique complex function u
∈ Lr(ℝ2) such that (∂z + ik)u = v.

2. If the complex function v ∈ Lr(ℝ2) and ∂̄zv ∈ Ls(ℝ2), k ∈ ℂ\{0}, then there exists a
unique complex function u ∈ W1,r(ℝ2) such that (∂z+ik)u = v.

3. If the complex function v ∈ Lr(ℝ2) and ∂̄zv ∈ Ls(ℝ2), k ∈ ℂ\{0}, then there exists a
unique complex function u ∈ W1,r(ℝ2) such that (∂̄z − ik)u = v.

The following lemma will also be used in the proofs of Theorems 2.2 and 2.3.

Lemma 2.2—For ω sufficiently small and γ satisfying (3) and (4), the following identities
hold:
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(16)

(17)

Proof: By the product rule,

The second and third equalities utilized (6) and (12), respectively.

We also have

This establishes (16).

Similarly, using (6) and (12),

We also have

This establishes (17).

Knudsen establishes the existence of exponentially growing solutions to the conductivity
equation in the context of the inverse conductivity problem in [33]. The proofs of their
existence for the admittivity equation and the associated boundary integral equations are in
the same spirit as [33].

Theorem 2.2—Let γ(z) ∈ W1,p(Ω), with p > 2 such that σ and ε satisfy (3) and (4), and let
γ(z) − 1 have compact support in W1,p(Ω). Then for all k ∈ ℂ\{0} there exists a unique
solution
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(18)

to the admittivity equation in ℝ2 such that w1(·, k) ∈ W1,r(ℝ2), 2 < r < ∞. Moreover, the
following equalities hold:

(19)

(20)

and

(21)

for some constant C.

Theorem 2.3—Let γ(z) satisfy the hypotheses of Theorem 2.2. Then for all k ∈ ℂ\{0}
there exists a unique solution

(22)

to the admittivity equation in ℝ2 with w2(·, k) ∈ W1,r(ℝ2), 2 < r < ∞. Moreover, the
following equalities hold:

(23)

(24)

and

(25)

for some constant C.

We will prove Theorem 2.2; the proof of Theorem 2.3 is analogous.

Proof: Assume u is a solution of the admittivity equation of the form (18), and let (v, w)T =
γ1/2(∂z u, ∂ ̄z u)T be the corresponding solution to (D − Qγ) Ψ = 0. Define the complex
function v via v(z, k) = γ(z)−1/2M11(z, k) − 1. We will first show there exists a unique
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complex function w1 ∈ W1,r(ℝ2), where r > 2 such that (∂z+ik)w = v, for k ∈ ℂ\{0}. Let us
rewrite v as follows:

Let r > 2 and 1 < s < 2 with . We know by Theorem 4.1 of [21] that there exists a
constant C > 0 depending on β, σ0 and p such that sup ||M11 (z, k) − 1||Lr(ℝ2) ≤ C for every r
> 2, and that γ(z)−1/2 − 1 has compact support in W1,r(ℝ2). It follows that v ∈ Lr(ℝ2), and
by Minkowski’s Inequality

where Cr,γ depends on r and the bounds on σ and ε.

From (8),

We know that γ(z)−1/2Q21(z) ∈ Lα(ℝ2) with 1 ≤ α ≤ p since Q12(z) has compact support. It
follows that γ(z)−1/2Q21(z) ∈ Ls(ℝ2) ∩ L2(ℝ2). By the generalized Hölder’s inequality and
the fact that ||M11(z, k) − 1||Ls is bounded with , we have ∂̄z v ∈ Ls(ℝ2) and ||∂̄z
v||Ls(ℝ2) ≤ Kr, γ, where Kr, γ depends only on r and the bounds on σ and ε. Thus, by Lemma
2.1 (2), there exists a unique solution w1(z, k) ∈ W1,r(ℝ2) such that

(26)

We have by (16),

(27)

Taking ∂̄z of both sides of (26) and using (27),

(28)

Using the fact ∂̄(∂ + ik) = (∂ + ik)∂̄, it follows that

(29)

Since ∂̄z w1(z, k) − γ(z)−1/2M21(z, k) ∈ Lr(ℝ2), by Lemma 2.1 (1), we must have
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(30)

We now define

(31)

then by (26)

which proves (19), and by (30)

which proves (20).

The norm estimate given by (21) follows by Minkowski’s Inequality, the constant C
depends on r, the bound on γ − 1, and the bounds on σ and ε.

Remark
Note that from (19)

(32)

and from (20)

(33)

Thus, we can equivalently rewrite (19) and (20), respectively, as

(34)

(35)

In a similar manner, we can rewrite (23) and (24), respectively, as
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(36)

(37)

Useful boundary integral equations for the traces of u1 and u2 can be derived under the
additional assumption that γ ∈ W2,p and u1, u2 ∈ W2,p, p > 1. The following proposition
shows a relationship between the exponentially growing solutions ψS(z, k) (when they exist)
to the Schrödinger equation

(38)

and the CGO solutions u1 and u2 to (1). The solution ψS to (38), where qS is complex, is
asymptotic to eikz in the sense that

where  and 1 < p < 2. The question of the existence of a unique solution to (38) is

addressed for real γ in [44], where it is shown to exist if and (roughly) only if . The
solutions ψS will be used to derive the boundary integral equations for u1 and u2, but not in
the direct reconstruction algorithm.

Lemma 2.3—Let γ(z) = σ(z) + iωε(z) ∈ W2,p(Ω), with p > 2 such that σ and ε satisfy (3)
and (4), and let γ(z) − 1 have compact support in W1,p(Ω). Let u1 be the exponentially
growing solution to the admittivity equation as given in Theorem 2.2, and let ψS be the
exponentially growing solution to the Schrödinger equation (38), when it exists. Then

(39)

Proof: From (18),

satisfies the admittivity equation with [γ1/2(z)−1]+γ1/2(z)ikw1(z, k) ∈ W1,r(Ω) for r > 2. We
also know that when it exists,

(40)

is also a solution to the admittivity equation with wS(z, k) ∈ W1,p̄ (ℝ2). Hence, these
exponentially growing solutions must be equal.
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Lemma 2.4—Let γ(z) = σ(z) + iωε(z) ∈ W2,p(Ω), with p > 2 such that σ and ε satisfy (3)
and (4), and let γ(z) − 1 have compact support in W1,p(Ω). Let u2 be the exponentially
growing solution to the admittivity equation as given in Theorem 2.3, and let ψS be the
exponentially growing solution to the Schrödinger equation (38), when it exists. Then

(41)

Proof: From (22),

satisfies the admittivity equation with [γ1/2(−z̄) − 1] − γ1/2(−z̄)ikw2(z, k) ∈ W1,r(Ω) for r >
2. From (40),

satisfies the admittivity equation with wS(−z̄, k) ∈ W1,p̄(ℝ2). Thus, these exponentially
growing solutions must be equal, and so

Let us recall some terminology arising from [44] before establishing boundary integral
equations involving the exponentially growing solutions. Let Λσ be the Dirichlet-to-
Neumann map when Ω contains the conductivity distribution σ, and Λ1 is the Dirichlet-to-
Neumann map for a homogeneous conductivity equal to 1. The Faddeev Green’s function
Gk(z) is defined by

(42)

where

(43)

for k ∈ ℂ\{0}. In the real-valued case γ = σ, the trace of the function ψS(·, k) on ∂Ω satisfies
the integral equation [44]

(44)

where k ∈ ℂ\{0}. The equation (44) is a Fredholm equation of the second kind and uniquely
solvable in H1/2(∂Ω) for any k ∈ ℂ\{0}.
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The boundary integral equations for u1 and u2 are similar to (44).

Theorem 2.4—Let γ ∈ W2,p(Ω) for p > 1 and suppose γ = 1 in a neighborhood of ∂Ω.
Suppose σ and ε satisfy (3) and (4), and let γ(z) − 1 have compact support in W2,p(Ω). Then
for any nonexceptional k ∈ ℂ\{0}, the trace of the exponentially growing solution u1(·, k) on
∂Ω is the unique solution to

(45)

Proof: Let , where 1 < r < 2 and p > 2. Let {γn}n∈N ⊂ W2, r(Ω) be a sequence
converging to γ ∈ W1,p(Ω). Then by the Sobolev Embedding Theorem, {γn}n∈ℕ ⊂ W1,r

(Ω). Let ψn be the exponentially growing solutions to the Schrödinger equation with

potential , and un be the CGO solutions defined by Theorem 2.2 to the admittivity
equation with admittivity γn. Then for each n ∈ ℕ, the complex γ version of (44) holds for
nonexceptional k ∈ ℂ\{0}

(46)

where γn = 1 in the neighborhood of ∂Ω.

It follows by (39) that for each complex number k ≠ 0, and for each n ∈ ℕ

(47)

We claim that for each n, un satisfies (45). To see this, by (39), for z ∈ ∂Ω,

(48)

where we used the fact that γn = 1 in a neighborhood of ∂Ω. Thus, un satisfies (45) for each
n ∈ ℕ.

We know by Theorem 3.1 of [21] that M(z, k) depends continuously on γ. From (47), we
can conclude that

(49)

Thus, by (47), (48), and (49), we have that u1(·, k)|∂Ω satisfies (45). The uniqueness of u1(·,
k)|∂Ω follows by Theorem 2.2.

An analogous theorem holds for u2.
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Theorem 2.5—Let γ ∈ W2,p(Ω) for p > 1 and suppose γ = 1 in a neighborhood of ∂Ω.
Suppose σ and ε satisfy (3) and (4), and let γ(z) − 1 have compact support in W2,p(Ω). Then
for any nonexceptional k ∈ ℂ\{0}, the trace of the exponentially growing solution u2(·, k) on
∂Ω is the unique solution to

(50)

Proof: Let p, r, {γn}n∈N ⊂ W2,r(Ω), and ψn be as in the proof of Theorem 2.4. Let un be the
CGO solutions defined in Theorem 2.3 to the admittivity equation with admittivity γn. Then
for each n ∈ ℕ, for nonexceptional k ∈ ℂ\{0}, evaluating (46) at −z̄,

(51)

where γn = 1 in a neighborhood of ∂Ω.

It follows by (41) that for each complex number k ≠ 0, and for each n ∈ ℕ

(52)

We claim that for each n, un satisfies (50). To see this, by (41), for z ∈ ∂Ω,

(53)

using the change of variables −ζ̄ ↦ ζ̄ and the fact that γn = 1 in a neighborhood of ∂Ω.
Thus, un satisfies (50) for each n ∈ ℕ.

We know by Theorem 3.1 of [21] that M(z, k) depends continuously on γ. From (52), we
can conclude that

(54)

Thus, by (52), (53), and (54), we have that u2(·, k)|∂Ω satisfies (50). The uniqueness of u2(·,
k)|∂Ω follows by Theorem 2.3.

2.2 The Scattering Transform Matrix
The scattering transform Sγ(k) of the matrix potential Qγ is defined in [21] by

(55)
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where e(z, k) = exp{i(zk + z̄k̄)}. Thus we are only concerned with computing the off-
diagonal entries of Sγ, which we will denote by S12(k) and S21(k).

Boundary integral formulas for the off-diagonal entries of Sγ(k) in (55) can be computed by
integration by parts as follows

(56)

and similarly,

(57)

where ν = ν1 + iν2 denotes the outward unit normal to the boundary ∂Ω.

Theorem 2.6—The trace of the exponentially growing solutions Ψ12(z, k) and Ψ21(z, k)
for k ∈ ℂ\{0} can be determined by

(58)

(59)

where u1 and u2 are calculated via equations (45) and (50) respectively.

Proof: We use the relations in (35) and (37) to obtain boundary integral equations for Ψ21
and Ψ12 for z ∈ ∂Ω from Equations (45) and (50), respectively. Let us begin with Ψ12:

(60)

Similarly,

(61)

A thorough study of the properties of the Faddeev Green’s function Gk and its derivatives is
given in [47]. The calculations for the specific derivatives needed here are shown below. By
the definition of Gk (42)
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(62)

Using the definition of gk (43),

(63)

by the definition of the inverse Fourier transform and the well known result

Therefore, by (62) and (63)

(64)

The ∂̄z derivative for Ψ21 is calculated in a similar manner,

(65)

Substituting the representations for ∂z Gk(−z̄ + ζ̄) and ∂̄z Gk(z − ζ), given in (64) and (65),
back into the equations for Ψ12 and Ψ21, given in (60) and (61) respectively, proves the
theorem.

2.3 From S(k) to M
The dependence of M on the complex parameter k is related to the scattering transform
through the following ∂ ̄k system.

Theorem 2.7 (Theorem 4.1 [21])—Let σ and ε satisfy (3) and (4) and let M be the
unique solution to (11) satisfying (10). The map k → M(·, k) is differentiable as a map into

, and satisfies the equation

(66)
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where

(67)

Moreover, for every p > 2,

where K2 depends on β, σ0, Ω, and p.

Notice that Equation (66) can be written as the following two systems of equations:

(68)

and

(69)

included for the reader’s convenience.

2.4 From M to γ
Theorem 2.8 (Theorem 6.2 [21])—For any ρ > 0,

(70)

This provides a reconstruction formula for the entries of Qγ, and one can recover γ from

 or . However, this formula is computationally impractical as
it requires a large k limit of integrals involving ∂̄z and ∂z derivatives of M(z, k).

We have derived computationally advantageous formulas for recovering the entries of Qγ
that only require knowledge of the CGO solutions at k = 0. Theorem 2.9 provides this direct
relation between the CGO solutions M(z, 0) (from the ∂̄k equation (66)) and the matrix
potential Qγ(z), eliminating the large k limit required in equation (70) above.

Theorem 2.9—The entries of the potential matrix Qγ(z) defined in (5) can be calculated
using only knowledge of the CGO solutions M(z, 0) via

(71)
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(72)

where,

(73)

(74)

Proof: We follow an idea similar to that in [5] and define

(75)

(76)

Note that M+ and M− are only dependent on the Qγ matrix, not  as is required in [5].
Therefore,

so that

One can then reconstruct the log of the admittivity γ from either Q12 or Q21 by inverting the
∂z or ∂ ̄z operator respectively, and exponentiate to recover explicitly

(77)

2.5 The steps of the algorithm
We now have all the necessary steps for a direct reconstruction algorithm:

1. Compute the exponentially growing solutions u1(z, k) and u2(z, k) to the
admittivity equation from the boundary integral formulas (45) and (50)
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2. Compute the off diagonal entries of the CGO solution Ψ(z, k) for z ∈ ∂Ω from the
boundary integral formulas (58) and (59)

3. Compute the off-diagonal entries of the scattering matrix Sγ(k) from (56) and (57)

4. Solve the ∂ ̄k equation (66) for the matrix M(z, k)

5. Reconstruct Qγ from Theorem 2.9 and use (77) to compute γ.

3 Numerical Implementation
In this section, we describe the implementation of the algorithm. Greater detail of the
numerical methods and validations of the computations for admittivity distributions with
twice differentiable real and imaginary parts can be found in [26], where the solution to the
forward problem (11) is computed and used to validate formulas (58) an (59), as well as
computations of the scattering transform. In this work, we consider examples with
discontinuities at the organ boundaries.

3.1 Computation of the DN map
An approximation to the DN map was computed by simulating voltage data by the finite
element method (FEM), and then computing a matrix approximation to the map by
computing the inner product of the applied currents with the voltages. This approximation to
the DN map has been discussed, for example, in [28, 18, 40]. It can be formed analogously
in the complex case.

Gaussian white noise was added independently to the real and imaginary parts of the
simulated voltages for each current pattern by adding a random vector of amplitude η > 0
multiplied by the maximum voltage value for that current pattern and real or imaginary
component to the computed voltages. We consider noise levels η = 0 and η = 0.0001, which
corresponds to 0.01% noise, the published level of the ACT 3 system [19], which applies the
trigonometric current patterns used in the simulations here.

3.2 Computation of the CGO solutions and Sγ(k)
The CGO solutions on the boundary of Ω were computed for each k in a grid [−K, K]2 in the
complex plane. The choice of K, which serves as a cut-off frequency, was determined by the
behavior of the scattering transforms S12 and S21. As in [40] for the D-bar algorithm for
conductivity reconstructions, the cutoff frequency K has a regularizing effect, and was
chosen here empirically to balance smoothing and numerical error. We do not address the
selection of K by more sophisticated means in this work.
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3.2.1 Computation of u1 and u2—A boundary integral equation of the form (45) was
solved in [18] and [40]. In this work, as in [18], we employ an approximation to the
Faddeev’s Green’s function Gk that allows for very rapid computation of u1 and u2 from
(45) and (50) respectively. Namely, Gk is approximated by the fundamental solution for the
Laplacian

Denoting the solutions to (45), (50) by  and , respectively, the convolution integrals

were computed for z = zℓ, the center of the ℓth electrode, via Simpson’s rule, and G0 was set
to 0 when ζ = zℓ. Note that by the definition of G0, G0(z − ζ) = G0(−z̄ + ζ̄).

3.2.2 Computation of Ψ12 and Ψ21—The boundary integral formulas (58) and (59) for
Ψ12 and Ψ21, respectively, require knowledge of [Λγ − Λ1] uj(ζ, k) for j = 1, 2, with ζ ∈
∂Ω, and k ∈ ℂ\{0}. These values are already computed during the evaluation of u1 and u2
via (45) and (50). Therefore, we merely recall those values and approximate the boundary
integral using a finite sum. One should note that G0(z − ζ), ∂̄z Gk(z − ζ), and ∂z Gk(−z̄ + ζ̄)
are all undefined for z = ζ. We removed these points in the computation by setting their
values to zero.

3.2.3 Computation of the scattering transform—The off-diagonal entries of the
scattering transform matrix, namely S12(k) and S21(k), were computed inside the square
[−K, K]2 (with k = 0 not included since the formulas for the CGO solutions do not hold for k
= 0). We compute S12(k) and S21(k) using a finite sum approximation to (56) and (57):

where zl denotes the coordinate of the ℓth equally spaced electrode around ∂Ω (in this case
the unit circle).

3.3 Solution of the system of D-bar equations
The two systems of ∂̄k equations (68) and (69) can be written as the convolutions

(78)

and
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(79)

A numerical solver for equations of the form

was developed in [36] for the inverse conductivity problem. The solver is based on the fast
method by Vainikko [37] that uses FFT’s for solving integral equations with weakly singular
kernels.

In this work, we must solve the systems of equations (78) and (79) rather than a single
equation. Furthermore, the unknowns M(z, k) are not conjugated, but instead the argument k
is conjugated. To address this, we interpolated the scattering data Sγ, computed above in
Section 3.2.3, to a new k-grid that includes the origin k = 0 at the center and has an odd
number of grid points in both the horizonal and vertical directions. We solve the systems
(78) and (79) on this new k-grid using appropriate flip operations to ensure that we access
the correct entries in the matrix corresponding to M(z, k̄).

To perform the convolution we used Fourier transforms as follows:

and similarly

where hk is the step size of the uniform k-grid of size 129 × 129, and · denotes
componentwise multiplication. We used GMRES to solve the resulting linear systems for
each value of z in a grid of 128 equally spaced points between [−1.1,1.1] in both the x and y
directions and computed M(z, k) for all |z| ≤ 1.1. The step size in z was hz ≈ 0.0173.

3.4 Computation of the admittivity
The admittivity is computed by solving first for Q21 from (72) (note that equivalently one
could use Q12 from (71)), and then solving (77) for log(γ) in the Fourier domain using
FFT’s. The functions M+ and M− in equations (73) and (74) were evaluated using the entries
of M(z, 0) recovered when solving the ∂̄k equation (see Section 3.3 above). We used
centered finite differences (with a step size of hz ≈ 0.0173) to evaluate the ∂̄z and ∂z
derivatives of M+ and M− respectively. We then performed componentwise division to
compute Q12 and Q21 for |z| ≤ 1.1. Finally, the computed log(γ) was exponentiated to
recover γ inside the unit disk.
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4 Numerical Results
We consider several test problems simulating a simplified cross-section of a human torso. In
each example, the admittivity is given by γ = σ + iε. That is, the imaginary component
includes the temporal angular frequency ω. Since this is a known value, there is no loss of
generality in representing γ this way in the simulations. The complete electrode model
(CEM), originally described in [14], was implemented in the FEM in order to solve the
forward problem. The CEM takes into account both the shunting effect of the electrodes and
the contact impedances between the electrodes and tissue. In our computations, Ω was
chosen to be a disk of radius 0.15m, and the FEM computations were performed on a mesh
with 4538 triangular elements and 32 equispaced electrodes 0.029m × 0.024m placed on the
boundary. The effective contact impedance was chosen to be z = 0.0057Ωm2 on all
electrodes in our simulations. The current amplitude was chosen to be C = 2mA, and the
applied current patterns are the trigonometric patterns

(80)

where , |eℓ| is the area of the ℓth electrode, Iℓ is the current on the ℓth electrode, and L
denotes the total number of electrodes. As in [28, 18], the currents were normalized to have
ℓ2-norm of 1, and the voltages were normalized accordingly. Also, the DN map was scaled to
represent data collected on the unit disk using the relation Λγ,1 = rΛγ,r, where the second
subscript represents the radius of the disk.

Where indicated, we added 0.01% Gaussian relative noise to the simulated voltages as
follows. Denote the (complex-valued) vector of computed voltage for the j-th current pattern
by Vj, let η = 0.0001 denote the noise level, and N a Gaussian random vector (generated by
the randn commmand in MATLAB) that is unique for each use of the notation N. Denoting
the noisy data by Ṽj we then have Ṽj = Re(Ṽj) + i Im(Ṽj) where

We solve the boundary integral equations (45) and (50) for the traces of the CGO solutions
u1 and u2 for k ∈ [−K, K]2, with K varying for each test problem in this work. The solution
M(z, k), to the ∂ ̄k equation (66), is computed in parallel by the method described in Section
3.3. The low-pass filtering by taking k ∈ [−K, K]2 results in smooth functions Mjp, j, p = 1,
2, which are differentiated by centered finite differences to recover Q21, as described in
Section 3.4. The admittivity γ was then computed by (77).

Define the dynamic range of the conductivity, and likewise the permittivity, by

(81)

where the maximum and minimum values are taken on the computational grid for the
reconstruction and σ(K) denotes the reconstructed conductivity σ that was computed using a
scattering transform computed on the truncated k grid.
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4.1 Example 1
The first test problem is an idealized cross-section of a chest with a background admittivity
of 1+0i. We do not include units or frequency in these examples, since our purpose is to
demonstrate that the equations in this paper lead to a feasible reconstruction algorithm for
complex admittivities. Reconstructions from more realistic admittivity distributions or
experimental data are the topic of future work. Figure 1 shows the values of the admittivity
in the simulated heart and lungs. Noise-free reconstructions with the scattering transform
computed on a 128×128 grid for k ∈ [−5.5, 5.5]2 are found in Figure 2. The reconstruction
has a maximum conductivity and permittivity value of 1.1452 + 0.1802i, occurring in the
heart region and a minimum of 0.8286 − 0.0247i, occurring in the lung region, resulting in a
dynamic range of 79% for the conductivity and 60% for the permittivity when the negative
permittivity value is set to 0. Although this decreases the dynamic range, we set the
permittivity to 0 when it takes on a negative value in any pixel, since physically the
permittivity cannot be less than 0. The reconstruction has the attributes of good spatial
resolution and good uniformity in the reconstruction of the background and its value.

4.2 Example 2
This second example was chosen with conductivity values the same as in Example 1, but
with permittivity values in which the “lungs” match the permittivity of the background. This
is motivated by the fact that at some frequencies, physiological features may match that of
the surrounding tissue in the conductivity or permittivity component. This example, purely
for illustration, mimics that phenomenon. The admittivity values can be found in Figure 3.
Noise-free reconstructions with the scattering transform computed on a 128 × 128 grid for k
∈ [−5.5, 5.5]2 are found in Figure 4. The maximum value of the conductivity and
permittivity occur in the heart region, 1.1429 + 0.1828i, and the minimum value of the
conductivity and permittivity is 0.8271 − 0.0204i. In this example, the dynamic range is
79% for the conductivity and 61% for the permittivity when the negative permittivity value
is set to 0. Again the spatial resolution is quite good, and the background is quite
homogeneous, although some small artifacts are present in both the real and imaginary parts.

4.3 Example 3
Example 3 is an admittivity distribution of slightly higher contrast, and a non-unitary
background admittivity of γ0 = 0.8 + 0.3i. See Figure 5 for a plot of the phantom with
admittivity values for the regions. Due to the non-unitary background, the problem was
scaled, as was done, for example, in [18, 28], by defining a scaled admittivity γ̃ = γ/γ0 to
have a unitary value in the neighborhood of the boundary and scaling the DN map by
defining Λγ̃ = γ0Λγ, solving the scaled problem, and rescaling the reconstructed
admittivity. The scattering data for the noise-free reconstruction was computed on a 128 ×
128 grid for k ∈ [−5.2, 5.2]. Noisy data was computed as described above in the beginning
of this section, and the scattering data was also computed on a 128 × 128 grid for |k| ≤ 5.5.
The reconstructions are found in Figure 6. The maximum and minimum values are given in
Table 1. In this example, for the noise-free reconstruction, the dynamic range is 71% for the
conductivity and 75% for the permittivity. Again the spatial resolution is quite good. There
is some degradation in the image and the reconstructed values in the presence of noise. We
chose this noise level to be comparable to that of the 32 electrode ACT3 system at RPI [15].
A thorough study of the effects of noise and stability of the algorithm with respect to
perturbations in the data is beyond the scope of this paper. The scattering transform began to
blow up for noisy data, requiring a truncation of the admissible scattering data to a circle of
radius 5.5, resulting in a dynamic range of 62% for the conductivity and 68% for the
permittivity. A thorough study of the effects of the choice of K and its method of selection is
not included in this paper.
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5 Conclusions
A new direct method is presented for the reconstruction of a complex conductivity. This
method has the attributes of being fully nonlinear, parallelizable, and the direct
reconstruction does not require a high frequency limit. It was demonstrated on numerically
simulated data representing a cross-section of a human chest with discontinuous organ
boundaries that the method yields reconstructions with good spatial resolution and dynamic
range on noise-free and noisy data. This was the first implementation of such a method, and
although efforts were made to realistically simulate experimental data by including
discontinuous organ boundaries, data on a finite number of electrodes, and simulated contact
impedance, actual experimental data will surely prove more challenging. While this study
with simulated data gives very promising results, more advanced studies of stability and
robustness may be necessary to deal with the more difficult problem of reconstructions from
experimental data.
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Figure 1.
The test problem in Example 1.
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Figure 2.
Reconstruction from noise-free data for Example 1 with the real part of γ (conductivity) on
the left, and the imaginary part (permittivity) on the right. The cut-off frequency was K =
5.5. The dynamic range is 79% for the conductivity, and 60% for the permittivity.
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Figure 3.
The test problem in Example 2. Notice that in this case, the permittivity of the lungs matches
the permittivity of the background, and so only the heart should be visible in the imaginary
component of the reconstruction.
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Figure 4.
Reconstruction from noise-free data for Example 2 with the real part of γ (conductivity) on
the left, and the imaginary part (permittivity) on the right. The cut-off frequency was K =
5.5. The dynamic range is 79% for the conductivity, and 61% for the permittivity.
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Figure 5.
The test problem in Example 3. In this case, the background admittivity is 0.8 + 0.3i, rather
than 1 + 0i as in Examples 1 and 2.
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Figure 6.
Top row: Reconstruction from noise-free data for Example 3. The cut-off frequency was K =
5.2. The dynamic range is 71% for the conductivity, and 75% for the permittivity. Bottom
row: Reconstruction from data with 0.01% added noise. The cut-off frequency was |k| ≤ 5.5.
The dynamic range is 62% for the conductivity, and 68% for the permittivity.
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Table 1

Maximum and minimum values in Example 3 with the non-unitary background were found in the appropriate
organ region. The table indicates these values of the admittivity in the appropriate region.

Admitivity of test problem Reconstruction from noise-free data Reconstruction from noisy data

heart 1.2 + 0.6 i 1.0246 + 0.5014 i (max) 0.9740 + 0.4679 i (max)

lungs 0.5 + 0.1i 0.5262 + 0.1258 i (min) 0.5390 + 0.1281 i (min)
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