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Abstract
Paramagnetic metal ions generate pseudocontact shifts (PCSs) in nuclear magnetic resonance
spectra that are manifested as easily measurable changes in chemical shifts. Metals can be
incorporated into proteins through metal binding tags, and PCS data constitute powerful long-
range restraints on the positions of nuclear spins relative to the coordinate system of the magnetic
susceptibility anisotropy tensor (Δχ-tensor) of the metal ion. We show that three-dimensional
structures of proteins can reliably be determined using PCS data from a single metal binding site
combined with backbone chemical shifts. The program PCS-ROSETTA automatically determines
the Δχ-tensor and metal position from the PCS data during the structure calculations, without any
prior knowledge of the protein structure. The program can determine structures accurately for
proteins of up to 150 residues, offering a powerful new approach to protein structure
determination that relies exclusively on readily measurable backbone chemical shifts and easily
discriminates between correctly and incorrectly folded conformations.
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Introduction
The three-dimensional (3D) structure of proteins is a prerequisite for understanding protein
function, protein–ligand interactions and rational drug design. Protein structures can be
readily determined by nuclear magnetic resonance (NMR) spectroscopy.1 The most difficult
part of an NMR structure determination typically is the assignment of side-chain chemical
shifts and nuclear Over-hauser enhancement spectroscopy (NOESY) peaks. This bottleneck
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can potentially be avoided if methods for computing high-accuracy structures from
backbone-only NMR experiments can be developed.2

Pseudocontact shifts (PCSs) are a rich source of structural information that are manifested as
large changes in chemical shifts in the NMR spectrum caused by a nonvanishing magnetic
susceptibility anisotropy tensor (Δχ-tensor) of a paramagnetic metal ion. The PCS (in parts
per million) of a nuclear spin i depends on the polar coordinates ri, Θi and Φi of the nuclear
spin with respect to the Δχ-tensor frame of the metal ion and the axial and rhombic
components of the Δχ-tensor:

(1)

The Δχ-tensor defines a coordinate system in the molecule that is centered on the metal ion
and is fully described by eight parameters (Δχax, Δχrh, three Euler angles relating the
orientation of the Δχ-tensor to the protein frame and the coordinates of the metal ion).
Therefore, the Δχ-tensor can be determined using PCS data from at least eight nuclear
spins, provided that the coordinates of the spins are known.

As PCSs can be measured for nuclear spins 40 Å away from the metal, they present long-
range structure restraints exquisitely suited to characterize the global structural arrangement
of a protein. Thus, PCSs have been used very successfully to refine protein structures,3–5

dock protein molecules of known 3D structures6–8 and determine the structure of small
molecules bound to a protein of known 3D structure.9–11 The need for atom coordinates to
determine the Δχ-tensor parameters, however, makes it more difficult to use PCSs in de
novo determinations of protein 3D structures. All presently available protein structure
determination software that uses PCS data to supplement conventional NMR restraints
requires estimates of effective Δχax and Δχrh as input parameters.12–15 These are often
difficult to estimate accurately, as they depend on the chemical environment of the metal ion
and the mobility of the paramagnetic center with respect to the protein.

The ROSETTA structure prediction methodology16 is well suited for taking advantages of
the rich source of information inherent in PCSs. ROSETTA de novo structure prediction has
two stages—first, a low-resolution phase in which conformational space is searched broadly
using a coarse-grained energy function and, second, a high-resolution phase in which
models generated in the first phase are refined in a physically realistic all-atom force field.
The bottleneck in structure prediction using ROSETTA is conformational sampling; close-
to-native structures almost always have lower energies than nonnative structures. For small
proteins (<100 residues), ROSETTA has produced models with atomic level accuracy in
blind prediction challenges.17 For larger proteins, however, structures close enough to the
native structure to fall into the deep native energy minimum are generated seldom or not at
all. This sampling problem can be overcome if even very limited experimental data are
available to guide the initial low-resolution search. For example, CS-ROSETTA uses NMR
chemical shifts to guide fragment selection and constrain backbone torsion angles, greatly
improving the final yield of correctly folded protein models.18 As ROSETTA in favorable
cases is capable of generating protein structures very close to experimentally determined
structures from sequence information alone,19 it is of great interest to combine ROSETTA
with readily accessible experimental data to determine protein structures.

In this paper, we describe the incorporation of PCS data into ROSETTA. We show that this
new PCS-ROSETTA method can generate accurate structures for proteins of up to 150
amino acids in length even from quite limited data sets.
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Results
Test set

We tested the new PCS-ROSETTA method (see Materials and Methods) on a benchmark of
nine proteins for which chemical shifts and PCSs have been published. ArgN repressor was
independently determined twice with PCS data measured from paramagnetic metal ions at
two different sites. The proteins were between 56 and 186 amino acid residues in size, had
different folds and had between 82 and 1169 PCSs measured from one to eleven different
metal ions located at a single metal binding site (Table 1 and Supporting Information Table
1). Fragments for each protein were selected with CS-ROSETTA using available chemical
shift data and were used for all calculations. Structures of proteins with significant sequence
similarity to the target proteins were explicitly excluded from the CS-ROSETTA database.
The exclusion threshold we used was significantly stricter than that used in the original CS-
ROSETTA study,18 and in the cases where distant homologs were removed, the final model
quality in our CS-ROSETTA calculations was worse than previously reported.

Capacity of the PCS score to identify native-like structures
The PCS score describes a model’s agreement with observed PCS data by calculating the
expected PCS data given the structure. To calculate this, we used a 3D grid search for the
metal coordinates coupled with singular value decomposition for the Δχ-tensor components
to find the optimal match between calculated and observed data (see Materials and
Methods). The capacity of the PCS score to identify native-like models was assessed on sets
of 3000 CS-ROSETTA structures for each of the nine test proteins. These test structures
were produced using a reduced fragment set and included native fragments to ensure that
some of the models were similar to the target structure. The Cα rmsd of the decoy with the
lowest PCS score was always small (below 2.3 Å) with respect to the target protein (Fig. 1).
In addition, for all target proteins for which PCSs were available from two or more
paramagnetic metal ions, low Cα rmsd values correlated with low PCS scores. This indicates
that the PCS score can be used not only to identify near-native structures but also to bias
conformational sampling toward the native structure during fragment assembly.
Comparisons between the ROSETTA low-resolution energy function and PCS score are
shown in Supporting Information Fig. 1.

PCSs from 11 different lanthanides were available for calbindin. In order to explore the
value of using PCSs from multiple lanthanides, we rescored the structures using PCSs from
both individual and multiple lanthanides. Spearman rank correlation of PCS score versus
rmsd had coefficients ranging from 0.060 to 0.569 (average, 0.377) for single data sets.
Pairwise combination of PCS sets resulted in increased coefficients ranging from −0.080 to
0.574 (average, 0.459). Using all PCS sets resulted in a rank correlation coefficient greater
than 0.6, showing that PCSs from multiple metal ions greatly facilitate identification of
native-like protein folds.

Comparison of PCS-ROSETTA with CS-ROSETTA
We generated 10,000 decoys each with CS-ROSETTA and PCS-ROSETTA. Both
computations used the same fragment set, taking into account secondary structure
information from chemical shift measurements. Figure 2 illustrates the ability of the PCS
score to bias sampling toward the native structure. For seven out of the ten structure
calculations, the PCSs dramatically increased the frequency with which decoys with low Cα

rmsd to the reference structure were found. The effect was particularly pronounced for
protein targets with larger PCS data sets. For example, more than a third of the decoys found
for calmodulin had a Cα rmsd of less than 4 Å to the target structure, whereas fewer than 3%
met this criterion in the absence of PCS data. Similar results were obtained for the θ subunit,
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protein G and both ArgN repressor calculations. The PCS data did not significantly improve
the results for thioredoxin and parvalbumin for which only PCS data from a single
paramagnetic metal ion were available. No native-like structures were found for ε186,
which may be attributed to its larger size (186 residues). To evaluate the influence of the
PCS score during the fragment assembly, we performed an additional calculation with the
PCS score as the only energy term (Supporting Information Text 1).

The low-resolution models were subjected to full-atom relaxation refinement in the last step
of the calculation, using the full-atom ROSETTA force field (without inclusion of the PCS
score). The additional minimization step did not significantly change the overall shape of the
distributions but tended to improve the Cα rmsd of native-like decoys (Supporting
Information Fig. 2) and, most importantly, allows recognition of the best models based on
their energies.

Rescoring full-atom relaxed structures with a weighted combination of the ROSETTA and
PCS scores further improved the recognition of near-native structures as measured by the Cα

rmsd of the lowest-energy structure (Table 1, PCS-ROSETTA run; Fig. 3), with PCS-
ROSETTA identifying low Cα rmsd (<3 Å) structures in eight out of ten cases. With the
exception of target C, for all successful targets, a population of the five lowest-energy
structures converge to less than 3 Å, while the two failed targets do not improve beyond 10
Å (Table 1). Convergence is a signal that the protocol has found a topology that reliably
satisfies the combined score, which, in the case of PCS-ROSETTA, clearly identifies the
failed models as unreliable, allowing for their rejection.18 In the case of target C, large
disordered termini prevent a clear identification of convergence, but convergence becomes
apparent when only the core residues are considered (Supporting Information Table 2).
Results with CS-ROSETTA and PCS-ROSETTA are compared in Supporting Information
Fig. 3.

Agreement of the structures with the experimental data can also be directly assessed by the

quality factor , where  is the experimental PCS
value for the nuclear spin i. A quality factor above 25% indicates failure to find a correct
structure, and a quality factor below 20% indicates that the computed structure is in good
agreement with the experimental PCSs (Table 1), as in other definitions of quality factors.20

The low quality factor of the θ subunit (7%) establishes the success of the calculation
despite the lack of clear convergence.

Successes and limits of PCS-ROSETTA calculations
The results of PCS-ROSETTA calculations are summarized in Table 1. The structures of
small proteins (<80 residues, targets A to F) are easily solved by PCS-ROSETTA: the
lowest PCS-ROSETTA energy is consistently below 2.4 Å in Cα rmsd relative to the native
structure and has a quality factor below 16%. For these proteins, the generation of 10,000
models was ample (Fig. 2a–f). The same number of decoys calculated with CS-ROSETTA
did not lead to satisfactory convergence for targets B to F (Table 1), though targets C and D
partially recover if flexible termini are removed at the full-atom rescoring step (Supporting
Information Text 2). The tag used to paramagnetically label ArgN (D) produced Δχ-tensor
axes of significantly different orientation with different lanthanides,21 which may explain
why the PCS-ROSETTA calculations performed particular well with these data.

PCS-ROSETTA succeeded in calculating the structure of a protein with 146 residues and
PCSs from multiple lanthanides (target I). More than 62% of calculated structures had a Cα

rmsd below 5 Å, while only 6.2% met that criterion for CS-ROSETTA calculation (Fig. 2i).
This indicates that the PCS data score can effectively guide the sampling toward the correct
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fold also for larger proteins. While calculations on target J (186 residues) did not converge
despite a large PCS data set, this can be attributed to a sampling problem associated with
large proteins of complex topology,19 which may be overcome with a modified protocol.
Importantly, the success of a calculation can be ascertained from calculating the quality
factor Q. Combined with the convergence criterion,18 the quality factor is an effective way
to assert the success of a calculation (Supporting Information Fig. 4). For each of the eight
targets for which the PCS-ROSETTA calculations converged, the structure with the lowest
energy is shown superimposed with the native structure in Fig. 4.

Discussion
The structural information content of the PCS effect has long been recognized, but initial
attempts to determine the 3D structures of biomolecules by the use of PCSs were hampered
by the difficulty to determine Δχ-tensor and structure simultaneously.22 Subsequently, the
first 3D structure determinations of proteins relied on nuclear Over-hauser effect (NOE)
data.1 Later attempts to solve a protein structure without the use of NOEs relied heavily on a
blend of restraints from paramagnetic NMR effects, including residual dipolar coupling,
cross-correlated relaxation and PCS restraints, and additional experimental secondary
structure restraints.23 Full structure determination of proteins from PCS data alone continues
to be regarded as difficult.24 Owing to its modeling capabilities, PCS-ROSETTA makes it
possible, for the first time, to determine 3D structures using PCSs as the only restraints
while simultaneously determining all Δχ-tensor parameters and integrating PCSs from
different metal ions. In addition, a PCS quality factor that is highly indicative of the
correctness of the final structure can be calculated. The effect of the PCSs on improving
convergence of the calculations toward the correct target structures is particularly
remarkable if one considers that PCS data mostly were available only for backbone amides.

The success of PCS-ROSETTA is based on the fact that, in contrast to scoring functions
using chemical shift data, the PCS score is much more sensitive to global than local
structure. Therefore, PCS data can guide the search in the low-resolution fragment assembly
step, greatly increasing the yield of near-native structures compared to CS-ROSETTA. PCSs
thus present an ideal complement to chemical shift information that is most important in the
preceding fragment selection step. The improved convergence alleviates the need to
compute large numbers of decoys. It would be possible to accelerate the computations
further by using the PCS score to select decoys with low rmsd values to the target structure
prior to the computationally expensive refinement of amino acid side-chain conformations.

Many protein specific factors including fold complexity, number and quality of PCS data
and metal site play roles in the success of PCS-ROSETTA fragment assembly, and their
relative importance is difficult to disentangle. In general, PCS data from two or more
lanthanides are expected to assist identification of decoys with low rmsd to the target
structure. While the structure of calmodulin, a protein with 146 residues, was successfully
determined by PCS-ROSETTA, the structure of ε186 (186 residues) was not found by the
program despite the availability of many PCSs overall (Table 1). The scarcity of PCS values
for residues near the lanthanide binding site may have contributed to this effect. As the PCS-
ROSETTA protocol did not sample structures below 10 Å rmsd (Fig. 3j) and as the energy
landscape defined by the PCS scores became funnel-like only for structures with less than
about 10 Å rmsd to the native structure (Fig. 1j), it is also conceivable that the
conformational space explored by the basic ROSETTA sampling protocol needs to be much
larger for larger proteins. To explore the performance of PCS-ROSETTA for large proteins
and proteins that converge poorly with CS-ROSETTA, we performed test calculations using
simulated PCS data. The results show consistently improved convergence and identification
of correctly folded substructures by PCS-ROSETTA, even though convergence to structures
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close to the target structure remained difficult (Supporting Information). An alternative
sampling protocol, such as broken chain sampling25 or iterative refinement,26 may be
required for accurate PCS-assisted modeling of difficult proteins such as ε186.

The present calculations were performed with proteins containing single metal binding sites.
Clearly, data from multiple metal ions using different metal binding sites will greatly
enhance the information content of PCS data. In particular, lanthanide ions display very
different paramagnetic properties, while their chemical similarity allows all lanthanides to
bind at a given lanthanide binding site. Several metal binding tags have recently been
developed to tag proteins site-specifically with a paramagnetic lanthanide; for a recent
review, see Refs. 27 and 28. We note that PCSs were as useful for targets devoid of natural
metal binding sites (targets A, C, D and E) as for metalloproteins (Fig. 2). Rigid attachment
of lanthanides to the protein can be important as tag mobility may introduce errors in the
computed structure due to the averaging of the PCS effect, but we note that excellent fits of
PCSs to protein structures can also be obtained in the presence of substantial tag mobility.29

In conclusion, we propose a new approach to protein structure determination in which PCS
data are collected from natural or engineered metal binding sites and then used to guide
ROSETTA conformational search along with backbone chemical shift data. Although
ROSETTA calculations are computationally demanding particularly for larger proteins, the
PCS-ROSETTA method shows improved convergence and is applicable without the need of
time-consuming side-chain resonance assignments and NOE measurements. The approach
further allows reliable assessment of the accuracy and reliability of the lowest-energy
models based on the convergence of the calculation and the PCS quality factor. In view of
the increasing rate with which specific lanthanide tags are being developed and
commercialized for proteins,30 with multiple independent lanthanide data sets and improved
conformational search methods, the approach should be extendable to proteins greater than
150 amino acids when backbone PCS data sets from three or more lanthanides are available.
PCS-ROSETTA is available free of charges as a module of the academic release of the
ROSETTA program for protein modeling‡.

Materials and Methods
PCS-ROSETTA score

The PCS (in ppm) induced by a metal ion M on a nuclear spin can be calculated as31

(2)

where ri is the distance between the spin i and the paramagnetic center M; xi, yi and zi are
the Cartesian coordinates of the vector between the metal ion and the spin i in an arbitrary
frame f; and Δχxx, Δχyy, Δχzz, Δχxy, Δχxz and Δχyz are the Δχ-tensor components in
the frame f (as Δχzz = −Δχxx − Δχyy, there are only five independent parameters). The
Δχ-tensor components and the metal coordinates are initially unknown and must be
redetermined each time the PCS score c is evaluated. c is calculated over all metal ions Mj
as

‡The design is available at http://www.rosettacommons.org/
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(3)

where  and  are the calculated and experimental PCS values of spin i
induced by the metal ion Mj, respectively. The determination of the Δχ-tensor components
and the metal coordinates presents a nonlinear least-square fitting problem. In order to avoid
local minima and speed up the calculation, we split the problem into its linear and nonlinear

parts. Equation (2) shows that  is linear with respect to the five Δχ-tensor
components. With the use of a 3D grid search over the Cartesian coordinates xM, yM and zM
of the paramagnetic center, singular value decomposition optimizes the five Δχ-tensor
parameters efficiently and without ambiguity for lowest residual score c at each node of the
grid. The grid node with the lowest c score is then used as the starting point for optimization
of the three metal coordinates along with the five Δχ-tensor components to reach the
minimal cost c.

The PCS score was added to the ROSETTA low-resolution energy function using a different
weighting factor w(c) for each structure calculation. w(c) was determined by first generating
1000 decoys with ROSETTA and calculating w(c) as

(4)

where ahigh and alow are the average of the highest and lowest 10% of the values of the
ROSETTA ab initio score, and chigh and clow are the average of the highest and lowest 10%
of the values of the PCS score c upon rescoring each of the 1000 decoys with the PCS. The
weights used for the 10 structure calculations performed in the present work are given in
Supporting Information Table 1.

PCS-ROSETTA algorithm
PCS-ROSETTA uses the ROSETTA de novo structure prediction methodology to build
low-resolution models, followed by all-atom refinement using the ROSETTA high-
resolution Monte Carlo minimization protocol. The additions to the standard ROSETTA
structure prediction methods are as follows: the use of chemical shifts to guide fragment
selection as in CS-ROSETTA, the use of PCS data to guide the initial low-resolution search
and the use of PCS data for final model selection. A flow diagram of the computational
protocol of PCS-ROSETTA is shown in Supporting Information Fig. 5.

Input for PCS-ROSETTA
The backbone 1H, 13C and 15N diamagnetic chemical shifts of all protein targets, with
exception of thioredoxin for which only 1H and 15N chemical shifts were available, were
taken from the literature or from the Biological Magnetic Resonance Bank (Table 1 and
Supporting Information Table 0). CS-ROSETTA was used for fragment selection. CS-
ROSETTA reports the difference between experimental and expected chemical shifts.
Chemical shifts with very large deviations from expectations (often attributable to errors in
the deposited data) were removed from the input. CS-ROSETTA also suggests corrections
in the chemical shift referencing. We only corrected 13C chemical shifts, except for
thioredoxin where 15N chemical shift was corrected (Supporting Information Table 1). CS-
ROSETTA aims to generate 200 nine-residue fragments and 200 three-residue fragments
centered on each residue of the polypeptide chain for use in the ab initio fragment assembly
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protocol of ROSETTA. In cases where CS-ROSETTA failed to generate 200 fragments, we
generated additional fragments using the conventional ROSETTA protocol in order to make
200 fragments available. For each of the target proteins, we removed any protein with
recognizable sequence similarity (BLAST E-value below 0.05) from the CS-ROSETTA
protein database. E-values were computed against the CS-ROSETTA sequence database,
which is approximately 500 times smaller than the nonredundant database used by Shen et
al.18 Since E-values scale with database size, this results in a much stricter homology
threshold and is equivalent to an E-value of approximately 25 if the nonredundant database
of Shen et al. had been used. In order to accelerate the grid search for the metal position,
PCS-ROSETTA allows a precise description of the space to be searched, including the
center of the grid search (cg), the step size between two nodes (sg), an outer cutoff radius
(co) to limit the search to a minimal distance from cg and an inner cutoff radius (ci) to avoid
a search too close to cg. A moderately large step size (sg) was chosen to speed up
computations during low-resolution sampling (Supporting Information Table 1) and reduced
to 25% of its value during the final high-resolution scoring step to ensure maximum
accuracy. For each target, the grid parameters cg, co and ci were chosen in accordance to
prior knowledge about the approximate metal binding site. For example, for a covalent tag
attached to the protein, we used the known geometric information of the tag to set cg, co and
ci, whereas for proteins with a natural metal binding site, a highly conserved negatively
charged residue was picked as a reference point for cg. In the absence of prior biochemical
information, the nuclear spin with the largest absolute PCS value was chosen as the center of
the grid. Supporting Information Table 1 summarizes the grid parameters used for the
different protein targets. In order to assess the impact of the initial grid parameters on the
structures calculated, we performed a set of PCS-ROSETTA calculations for each target,
where cg was centered at the nuclear spin of the largest PCS observed and where the cutoff
radius co was set to 15 Å. No change in the quality of the results was observed, but in most
cases, the calculations took longer.

PCS-ROSETTA protocol for protein structure determination
Chemical shifts of the proteins were prepared in Talos format32 and used by CS-ROSETTA
for fragment selection. Chemical shift corrections, fragment selection and determination of
the weights w(c) were performed as described above. We computed 10,000 protein
structures with PCS-ROSETTA and subjected them to the full-atom relaxation protocol of
ROSETTA to model the side-chain conformations. The final structures were rescored using
the ROSETTA full-atom energy function combined with the PCS scores c, using the
weighting factors w(c) [Eq. (4)] with ahigh and alow calculated against the ROSETTA full-
atom energy and with a total weight multiplied by 2 to give a larger contribution to the PCS
score than in the fragment assembly. The best scoring structures can be assessed by the PCS
quality factor Q = rms(PCScalc -PCSexp)/rms(PCSexp). Computation of 10,000 PCS-
ROSETTA structures took on average 137 CPU days per target (approximately three times
longer than CS-ROSETTA calculations) and was run on a local cluster. Supporting
Information Fig. 6 shows a posteriori that 1000 structures per targets would have been
enough for convergence of the protocol.

Computation of structures to evaluate the effects of PCS scoring
We generated 3000 decoys with a wide range of rmsd values to the target structure by
including the native fragment and limiting the number of alternatives fragments in the
fragment generation step of the ROSETTA calculations. We calculated 1000 decoys each
using two, five and ten fragments per residue, respectively. The presence of the native
fragments in a small pool of fragments ensured the generation of structures very similar to
the target structure.
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Fig. 1.
Fold identification by PCSs. We generated 3000 decoys using CS-ROSETTA. In order to
ensure the presence of decoys with low rmsd values to the target structure, we reduced the
starting set of peptide fragments and included fragments from the known target structures.
PCS scores are plotted versus the Cα rmsd to the target structure. The targets (a–j) are as in
Table 1. The PCS score correlates with the Cα rmsd.
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Fig. 2.
Improved conformational sampling by PCS-ROSETTA. We carried out 10,000 independent
low-resolution trajectories with (black) or without (red) PCS information. The plots show
the density of Cα rmsd values to the target structure after the fragment assembly step. The
targets are labeled as in Table 1. Corresponding plots of structures calculated with full-atom
relaxation for positioning the amino acid side chains are shown in Supporting Information
Fig. 2. The library used for fragment selection explicitly excluded any protein with sequence
similarity to the target protein. The figure shows that PCS scores efficiently guide fragment
assembly toward the correct target structure.
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Fig. 3.
Energy landscapes generated by PCS-ROSETTA. Combined ROSETTA energy and PCS
score [using the weighting factor w(c)] are plotted versus the Cα rmsd to the target structure
for structures calculated using PCS-ROSETTA. The lowest-energy structures are indicated
in red. The targets are labeled as in Table 1. The results show that PCS-ROSETTA is likely
to generate and identify the correct fold.
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Fig. 4.
Superimpositions of ribbon representations of the backbones of the lowest-energy structures
calculated with PCS-ROSETTA (blue) onto the corresponding target structures (red). The
protein targets are (a) protein G, (b) calbindin, (c) the θ subunit of Escherichia coli DNA
polymerase III, (d) the N-terminal domain of the E. coli arginine repressor (ArgN; with
covalent lanthanide tag), (e) ArgN with non-covalent lanthanide tag, (f) the N-terminal
domain of calmodulin, (g) thioredoxin, (h) parvalbumin, (i) calmodulin and (j) the globular
domain of the ε subunit of E. coli DNA polymerase III. Flexible termini were omitted as
described in Supporting Information Table 1. Only the target structure is shown for
parvalbumin (h) and the ε subunit (j), as the calculations could not reproduce the correct
fold for these proteins.
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