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Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections in women,
causing significant morbidity and mortality in this population. Adherence to host epithelial cells is
a pivotal step in the pathogenesis of UPEC. One of the most important virulence factors involved
in mediating this attachment is the type 1 pilus (type 1 fimbria) encoded by a set of fim genes
arranged in an operon. The expression of type 1 pili is controlled by a phenomenon known as
phase variation, which reversibly switches between the expression of type 1 pili (Phase-ON) and
loss of expression (Phase-OFF). Phase-ON cells have the promoter for the fimA structural gene on
an invertible DNA element called fimS, which lines up to allow transcription, whereas
transcription of the structural gene is silenced in Phase-OFF cells. The orientation of the fimS
invertible element is controlled by two site-specific recombinases, FimB and FimE.
Environmental conditions cause transcriptional and post-transcriptional changes in UPEC cells
that affect the level of regulatory proteins, which in turn play vital roles in modulating this phase
switching ability. The role of fim gene regulation in UPEC pathogenesis will be discussed.
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ROLE OF TYPE 1 PILI IN UROPATHOGENIC ESCHERICHIA COLI
PATHOGENESIS

Uropathogenic Escherichia coli (UPEC) is the number one cause of urinary tract infections
in the United States[1,2]. Approximately 6-7 million people are afflicted with a urinary tract
infection each year in the United States at a cost of $2.5 billion per year. Urinary tract
infections are modeled as ascending infections. In women, the UPEC bacteria move from
the rectum to the vaginal surface to the urinary tract. Although UPEC can express several
different varieties of pili, type 1 pili may be the most important in the human lower urinary
tract. Agglutination of guinea pig erythrocytes in the absence of mannose is an important
characteristic of type 1 pili[3,4]. Besides Escherichia coli (E. coli), type 1 pili are found on
several other species within the Enterobacteriaceae family[5]. The role of type 1 piliated
UPEC cells in the pathogenesis of human urinary tract infections was first demonstrated in
the early 1980s and has continued in more recent studies[6-12]. Moreover, these human
patient studies have been supported by several murine urinary tract infection model studies
that have shown the importance of type 1 pili in UPEC pathogenesis[11,13-15]. This
culminated in a study by Connell et al[16], who compared a fimA mutant strain to the wild-
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type parent to show the critical role of type 1 pili in UPEC colonization of the lower urinary
tract.

GENETIC ORGANIZATION OF THE UPEC fim OPERON
Type 1 pili are produced from a contiguous DNA segment, labeled the fim operon, which
encodes the genes necessary for their synthesis, assembly, and regulation. The fim cluster
was mapped to the 98 min on the E. coli chromosome[17]. Nine genes have now been
identified within the gene cluster (Figure 1).

The pilin structural gene, fimA, encodes a 158-159 amino acid polypeptide with an
approximate molecular weight of 17 kDa[18,19]. Immediately upstream of the fimA gene is a
314-bp invertible DNA element called fimS, which contains the promoter for fimA with 9
bp inverted repeats (IRs) flanking this segment of DNA (5′ TTGGGGCCA), labeled IRL
and IRR (Figure 1)[20,21]. The fimA promoter sequence undergoes site-specific
recombination, positioning the invertible element in either the Phase-ON (piliated
phenotype) or Phase-OFF (nonpiliated phenotype) orientation. This switching phenomenon
is known as phase variation. Two genes upstream of the fimS invertible element, fimB and
fimE, encode proteins thought to be involved in positioning the fimS DNA and will be
discussed further below.

The fimI gene was the last gene within the fim operon to be characterized[22]. FimI’s
function is not known. Within the fim gene cluster, there are two additional genes involved
in transport and assembly of type 1 pili: fimC and fimD. FimC is a periplasmic chaperone
protein[23-25] that helps translocate the fimbrial proteins through the periplasm until the
FimC-Fim protein complex reaches the FimD usher. FimD is an integral outer membrane
protein that serves as an usher, allowing surface localization of the nascently forming type 1
pilus[26-28].

Although the FimA monomers comprise the bulk of the type 1 pilus structure, FimA does
not mediate binding to the mannose containing receptor. An adhesin, encoded by the fimH
gene, is responsible for this binding[29-33]. The two remaining genes in the fim operon are
fimF and fimG. FimF and FimG are associated with FimH adhesin, forming a fibrillum
structure that anchors the adhesin to the pilus shaft and controls the length of the type 1
pilus[29,30,34-37].

PHASE VARIATION’S ROLE IN TYPE 1 PILUS EXPRESSION
Phase variation is a reversible process, which, in the case of UPEC, leads to an oscillation
between Phase-ON piliated cells and Phase-OFF nonpiliated cells. Using fimA-lacZ operon
fusions, rates of 10−3 to 10−4/cell/generation were originally calculated for type 1 pilus
expression[38,39]. Phase variation results in agar and, particularly, broth cultures of UPEC to
comprise a mixture of piliated and nonpiliated cells.

The site-specific recombination that allows phase variation to occur requires two trans-
acting factors located proximally upstream of fimS, encoded by fimB and fimE[40].
Sequence analysis of fimB and fimE indicated that the predicted proteins were highly basic,
a property of many DNA-binding proteins[41]. The predicted amino acid sequences show
homology with the DNA binding domain of integrase[42] and contain a tetrad of conserved
amino acids required for the recombinase activity[43-45]. Furthermore, FimB and FimE have
48% amino acid homology with each other[40]. Klemm[40] originally suggested that FimB
and FimE might act independently to switch the fimS element unidirectionally, either Phase-
ON to Phase-OFF or vice versa, via the two 9 bp invertible repeat elements, IRL and IRR.
FimB can bind to the fimS element to either switch from Phase-ON to Phase-OFF or vice
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versa, with a slight bias towards the Phase-OFF over the Phase-ON orientation (Figure
2)[46-56]. By contrast, FimE binds to switch fimS from Phase-ON to Phase-OFF. In rare
cases, FimE has been shown to initiate a Phase-OFF to Phase-ON switch[57] or when
specific amino acid substitutions are made[45]. Orientation of the fimS element in the Phase-
OFF position leads to the production of antisense transcripts from the fimA promoter[49,58].

FimB-mediated recombination occurs at the rate of 10−3 to 10−4 per cell per generation that
was originally described; however, FimE-mediated switching occurs more often at a
frequency of 0.3 per cell per generation[52,59]. Base substitutions within fimS demonstrated
that FimB and FimE used the same DNA cleavage and religation sites within IRL and IRR,
allowing more DNA base variations for FimB than FimE[60]. When fimB and fimE were
provided in trans on plasmids, they affected pilin expression, suggesting that the ratio of
FimB and FimE is important.

The promoters for both fimB and fimE have been mapped[61-63]. For the fimB gene, the
number of promoters varies between one and three. Promoters P1 and P2, which were
mapped by Schwan et al[63] in two UPEC strains (Figure 1), were confirmed by another
group[61]. A potential third fimB promoter was also identified by Schwan et al[63],
approximately 650 bp upstream of the fimB P2 promoter, and around 840 bp upstream of
the translational start site of fimB. This third fimB promoter has not been confirmed by
other groups and could be an anomaly. It could also be a third fimB promoter connected to
sialic acid regulation of fimB (see below). Certainly, strain differences could explain the
different numbers of fimB promoters. Only one promoter has been identified for the fimE
gene[62].

OTHER CO-FACTOR PROTEINS THAT AFFECT PHASE SWITCHING
Besides the fim gene cluster, other genes and their gene products contribute to the
expression of type 1 pili. Early work mapped a gene, pilG, at 27 min on the E. coli
chromosome that affected inversion of the fimS region[21]. A mutation of the pilG gene
increased the inversion of the fimS region by up to 100-fold as measured with a fimA-lac
fusion[21]. The pilG locus was shown to be allelic to bglY[64], drdX[65], and osmZ[66]. Later,
it was determined that the pilG and osmZ genes were in fact alleles of the hns gene[66-68].
The hns gene encodes the H-NS global regulatory protein[69].

H-NS possibly controls the phase variation of the fimS region both directly and
indirectly[61,62,70-74]. For a potential direct effect, H-NS binds to sequences adjacent to the
fimS invertible element[72,75].

Indirectly, H-NS represses the transcription of both fimB and fimE[62,71,74]. H-NS binds,
with a high degree of specificity, to both the P1 and P2 promoter sites for fimB[71,72]. The
DNA-binding regulatory protein also binds to the fimE promoter[71]. Moreover, H-NS also
represses lrp transcription[76], which would in turn affect the phase switching of the fimS
element, as described below. Thus, transcriptional repression of the fimB and fimE site-
specific recombinase genes would indirectly influence the position of the fimS element,
which would indirectly affect phase variation.

Besides H-NS, integration host factor (IHF) and leucine-responsive protein (Lrp) are
additional co-factors that affect type 1 pilus phase variation. Both proteins cause sharp bends
in the DNA structure, introducing hairpin loops that facilitate recombination events within
UPEC. IHF is a two-component protein consisting of IHF encoded by ihfA[77] and IHF
encoded by ihfB[78]. Both Eisenstein et al[42] and Dorman et al[43] showed that IHF plays a
role in type 1 pilus switching. Mutations in either ihfA or ihfB locked the fimS region in
either the Phase-OFF or Phase-ON orientation[79]. In both studies, an IHF binding site (IHF

Schwan Page 3

World J Clin Infect Dis. Author manuscript; available in PMC 2013 April 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



II) proximal to IRR was identified (Figure 3). In addition, an IHF binding site was also
identified between IRL and the 3′ end of fimE (IHF I)[80]. A mutational analysis of this IHF
I site demonstrated that FimB-mediated recombination was more adversely affected,
suggesting a directional bias for FimB recombination[73,75,79,81,82].

The leucine-responsive regulatory protein (Lrp) is another protein that has been shown to
affect the fimS region. Lrp is a global regulator of genes involved in metabolic functions
within E. coli, including pili synthesis[83]. Mutations of the lrp gene cause a lower frequency
of recombination of the fimS element[80,84]. Lrp binds to three distinct sites within the fimS
element that are closer to the IRL site. When the high affinity sites 1 and 2 are mutated, the
recombination frequency declines[79,85]. Lrp binding to the low affinity site 3 inhibits
recombination[86,87]. Lrp and IHF can bend the fimS DNA; therefore, they would allow the
proper positioning of IRL and IRR that facilitates recombination[80,87]. The levels of
specific amino acids will also affect Lrp binding to the fimS element and subsequently phase
variation[86]. Lrp binding causes an orientational bias to the fimS element. When neither Lrp
nor IHF are present at sufficient levels, H-NS will bind and maintain the Phase-OFF
orientation[88]. Although Lrp binds to multiple sites within the fimS element, Lrp directly
regulates neither fimB nor fimE.

Another protein that regulates type 1 pilus expression is the LysR-type regulator, LrhA[89].
LrhA was first identified to be associated with RpoS degradation[90]. Microarray analysis of
mRNA populations from an lrhA mutant vs wild-type bacteria revealed increased expression
of the fimAICDFGH operon. Purified LrhA protein bound to the promoter regions of both
fimB and fimE; however, there was higher affinity for the fimE promoter. The use of fimB-
or fimE-lacZ translational fusions indicated there was a greater effect with the fimE-lacZ
fusion. Thus, LrhA appears to activate fimE, which would repress type 1 pilus expression.

Three other proteins have unexplained effects on type 1 pilus expression in E. coli: OmpX,
IbeA, and IbeT. Inactivation of ompX, encoding an outer membrane protein OmpX, caused
an increased production of FimA[91]. A disruption caused by the loss of OmpX would
change the cell surface, which would affect cell-surface interactions. It is likely that OmpX
acts indirectly to regulate type 1 pilus expression. A deletion of the ibeA gene caused
diminished type 1 pilus expression, as well as lower transcription of fimB and fimE,
whereas an ibeT mutant was shown to have the fimS element preferentially in the Phase-
OFF orientation[92]. How each of these proteins works to regulate the fim genes has not
been determined.

The regulatory alarmone, ppGpp, has been connected to the regulation of multiple genes in
E. coli, including the fim operon. ppGpp-deficient strains exhibited diminished type 1 pili
expression compared to the wild-type strain[93]. Furthermore, primer-extension analysis
indicated that ppGpp activated the fimB P2 promoter. A follow through study demonstrated
that DskA, a cofactor required for ppGpp-mediated positive regulation of several amino acid
biosynthesis promoters[94], also activated transcription from the fimB P2 promoter[95].

Besides FimB and FimE, there are four other site-specific recombinases that could affect
phase switching of the fimS element: HbiF, IpuA, IpuB, and IpbA. The HbiF-mediated
inversion of the fimS element occurs primarily from Phase-OFF to Phase-ON[96].
Constitutive expression of HbiF locked the fimS DNA in the Phase-ON position. The three
other site-specific recombinases (IpuA, IpuB, and IpbA) were discovered by sequence
analysis of the UPEC strain CFT073 genome because of their high homology with the fimB
and fimE genes[97]. Both IpuA and IbpA bind to the fimS element and mediate phase
switching. IpuA functions like FimB, allowing a Phase-OFF to Phase-ON switch as well as
Phase-ON to Phase-OFF switching, whereas IpbA can switch fimS from Phase-OFF to
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Phase-ON. It is not clear under what environmental growth conditions these alternative site-
specific recombinases affect the fimS element positioning.

Also linked to the fimS genetic switch are Rho and LeuX. Transcriptional termination of
fimE was determined to be Rho-dependent, based on the use of a rho mutant or by treatment
with bicyclomycin, an antibiotic that interferes with Rho[98,99]. Thus, when the phase switch
is in the Phase-OFF position, there is a Rho-dependent termination of the fimE sense
transcript, leading to a truncated, unstable mRNA that is readily degraded. Less FimE site-
specific recombinase would allow FimB to bind and switch the fimS element to the Phase-
ON position. The minor leucyl tRNA, LeuX, affects the fimS element switching from
Phase-OFF to Phase-ON[100,101]. Placing the leuX gene on a multicopy plasmid caused
greater expression from the fimAICDFGH operon[102].

All of the studies examining fimB regulation described above have concentrated on the P1
and P2 promoter regions. However, several other studies have shown that the intergenic
region between the yjhATS operon and the fimB gene also plays a role in genetic regulation
of fimB[103-105]. Sialic acid and N-acetylglucosamine inhibit the FimB recombinase. Two
proteins, NagC (a N-acetylglucosamine-6P-responsive protein) and NanR (a sialic acid-
responsive protein), linked to sialic acid and N-acetylglucosamine catabolism[106,107], bind
to two deoxyadenosine methylation sites within the intergenic region[103-105] that align with
P3 fimB promoter described earlier[58]. In addition, NagC also binds to an operator site 212
bp closer to the fimB translational start site[105]. Both proteins are thought to act as
antirepressors that allow fimB transcription to occur[103]. However, a urinary tract infection
caused by type 1 piliated UPEC will elicit an inflammatory response[108], leading to
increased levels of both sialic acid and N-acetylglucosamine that will, in turn, activate some
cis-active regulatory protein that shuts off fimB transcription.

Regulatory proteins for other pilus systems can also regulate type 1 pilus expression through
a cross-talk mechanism. PapB, which affects the phase variation of the pyelonephritis
associated pilus (pap) operon[109,110], also regulates the orientation of the fimS
element[111-113]. In contrast to FimB, PapB inhibits the Phase-OFF to Phase-ON switching.
Two proteins associated with S pili, SfaB and SfaX, also have a negative effect on Phase-
OFF to Phase-ON switching[111,114]. Thus, there appears to be an expression competition
between the different pilus operons. These regulatory proteins that allow expression of other
types of pili in other environments counter the need for type 1 pili under growth conditions
where type 1 pili are not needed.

In stationary phase-grown E. coli cells, type 1 pilus expression is diminished compared to
logarithmic grown cells. The alternative sigma factor, RpoS, which is activated during
stationary phase, represses fimB transcription[115]. Another regulatory signal active in a
logarithmic phase culture may be provided by glucose acting as a catabolite repressor by
increasing internal cAMP concentrations, which allow for greater interactions with its
receptor protein, CRP[116]. For type 1 pilus expression, the role of cAMP and glucose is
opaque. Early studies indicated that cAMP affected pilus expression in some strains of E.
coli[117] and in cya (adenyl cyclase) mutants of Salmonella enterica serovar
Typhimurium[118]. However, in a later study, glucose had no effect on pilus expression,
even when added with exogenous cAMP or when tested in adenlyate cyclase mutants[119].
Unfortunately, some of the early work was done with the CSH50 strain of E. coli, which has
a fimE::IS1 mutation[52], so the role of catabolite repression remained unclear, until
recently. Using a more defined system, Müller et al[120] have shown that CRP-cAMP
directly represses the fimA promoter and indirectly affects phase variation by limiting the
switch from Phase-OFF to Phase-ON in a logarithmic stage population.
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Two other proteins that activate fimB transcription are RcsB and SlyA. RcsB is part of the
RcsC/RcsB two-component phosphorelay regulatory system[121]. Using an rcsB mutant, it
was shown that under neutral pH/low osmolality growth conditions, RcsB appears to
activate fimB[122]. Growth in an acidic environment did not affect fimB expression in the
rcsB strain compared to wild-type cells. Recently, the SlyA global regulator was implicated
in fimB gene activation[123], but the growth conditions that would favor slyA expression
were not determined.

The last accessory protein with relevance to fim gene regulation is OmpR. OmpR is part of
the EnvZ/OmpR two-component regulatory system that regulates genes under an osmotic
stress[124]. A study by Schwan et al[74] found that an ompR mutant strain had de-repressed
transcription of fimB and fimE compared to wild-type cells. More recently, they found that
unphosphorylated OmpR bound to the P2 promoter of fimB to repress fimB
transcription[125] (Rentchler, Lovrich, and Schwan, manuscript submitted). However,
through DNase I footprinting analysis, neither unphosphorylated nor phosphorylated OmpR
bound directly to the fimE promoter, suggesting another regulatory element that is regulated
by OmpR-P would directly affect fimE transcription.

Thus, in addition to FimB and FimE, approximately 20 different auxiliary proteins have a
role to play in the regulation of one or more fim genes or positioning the fimS element.
These 20 proteins are represented in a schematic model shown in Figure 3. Some of the
proteins repress fim gene expression (e.g. H-NS, OmpR, RpoS), whereas others appear to
activate fim gene expression (e.g. DskA, LrhA, NagC, NanR, RcsB, SlyA). How some of
these proteins may affect UPEC type 1 pilus expression during the course of a human or
murine urinary tract infection is described below.

ENVIRONMENTAL SIGNALS WITHIN THE URINARY TRACT AFFECTING
UPEC TYPE 1 PILUS EXPRESSION

The human or murine urinary tract is a dynamic environment. In the lower urinary tract,
there are ample mannose receptors for FimH-mediated attachment of type 1 piliated UPEC
cells[126]. The temperature in the urinary tract is around 37°C. Although one group showed
Phase-OFF to Phase-ON switching increased at lower temperatures, others have
demonstrated that the fimA promoter element is biased in its switch from the Phase-ON to
the Phase-OFF orientation in broth cultures grown at 20°C, but the switch favors FimB
recombination at 37°C[59,71,127]. More recently, Kuwahara et al[128] demonstrated that
FimB-mediated recombination could be linked to a controlled downregulation of the Phase-
ON to Phase-OFF switching rate based on a temperature-dependent suppression of the
interplay of the FimE recombinase.

When the UPEC cells move from the vaginal surface, which has only a slightly acidic pH/
low osmolality environment, to the urethra or ascend to the bladder, there is a switch to a
moderate acidic pH/moderate to high osmolality environment[129,130]. Under the slightly
acidic pH/low salt growth conditions found on the vaginal surface, proteins such as SlyA or
RcsB may activate fimB and prevent H-NS from binding, allowing type 1 pili to be created
and presented on the surface of the UPEC cells for attachment. When the bacteria move
from the exterior opening of the urinary tract and ascend the urethra to the bladder, an acidic
pH/moderate osmolality environment is encountered in the bladder[129,130]. A preliminary
study implied that an acid tolerance system-induced protein is involved in the regulation of
several fim genes (Schwan WR, unpublished results), which may begin to turn off the fim
operon. Furthermore, a change in the osmolality would activate the EnvZ/OmpR two-
component regulatory system, allowing OmpR to repress fimB transcription[74,125].
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UPEC infections are ascending infections[13,131]; therefore, the presence of flagella on the
UPEC cells would allow the bacteria to ascend to the kidneys. Expression of the flagella
may coordinately turn off expression of the type 1 pili[132,133]. As the bacteria ascend to the
kidneys, the pH would drop further and the osmolality would increase. OmpR becomes
phosphorylated and activates an unknown gene whose gene product in turn potentially shuts
down not only fimB, but also fimE expression. Moreover, H-NS may bind and repress both
fimB and fimE at this time. This would lock the fimS element in the Phase-OFF position,
creating nonpiliated UPEC cells. Furthermore, as the young E. coli population matures and
moves into stationary phase, they trigger transcriptional activation of the rpoS gene. The
acidic/high osmolality environment would cause greater translation of the rpoS
transcripts[134], leading to more RpoS protein for repression of fimB transcription.

CONCLUSION
Several strains of UPEC have been shown to become nonpiliated in the murine kidney over
time[13,135]. There are very few mannose receptors in human or murine kidneys[136,137] and
the innate immune system is more apt to target type 1 piliated bacteria[138]; therefore, the
regulatory loss of type 1 pili on UPEC cells in the human kidney would be an evolutionary
advantage for these bacteria. Thus, the ability to phase vary their type 1 pilus expression
offers several advantages to the UPEC. On vaginal surfaces, the outer rim of the urinary
tract, and within the urethra and bladder, type 1-piliated cells benefit the bacteria because
there are ample mannose receptors. When the bacteria ascend into the kidneys, the growth
environment may turn off expression of an unneeded external surface structure that may
target the bacteria for elimination by the host’s innate defenses.
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Figure 1. Schematic of the fim operon, including the characterized promoter sites
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Figure 2. A schematic showing how the FimB and FimE proteins orient the fimS element
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Figure 3. Schematic model of the actions of 20 auxiliary proteins on the regulation of type 1 pili
The inverted repeat left and right (IRL and IRR) are shown as open boxes. Binding sites for
integration host factor (IHF I and II) and leucine-responsive protein (Lrp1, 2, and 3) are also
represented as open boxes. Genes are displayed as black boxes and the promoters are shown
as bent black arrows. The dark gray arrows correspond to FimB and the light gray arrows
are for FimE. Black arrows signify an effect on the fimS element. Solid green arrows
indicate confirmed binding associated with stimulatory effects, whereas dashed green arrows
indicate presumed stimulatory effects. Solid red arrows indicate confirmed binding
associated with repressing effects, whereas dashed red arrows indicate presumed repressing
effects.
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