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Summary
Primary analysis of case–control studies focuses on the relationship between disease D and a set of
covariates of interest (Y, X). A secondary application of the case–control study, which is often
invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship
between the covariates themselves. The task is complicated owing to the case–control sampling,
where the regression of Y on X is different from what it is in the population. Previous work has
assumed a parametric distribution for Y given X and derived semiparametric efficient estimation
and inference without any distributional assumptions about X. We take up the issue of estimation
of a regression function when Y given X follows a homoscedastic regression model, but otherwise
the distribution of Y is unspecified. The semiparametric efficient approaches can be used to
construct semiparametric efficient estimates, but they suffer from a lack of robustness to the
assumed model for Y given X. We take an entirely different approach. We show how to estimate
the regression parameters consistently even if the assumed model for Y given X is incorrect, and
thus the estimates are model robust. For this we make the assumption that the disease rate is
known or well estimated. The assumption can be dropped when the disease is rare, which is
typically so for most case–control studies, and the estimation algorithm simplifies. Simulations
and empirical examples are used to illustrate the approach.
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1. Introduction
Case–control designs are popularly used for studying risk factors for rare diseases, such as
cancers. Under this design, a fixed number of ‘cases’ and ‘controls’, i.e. subjects with and
without the disease of interest, are sampled from an underlying base population. Data on
various covariates on the subjects are then collected in a retrospective fashion so that they
reflect history before the disease. The standard method for primary analysis of case–control
data involves logistic regression modelling of the disease outcome as a function of the
covariates of interest. It is well known that prospective logistic regression analysis for case–
control data is efficient under a semiparametric framework that allows the ‘nuisance’
distribution of the underlying covariates to be unspecified (Prentice and Pyke, 1979).

Epidemiologic researchers popularly use controls from case–control studies to examine the
interrelationship between certain covariates themselves. Such secondary analysis of case–
control studies has received increasing attention in genetic epidemiologic studies, where it is
often of interest to investigate the effect of genetic susceptibility, such as single-nucleotide
polymorphism (SNP) genotypes, not only on the primary disease outcome, but also on
various secondary factors, such as smoking habits, that may themselves be associated with
the disease of interest. For such secondary analysis, use of only controls is generally
considered a model robust approach since, when the disease is rare, the relationship between
covariates in the controls should reflect that of the underlying population without any further
model assumptions. It is, however, recognized that inclusion of cases in such analysis can
increase efficiency, provided that appropriate adjustment can be made to account for non-
random ascertainment in case–control sampling. Li et al. (2010), for example, reported that,
if two binary covariates have no interaction with the risk of the disease on a logistic scale,
then the association between the factors in the cases remains the same as that for the
underlying population. Therefore in such a setting inclusion of cases can increase the
efficiency of the secondary analysis.

In this paper, our goal is to develop an approach to secondary association analysis for a
continuous covariate, say Y, in a case–control study setting so that both cases and controls
can be used to increase efficiency and yet the resulting inference is model robust to
distributional assumptions about the covariates. Suppose that data are originally collected
from a case–control study of a relatively rare disease. Let D be disease status, with D = 1
denoting a case and D = 0 denoting a control. Suppose also that D is to be modelled by a
vector of random covariates (Y, X), where Y is univariate and X is potentially multivariate,
by using a standard logistic regression formulation. Consider here the homoscedastic
regression model

(1)

where αtrue is an intercept and μ(·) is a known function, and where ε has mean 0 and is
independent of X, but its distribution is otherwise not specified.

To estimate (αtrue, βtrue), we cannot simply ignore the case–control sampling scheme and
use the data as they are, because, if Y is a predictor of disease status D, the sampling is
biased and in the case–control sample model (1) will not hold.

This paper is organized as follows. In Section 2, we describe recent work on case–control
studies that allows efficient estimation if the distribution of Y given X is specified up to
parameters. Although the solution is elegant, it suffers from the fact that the resulting
estimate may be biased if the hypothesized distribution for Y given X is misspecified.
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Section 3 takes an entirely different approach to the basic general problem and describes a
simple method that is robust to misspecification of the distribution of Y given X. In Section
4 we describe extensions to cases that the disease rate in the population is known or well
estimated from a disease registry or as part of an on-going cohort, and to the case of
stratified or frequency-matched studies. Section 5 presents a series of simulation studies,
whereas Section 6 presents analysis of an epidemiological data set. Concluding remarks are
in Section 7. Technical details are given in Appendix A and Appendix B.

2. Efficient parametric estimation and robustness
2.1. Framework

In this section we outline recent work on efficient estimation for case–control studies when
the distribution of Y given X is specified up to a finite dimensional parameter vector. We
start with a logistic regression model underlying the case–control analysis, so that pr(D = 1|
Y, X) = H{θ0 + m(Y, X, θ1)}, where H(·) is the logistic distribution function and m(·) is an
arbitrary known function with unknown parameter vector θ1. For d = 0, 1, let πd = pr(D =
d), the probability that D = d in the population, and suppose that there are n1 cases with D =
1 and n0 controls with D = 0. We write n = n0 + n1 and introduce the parameter κ = θ0 +
log(n1/n0) − log(π1/π0). This reparameterization has the advantage that we can identify κ
and θ1 from a logistic regression analysis of D on (Y, X), although we cannot identify θ0
(Prentice and Pyke, 1979; Chatterjee and Carroll, 2005) from such logistic regression alone.

In the parametric framework the conditional distribution of Y given X is modelled as fε{y −
α − μ(x, β), ζ}, where ζ is a finite dimensional nuisance parameter. If in the population Y
given X is normally distributed, then ζ = var(ε).

2.2. Population-based case–control studies and notation
Our explicit theoretical and asymptotic results are based on population-based case–control
studies, i.e. studies in which random samples of (Y, X) are taken separately for D = 1 and D
= 0. We shall refer to these simply as case–control studies. Some case–control studies use a
form of stratification, which is sometimes called frequency matching, e.g. a population-
based case–control study for each of a number of age ranges and the same number of cases
and controls in each age group. With some notation and the inclusion of these strata in the
logistic risk model and in the model for Y given X, our results are easily extended to such
sampling; see Section 4.

We assume a logistic model for pr(D = 1|Y, X) as

(2)

Our technical assumptions are assumptions 1–4 in Appendix B.1.

We also mention two important calculations. The density fX of X in the population can be
written as

(3)

with (π0, π1) defined in Section 2.1, and where fcont(x) and fcase(x) represent the density of
X given D = 0 and D = 1 respectively. Since this is a case–control sampling scheme, all
expectations are conditional on D1, …, Dn. Define R(β) = Y − μ(X, β) and Ri(β) = Yi −
μ(Xi, β). For an arbitrary function G,
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(4)

the second and last steps following because (Y, X) are independent and identically
distributed given D in the case–control sampling scheme.

2.3. Prior results and robustness
For the case–control studies that were described above, Jiang et al. (2006), Chen et al.
(2008) and Lin and Zeng (2009) derived the efficient profile likelihood (in the sense that its
score for β is an efficient score function), Lin and Zeng (2009) noting importantly that it can
be used in our context. See also Monsees et al. (2009). Write Ω = (κ, θ1, θ0). The joint
density of (D, Y, X) is

Let

The semiparametric efficient retrospective profile likelihood for β that makes no
assumptions about the distribution of X when the distribution of Y given X is specified is

Taking logarithms, summing over the observed data and then maximizing in the parameters
yields semiparametric efficient inference.

A difficulty arises, however, if the density fε(·) of ε is not specified properly. To see what
happens, consider the score for β. Define Lpar(y, x, α, β, ζ) = ∂log[fε{y − α − μ(x, β), ζ}]/
∂β. Then the score for β is

(5)

Because ℒpar(·) is a legitimate semiparametric profile likelihood, when summed over the
case–control data and evaluated at the true parameters, score (5) has mean 0. However, score
(5), when evaluated at the true parameter values, only has mean 0 in general if the density
fε(·) of ε is specified properly, i.e. the approach is not always model robust; see Section 5
for numerical evidence. This motivates our search for a robust estimation method, which is a
topic that we take up in the next section.
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3. Model robust estimation
3.1. Preliminaries

In this section we assume the same framework as in the previous section, with the exception
that fε is now unknown. We pursue a sequential approach to derive an estimating equation
for the parameters that determine the regression function.

a. Estimate the true logistic regression parameters κ and θ1 by ordinary logistic
regression of D on (Y, X). This can be done legitimately because it is known that
ordinary logistic regression in a case–control study consistently estimates κ and θ1
(Prentice and Pyke, 1979; Chatterjee and Carroll, 2005). Denote the estimators by
κ̂ and θ̂1.We also suppose that we have a consistent estimator of θ0. This estimator
can, for example, be the solution of the equation

(6)

when the disease rate π1 in the population is known or well estimated, either from a
disease registry or from an underlying cohort from which the cases and controls are
sampled. Equation (6) leads to a consistent estimator of θ0, since for any function
g(y, x) we can estimate ∫g(y, x) fYX(y, x) dydx unbiasedly by

Call the resulting estimator θ̂0 and denote Ω̂ = (κ̂, θ̂1, θ̂0).

b. Use a score function for β that would be an appropriate score function if the (Y, X)
data arose from random sampling. Define R(β) = Y − μ(X, β). Then the simplest
such score function is that from ordinary least squares, which is obtained by
differentiating {Y − α − μ(X, β)}2 with respect to β. This yields the score function

(7)

where the subscript means differentiation with respect to β.

c. Score (7) will not have mean 0 in the case–control sampling scheme, so we adjust it
so that it has mean 0 in general.

d. For technical reasons that are described later, estimation of αtrue must be done via
an auxiliary equation depending on the current values, which we generically call α̂
(β, Ω), which replaces α in score (7); see below for the definition.

e. Solve the adjusted score equation to estimate βtrue and hence αtrue. Good starting
values for β can be obtained by least squares regression among the controls.

Remark 1. The score function (7) is not the only one possible; for example, we could instead
allow for robustness against outliers by replacing function (7) by the estimating equation of
an M-estimator (Huber, 1981; Anderson, 2008).

3.2. Estimation algorithm
The development of our methodology is somewhat involved. Here we simply state our
proposal, with its development given in Sections 3.3–3.5. As before, define R(β) = Y − μ(X,
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β).Remember that estimation of αtrue must be done by using an auxiliary equation; see
equation (8) directly below. Define

For given (β, Ω), the estimator of αtrue is justified in Section 3.5 and given by

(8)

where

Let μβ(x, β) = ∂μ(x, β)/∂β and let L{R(β), X, α, β} be as in equation (7). Then define

(9)

Our algorithm then is as follows.

a. Estimate (κ, θ1)T by (κ̂, θ̂1)T, the logistic regression estimates of D on (Y, X). As
described previously, this is known to produce consistent estimates of (κtrue,
θ1,true)T. Estimate θ0 as explained in Section 3.1. This leads to an estimator Ω̂ of
Ωtrue.

b. Solve 0 = Q̂n,est(β, Ω̂) in β to obtain the estimate β̂.

In the next few subsections, we describe how we obtained equation (9), and at the end we
describe the asymptotic distribution theory.

3.3. Development of the score when fX and αtrue are known
3.3.1. Adjusting score (7)—We first describe how to proceed when the intercept αtrue,
the density fX(·) of X in the population, and fε(t − αtrue), the density of Y − μ(X, βtrue) in the
population, are all known; they are not and we shall show how to remove these restrictions
in subsequent sections.

The approach is to start with the estimating function (7), which, when summed over the
data, does not have mean 0 at the true parameters because of the case–control sampling
scheme, i.e. , in general. Thus, we need to correct

 so that it does have mean 0 in the case–control sampling scheme,
where expectations are computed as in equation (4). In the on-line supplemental material,
we show how to follow the approach of Chen et al. (2009), section 2.3.3, to develop the
adjusted estimating function
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(10)

This is not of much help, since none of fε(·), fX(·) or αtrue are known. In subsequent sections
we show how to replace these terms by data-estimated quantities, and thus arrive at equation
(9).

3.3.2. Replacing the unknown error density—The problem with expression (10) is
that we do not know the form of fε(·), so score (10) cannot be implemented. Similarly to
Chatterjee and Carroll (2005) and Spinka et al. (2005), we therefore replace fε(·) by a non-
parametric maximum likelihood estimator. The idea is to take the observed Ri(β) = Yi −
μ(Xi, β) as the support, and to maximize the log-likelihood with respect to γi = pr{R(β) =
Ri(β)}, i = 1, …, n, subject to . By Chatterjee and Carroll (2005) and Spinka et al.
(2005), the resulting estimator for pr{R(β) = Ri(β)} is

(11)

The derivation of equation (11) is given in Appendix A.1. When we make this substitution
in expression (10) and sum over the data, the score becomes

Because the denominator of this expression is π0/n0, by simple algebra it is readily seen that
the normalized score function for estimating β can be defined as

(12)

In Appendix A.2 we show that the expectation of Qn(αtrue, β, Ω) in the case–control
sampling scheme is equal to 0 when evaluated at (αtrue, βtrue, Ωtrue), but not for arbitrary (β,
Ω). This implies that equation (12) is indeed an unbiased estimating equation in the case–
control sampling scheme.

3.4. Implementation when fX is unknown but αtrue is known
The density or mass function fX(·) is not known. We estimate the integrals in expression
(12) unbiasedly by their sample average over all the observations, so our estimating equation
is

(13)
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3.5. Implementation when the intercept αtrue is unknown
One might reasonably think that estimating the intercept is easy; for example, simply
supplement the score with the ordinary least squares score for the intercept, so that

. The problem with this is that the first component of
the estimating equation (13) would then be identically 0 and thus will not produce an
estimate of the intercept. The reason for this is that the solution (11) was calculated non-
parametrically under the assumption that R(βtrue) and X are independent in the population.
Since Y − αtrue − μ(X, βtrue) and Y − μ(X, βtrue) are both independent of X in the
population, this means that equation (11) cannot lead to an estimate of the intercept. Hence,
an alternative approach is required.

To overcome this problem, we estimate the intercept of R(β) by using equation (11), i.e., if
fX(·) were known, then αtrue could be estimated by

(14)

a quantity that is free of the π0 that shows up in equation (11). If we then replace the integral

in the definition of pest(·) by its average , we obtain exactly
expression (8). Making this substitution in equation (13), we obtain equation (9). This
completes the derivation of our methodology.

3.6. Distribution theory
The asymptotic distribution of our estimator is given in the following result. We refer to
Appendix B.1 for the definition of the functions and matrices that are mentioned below, and
for the assumptions 1–4 there under which this result is valid. The proof of this theorem is
given in Appendix B.2.

Theorem 1. Let (β, Ω) = Θ, and let Θtrue denote its true value. Assume that assumptions 1–4
in Appendix B.1 are valid. Then there is an invertible matrix ℳβ and a function Λ(Y, X, D,
Θtrue) with the properties that E{Λ(Y, X, D, Θtrue)|D} = 0 and

Therefore, there is a matrix Σ, defined in Appendix B.1, such that

(15)

Estimating the covariance matrix Σ in expression (15) can be accomplished by a plug-in
method or by the bootstrap appropriate for case–control sampling (Wang et al., 1997;
Buonaccorsi, 2010).

3.7. Inference via bootstrap resampling
In principle, estimating the covariance matrix Σ in expression (15) can be accomplished by a
plug-in method, although the particular form of the function Q1(·) that is defined in
Appendix B.1 makes computational speed slow. We have thus chosen to use bootstrap ideas
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to estimate Σ. Below we explain in detail how this can be done, but the basic idea is that we
have random samples from two independent populations, i.e. the cases and the controls, and
an estimator that is asymptotically normally distributed.

3.7.1. Bootstrap procedure—Let  be drawn randomly with

replacement from {(Yi, Xi) : Di = 0}, and similarly let  be drawn
randomly with replacement from {(Yi, Xi) : Di = 1}. This is the method of bootstrap
sampling that was suggested by Wang et al. (1997) and Buonaccorsi (2010), page 225, and,
since the data consist of samples from two independent populations, is the same as in Babu
and Singh (1983); see also Lele (1991).

Let  and , and define Ω̂*, α̂*(β, Ω) and  in the
same way as Ω̂, α̂(β, Ω) in equation (8) and Q̂n,est(β, Ω) in equation (9), but based on

 instead of (Yi, Xi, Di), i = 1, …, n.

The bootstrapped estimator β̂* of β is then defined as a solution of

with respect to β. See also Hall and Horowitz (1996), page 897, and Chen et al. (2003),
where bootstrapping is used and justified in similar contexts.

3.7.2. Bootstrap consistency—To show the consistency of the above bootstrap
procedure, we need to show that n1/2(β̂* − β̂) converges to the same normal limit as the
original centred estimator n1/2(β̂ − βtrue). For this we use the same techniques as in the proof
of theorem B in Chen et al. (2003), combined with the proof of theorem 1 in Appendix A.
More precisely, it can be shown that, under certain regularity conditions, we have that

where op*(1) has the same meaning as op(1), except that the probability is computed under
the bootstrap distribution conditional on the original data (Yi, Xi, Di), i = 1, …, n. From this
together with the central limit theorem and theorem 1 the result follows.

4. Extensions
4.1. Rare disease approximations

The method that was defined in Section 3 assumes that π1 = pr(D = 1) is known. This is
typically not the case, so many researchers adopt rare disease approximations (see below for
references), where the word ‘rare’ has no precise definition but is certainly 1% or less. There
are at least two ways to proceed in our context. The first is to use the literature, to choose a
nominal π1 ≤ 1% and to apply the method in Section 3. In results that are not reported here,
this works well in the simulation setting of Section 5. In the literature, most researchers use
a different approximation, which is described next and implemented in Section 5. We have
not investigated in any detail which approach is preferable.

Let ‘≐’ denote ‘approximately equal’. The estimation procedure simplifies if the disease can
be assumed to be rare, i.e. if
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or, equivalently, if pr(D = 0|Y, X) = [1 + exp{θ0 + m(Y, X, θ1)}]−1 ≐ 1. This approximation
allows us to replace in the estimating function (12) by

(16)

In addition, Ω = (κ, θ1, θ0) in is replaced by Ω* = (κ, θ1), which does not depend on θ0
any-more, and assumption 4 is no longer required since θ0 is no longer estimated. The proof
in Appendix A.2, where we show that the estimating function (12) is unbiased, adapts to the
rare disease case in a straightforward way, now using the approximation

Hence the modified estimating function based on  is approximately unbiased in the rare
disease case.

As in the general case, the rare disease version of the estimating function (12) depends on
unknown quantities which must be estimated. The estimation algorithm for the rare disease
model is as follows and is explained below. Set

As before, estimate Ω* = (κ, θ1) by the logistic regression estimates of D on (Y, X); then

solve  with respect to β to obtain β̂.

The formulae for α̂* and  do not contain an average 𝒦 ̃*,which could be introduced
analogously to the general case where both formulae involve 𝒦 ̃, and which depends on π1 =
P(D = 1). This is explained as follows: both the estimating function (12) and the estimator
pest, which is used to estimate αtrue, depend on the unknown density fX. As already
explained in Section 2 at equation (3), under the rare disease approximation, fX can be
approximated by fcont, i.e. we can use fX empirically using only the controls. This has the
advantage that we do not need prior knowledge about the typically unknown disease rate π1.
This is in contrast with the general model where we need to know π1 not only to be able to
work with 𝒦 ̃, but also to obtain a consistent estimator of θ0.
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Because case–control studies are almost inevitably conducted for rare outcomes, the rare
disease approximation is natural in most applications. It is also widely used, a very non-
exhaustive list of which includes Piegorsch et al. (1994), Epstein and Satten (2003), Lin and
Zeng (2006), Modan et al. (2001), Zhao et al. (2003), Kwee et al. (2007), Lin and Zeng
(2009) and Hu et al. (2010).

4.2. Case–control studies with frequency matching
In frequency-matched case–control studies, a few strata are formed based on covariates such
as age, and then a population-based case–control study is performed within each stratum. A
straightforward approach is to include these matching variables as part of X, to form the
estimating function (9) for each stratum and to form a new estimating function as the
possibly weighted sum of the estimating functions across the strata. The weights might for
example be based on estimates of the size of each stratum in the population. The resulting
estimates of (αtrue, βtrue) will be asymptotically normally distributed.

5. Simulations
We performed simulation studies both at and away from the Gaussian model. Our
simulations indicate that our proposed estimator has small bias and nearly nominal coverage
probability in the cases that we examined, whereas an implementation of the parametric
approach (see Section 2.3) may suffer from bias and lower coverage probability (Tables 1
and 2). We also show that our method often achieves significant gains in efficiency when
compared with the estimator that uses only the controls. The approach that uses all the data
but ignores the case–control sampling design suffers from bias and low coverage; see below.

We generated X from a uniform distribution on (0, 1). The logistic regression model is pr(D
= 1|Y, X) = H(θ0 + θyY + θxX), with θ0 = −5.5, θy = 0.00, 0.25, 0.50 and θx = 1. The model
for Y given X is a linear regression model, Y = αtrue + βtrueX + ε, with αtrue = 0 and βtrue =
1. We considered two distributions for ε: the standard normal distribution, for which the
parametric approach attains the semiparametric efficiency bound, and, for comparison, a
standardized gamma distribution with scale parameter 0.4. By equation (2), for θy = 0.00,
0.25, 0.50 the rates of disease are approximately 0.007, 0.008 and 0.010. In the first scenario
the case–control study has n1 = 500 cases and n0 = 500 controls. In the second scenario we
chose n0 = n1 = 150. We generated 1000 simulated data sets in each setting.

We contrasted four methods. The first uses ordinary linear regression based only on the
controls. The second method uses the same approach but is expected to be significantly
biased since it is based on the entire data set. The third method is the parametric
(‘semiparametric efficient’) method that assumes normal errors, with standard errors
obtained by inverting the Hessian of the log-likelihood. The fourth method is our proposed
method, with standard errors estimated by using asymptotic formulae. The third and the
fourth method were computed by making the rare disease approximation.

The case θy = 0.00 is interesting, because here Y is independent of D given X. Hence all
methods should achieve nominal coverage probabilities for estimating βtrue, which is indeed
seen in Table 1. Since, with θy = 0.00, all methods are asymptotically valid, the only
possibility of seeing a bias is when θy is sufficiently ‘large’. For this reason, we
experimented with the cases θy = 0.25 and θy = 0.50. Consider θy = 0.25 first. Here the
approach that uses all the data yields a biased estimator of βtrue = 1, with low coverage
probabilities. The ‘semiparametric efficient’ method that assumes normality still maintains
its nominal coverage probabilities. As expected, since it is efficient if the errors are normal,
it indeed outperforms the other approaches in this case. For example, for any two methods,
say A and B, with estimates β̂A and β̂B, the mean-squared error efficiency of method A with
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respect to method B is E{(β̂B − βtrue)2}/E{(β̂A − βtrue)2}, and its estimated version is
computed by replacing expectations by averages across the simulations. The semiparametric
efficient method has 13% greater mean-squared error efficiency than our method in the
normal case. However, in the gamma case, our method has 43% greater mean-squared error
efficiency. It also outperforms the approach that uses only the controls, for both normal and
gamma errors: in both cases the mean-squared error efficiency is roughly 70% larger.

Finally, in the case θy = 0.50 with normal regression errors, the semiparametric efficient
method that assumes normality maintains its nominal coverage probabilities and has 7%
greater mean-squared error efficiency than our method and 82% greater efficiency than
using only controls. However, when the errors have a gamma distribution, it suffers from
bias, increased variance and loss of coverage, with nominal 90% and 95% coverage actually
being 81.8% and 88.4% respectively. Our method retains nominal coverage. The controls-
only analysis and our method have roughly equal mean-squared error efficiency which is, in
particular, much greater than the mean-squared error efficiency of the semiparametric
efficient approach for regression models with normal errors.

6. Empirical example
In this section, we illustrate the methodology in a case–control study of prostate cancer,
which was originally designed to investigate the risk of prostate-cancer-associated vitamin D
biomarkers and genetic variations in vitamin D metabolism pathways (Ahn et al., 2009). The
goal of the current analysis, which includes 749 prostate cancer cases and 781 controls, is to
examine whether the genetic variations in the vitamin D receptor influence [25(OH)D],
which is a serum level biomarker of vitamin D. In the notation of this paper, D is the
prostate cancer case–control status and Y is the level of [25(OH)D]. We investigated three
SNPs, rs2238136, rs2254210 and rs2239186, each of which represents an ordinal categorical
variable coded as 0, 1 or 2 depending on how many copies of the variant allele a subject
carries. In our analysis, X consists of three dummy variables for age groups, along with one
of the genetic markers.

The results are given in Table 3. We see in Table 3 that none of the coefficients for the SNP
are statistically significant. Thus, neither the traditional control-only nor the proposed
method detected any association between the vitamin D receptor gene and [25(OH)D] level.
These results are consistent with Chen et al. (2009) who noted that, given the downstream
role of the vitamin D receptor gene in the vitamin D pathway, it is unlikely that vitamin D
receptor polymorphisms could actually influence the level of [25(OH)D]. In spite of a lack
of association, it is interesting to observe that the 95% confidence intervals by using our
method are much shorter than by using those from the control data only. In terms of mean-
squared error efficiency, here estimated as the square of the ratio of the lengths of the
confidence intervals, the results for the three SNPs suggest gains in efficiency of 68%, 136%
and 125% compared with using only the controls.

7. Discussion
If the disease probability pr(D = 1) is known, there are simpler methods for our particular
setting that allow estimation of βtrue, based on weighting via equation (3). However, in the
common case that pr(D = 1) is not known, the development in Section 3 leads to two natural
rare disease approximations that use all the data and not just the data on the controls; see
Section 4.1. It would be interesting to investigate which of these two approximate
approaches is preferable in general.

Our simulation results are specific to rare diseases, by which we mean certainly that pr(D =
1) ≤ 1%. Biases will arise as the disease probability increases. In addition, since rare disease
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approximations do not lead to fully consistent estimation, coverage probability in large
samples will suffer, since the bias is fixed whereas the variance decreases with sample size.
Finally, the methods are likely to suffer in cases that the X-distribution has relatively rare
values that are not within the centre of the support of X.

Acknowledgments
This paper represents part of the first author’s doctoral dissertation at Texas A&M University. Wei and Carroll’s
research was supported by a grant from the National Cancer Institute (R37-CA057030). Carroll was also supported
by award KUS-CI-016-04, made by King Abdullah University of Science and Technology. Chatterjee’s research
was supported by a gene–environment initiative grant from the National Heart, Lung and Blood Institute (RO1-
HL091172-01) and by the Intramural Research Program of the National Cancer Institute. Muller was supported by
a National Science Foundation grant (DMS-0907014). Van Keilegom gratefully acknowledges financial support
from Interuniversity Attraction Pole research network P6/03 of the Belgian Government (Belgian science policy),
and from the European Research Council under the European Community’s seventh framework programme
(FP7/2007-2013), European Research Council grant agreement 203650.

Appendix A

Some derivations
A.1. Derivation of the error density estimator (11)

The key idea of the approach is to introduce discrete probabilities γi = pr{R(β) = Ri(β)}, i =
1, …, n, which yields

and to work with the maximum likelihood estimates, i.e. with those γi that maximize the
retrospective log-likelihood

Taking the derivative with respect to γk, k = 1, …, n, gives

Now set this equal to 0 to obtain

By definition of  using that
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this is the desired formula (11).

A.2. Unbiasedness of estimation function (12)
All calculations of expectations here will be based on the precise definition of expectations
in a case–control sampling scheme; see equation (4). Let (βtrue, Ωtrue) be the true parameter,
β an arbitrary value and τ(x, β, βtrue) = μ(x, βtrue) − μ(x, β). To derive the conditional
density given the disease state we use the fact that we assume a logistic model, pr(D = 1|Y,
X) = H{θ0 + m(Y, X, θ1)}, with H(x) the logistic distribution function, for which

Now write fYX(·) as the joint density function of (Y, X) in the population. Then, with θ0 and
θ1 denoting the true parameters,

It then follows that the density of (Y, X) given D is

Recall that κ = θ0 + log(n1/n0) − log(π1/π0). Then equation (4) can now be computed as

The joint density of (Y, X) in the population is fYX(y, x) = fε{y − αtrue − μ(x, βtrue)} fX(x).
Hence, fYX{r + μ(x, β), x} = fε{r − αtrue − τ(x, β, βtrue)} fX(x). Thus,
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Now, since

we have that

(17)

It follows from the convention in equation (4) and equation (17) that

If β = βtrue, since τ(x, βtrue, βtrue) = 0, it follows directly that the last term is 0, and therefore
0 = E{Qn(αtrue, βtrue, Ωtrue)|D1, …, Dn}. Hence Qn(αtrue, β, Ωtrue) = 0 is an unbiased
estimating equation. If β ≠ βtrue, then in general we shall have 0 ≠ {Qn(αtrue, β, Ωtrue)|D1,
…, Dn}.

Appendix B

Asymptotic theory
B.1. Notation and assumptions

In this section we introduce notation that is needed for our main theorem in Section 3.6, and
we also state the formal assumptions under which this result will be valid.

Let (β, Ω) = Θ, and let Θtrue denote its true value. Recall equation (4), and define
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Define

Write

and
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Also define

where the function Ψ(Yi, Xi, Di, Ωtrue) is defined in assumption 4 below. Finally, let
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Next, introduce the following assumptions, under which the main result in Section 3.6 is
valid.

Assumption 1. The error ε is independent of X. The error distribution Fε is twice
continuously differentiable, and the distribution FX of X is once continuously differentiable.
The corresponding densities are denoted by fε and fX.

Assumption 2. There exists some 0 < c* < 1 such that n0/n → c*.

Assumption 3. The function μ(x, β) is three times continuously differentiable with respect to
β, m(y, x, θ1) is twice continuously differentiable with respect to y and θ1, and Φ(y, x, d, Ω)
is continuously differentiable with respect to Ω. Also, the matrices ℳβ and E{∂Φ(Y, X, D,
Ω)/∂Ω|D = d}|Ω=Ωtrue are invertible.

Assumption 4. The estimator θ̂0 satisfies

for some function Ψ that satisfies E{Ψ(Y, X, D, Ωtrue)|D} = 0.

B.2. Proofs
We are now ready to give the proof of our main asymptotic result. Before giving a formal
proof, let us first highlight the main steps of the proof. First, it follows from Appendix A.2
that Q̂n(α, β, Ω) is an unbiased estimating function. Plugging in an estimator of αtrue, we use
a Taylor expansion of Q̂n,est(β̂, Ω̂) = 0 around the true β and Ω, which gives a regular
asymptotically linear expansion of n1/2(β̂ − βtrue). Finally we apply the central limit theorem
to obtain the required asymptotic normality result. Along the way, we must show an
asymptotic expansion for ℋn(β, Θ), which is given in lemma 1. The notation in the
statement of this lemma was introduced in the previous section.

Lemma 1. Assume that assumptions 1–3 are valid. Then, for each β and Θ,

where E[h2{R(β), X, D, Θ}|D] = 0.

Proof. Define
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Since by assumption 2 we have that n1/n0 → c, 0 < c < ∞, it follows that Znum{R(β),Θ} =
Op(1) and Zden{R(β), Θ} = Op(1), for each β and Θ. Hence, by a Taylor series expansion
and assumption 3,

Thus,

By definition, E{ℬn(β, Θ)|D1, …, Dn} = 0. By the definition of W{Ri(β), Xj, Dj, Θ},

Without loss of generality, we can make the first n0 observations be the controls, and the last
n − n0 observations be the cases. Then,

An easy calculation shows that

and similarly
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Hence we have shown that

Except for the factor (n0/n)3/2, the first term above is a classical symmetric U-statistic of
order 2 applied to independent and identically distributed observations, since by convention
the first n0 observations are the controls. It then follows from standard U-statistic theory that
(see, for example, Van der Vaart (1998))

This completes the proof.

B.2.1. Proof of theorem 1—Because of the unbiasedness of the estimating function (13)
and the fact that expression (14) is consistent and asymptotically normally distributed for
αtrue when evaluated at (βtrue, Ωtrue), the estimate is consistent for βtrue, and α(βtrue, Ωtrue) =
αtrue. Set
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We use the fact that 0 = Q̂n,est(β, Ω̂)|β=β̂. By a Taylor series expansion and assumption 3,

However, since α̂(βtrue, Ωtrue) is a consistent estimator for αtrue, it is clear that we have that

and

Hence it follows that

Because of its form, another Taylor series expansion and under assumption 3,

However, we can obtain by the same argument as in Appendix A.2 that c1(βtrue, Ωtrue) = 0.
In addition, using the same tools as in lemma 1, n1/2{α̂(βtrue, Ωtrue) − α(βtrue, Ωtrue)} =
Op(1). We have thus shown that

(18)

Because (κ, θ1) is estimated by ordinary logistic regression, and assumption 4 gives a
representation for θ̂0 − θ0,true, it follows from standard theory that

We thus have from equation (18) that

We can now apply lemma 1 to Q̂n(αtrue, βtrue, Ωtrue) with Gnum(r, x, d, Θ) = L{r, x, α(β, Ω),
β} 𝒦 ̃(r, x, d, Θ) and Gden(r, x, d, Θ) = 𝒦 ̃(r, x, d, Θ). Invoking lemma 1, it follows that
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We have shown in Appendix A.2 that the first term has mean 0. Remember from lemma 1
that E[h2{R(βtrue), X, D, Θtrue}|D] = 0. Moreover, the estimating equation for logistic
regression is unbiased and assumption 4 ensures that E[Ψ(Y, X, D, Ωtrue)|D] = 0.
Summarizing, we have shown that

as claimed.
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