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Abstract
Ca2+ influx is a central component of the receptor-evoked Ca2+ signal. A ubiquitous form of Ca2+

influx comes from Ca2+ channels that are activated in response to depletion of the endoplasmic
reticulum Ca2+ stores and are thus named the store-operated Ca2+-influx channels (SOCs). One
form of SOCs is the Transient Receptor Potential Canonical (TRPC) channels. A major question
in the field of Ca2+ signaling is the molecular mechanism that regulates the opening and closing of
these channels. All TRPC channels have a Homer binding ligand and two conserved negative
charges that interact with two terminal lysines of the Stromal Interacting Molecule 1 (STIM1).
The Homer and STIM1 sites are separated by only four amino acid residues. Based on available
results, we propose a molecular mechanism by which Homer couples TRPC channels to IP3
receptors (IP3Rs) to keep these channels in the closed state. Dissociation of the TRPCs-Homer-
IP3Rs complex allows STIM1 access to the TRPC channels negative charges to gate open these
channels.

Introduction
The receptor-evoked Ca2+ signal begins with the activation of phospholipase C (PLCβ or
PLCγ) to generate inositol trisphosphate (IP3), which releases Ca2+ from intracellular
stores, primarily the endoplasmic reticular stores (Berridge and Irvine, 1989). The IP3-
mediated Ca2+ release launches the Ca2+ signal that involves cyclical activation of Ca2+

channels and Ca2+ pumps to generate multitude of Ca2+ signals in the form of Ca2+ puffs,
blinks and sparks that can coalesce into cyclical Ca2+ increases to generate Ca2+ oscillations
and/or to propagate Ca2+ in the form of waves (Berridge, 2006). These Ca2+ signals control
a plethora of physiological functions essential for cell survival, specialized cell functions,
and eventually cell death (Berridge et al., 2003). A crucial component of all receptor-evoked
Ca2+ signals is Ca2+ influx across the plasma membrane. Ca2+ influx is activated in response
to Ca2+ release from internal stores, most commonly the endoplasmic reticulum (ER)
(Parekh and Putney, 2005). Ca2+ influx is essential to maintain the physiological Ca2+

oscillations and to provide the Ca2+ for replenishment of the Ca2+ store at the end of the
stimulated period (Kiselyov et al., 2006). Ca2+ influx also directly mediates many cellular
functions on time scales from msec, such as exocytosis (Pang and Sudhof, 2010), to days,
such as gene regulation (Di Capite et al., 2009) and cell death (Supnet and Bezprozvanny,
2010).

The receptor-evoked store-operated Ca2+ influx is mediated by two types of Ca2+ influx
channels: the Orai family (Hogan et al., 2010) and TRPC family channels (Lee et al., 2010a;
Worley et al., 2007b), and are gated by the endoplasmic reticulum (ER) Ca2+ sensor STIM1
(Liou et al., 2005; Roos et al., 2005). The TRPC channels are also gated by the scaffolding
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protein Homer1 (Kim et al., 2006; Worley et al., 2007a; Yuan et al., 2003). This short
review highlights the potential role of Homer1 and STIM1 in the closing and opening of the
TRPC channels.

The Homers
The Homers are a family of three scaffolding proteins: Homer1, Homer2 and Homer3, with
numerous isoforms that were discovered in the brain as immediate early genes (Soloviev et
al., 2000; Xiao et al., 2000). The Homer1a isoform is rapidly upregulated in response to
synaptic activity induced by seizure, or during induction of long-term potentiation. Homer1a
is also selectively induced in cells of the hippocampus when rodents engage in exploratory
behavior (Brakeman et al., 1997; Kato et al., 1998). All Homers have an Ena VASP
Homology 1 (EVH1) domain. Homer1a has a short C-terminal extension, while long-form
Homers have a C-terminal coiled-coil domain and two leucine zippers (Tadokoro et al.,
1999; Xiao et al., 1998) and Fig. 1A). The N-terminal EVH1 domain of the different
Homers are about 60–70% conserved, while the coiled-coil domains show only about 20%
sequence identity. The coiled-coils serve to assemble the Homers into elongated tetramers
(Hayashi et al., 2006). The tetrameric Homer is likely required to form a lattice with other
scaffolds that bind Ca2+ signaling proteins in cellular microdomains (Kim and Sheng, 2004;
Sala et al., 2005; Tadokoro et al., 1999; Tu et al., 1999; Xiao et al., 2000). The Homers
EVH1 domain interacts with and regulates the activity of several Ca2+ signaling proteins
listed in Fig. 1B that reside in Ca2+ signaling complexes. The monomeric Homer1a then
disrupts signaling complexes and functions by acting as a negative regulator of the long
Homers (Roche et al., 1999; Xiao et al., 1998).

Localization of the Homers and interaction with Ca2+ signaling proteins
In neurons, the Homers are found in the Post-Synaptic-Density (PSD) and dendrites, where
they interact with the metabotropic glutamate receptors mGluR1 and mGluR5 (Brakeman et
al., 1997; Kato et al., 1998; Roche et al., 1999; Tu et al., 1999). Mutation and structural
analysis revealed that the EVH1 domain binds to the ligands PPXXF (Barzik et al., 2001;
Irie et al., 2002), øPPXF and the LPSSP (Yuan et al., 2003). These ligands are found in the
mGluRs and many Ca2+ signaling proteins, including Shank (Tu et al., 1999), PLCβ
(Hwang et al., 2005; Nakamura et al., 2004), IP3Rs (Kim et al., 2006; Yuan et al., 2003),
TRPC channels (Kim et al., 2006; Yuan et al., 2003), ryanodine receptors (Feng et al., 2002;
Hwang et al., 2003; Ward et al., 2004; Westhoff et al., 2003), several L-type Ca2+ channel
isoforms (Huang et al., 2007; Olson et al., 2005; Yamamoto et al., 2005) and nuclear factor
of activated T cells (NFAT) (Huang et al., 2008).

To regulate Ca2+ signaling, the Homers have to be present in signaling microdomains. The
Ca2+ signaling centers in the PSD and dendrites are enriched with Homer proteins (Ango et
al., 2000; Dietrich et al., 2005; Fagni et al., 2002; Shiraishi et al., 2003). In polarized cells,
Ca2+ signaling complexes are clustered at the apical pole, a region expressing Homer1 and
Homer2 (Shin et al., 2003). This is reproduced in Fig. 1C taken from (Shin et al., 2003),
which shows that Homer1 and Homer2 are restricted to the apical pole of pancreatic acinar
cells, whereas Homer3 is enriched at the basal pole. Ca2+ signaling proteins are also
enriched at the apical pole of polarized cells (Kiselyov et al., 2006) and co-localize with
Homer1 and Homer2 (Shin et al., 2003). The C-terminal portion of the Homers coiled-coil
domain appears to mediate the subcellular localization of the Homers and is required for
clustering of Ca2+ signaling proteins (Hayashi et al., 2006).

The three Homers have distinct roles in Ca2+ signaling. The role of Homer3 in Ca2+

signaling is not well understood. The most intriguing recent finding is that Homer2 and
Homer3 regulate NFAT (Huang et al., 2008). These Homers compete with the phosphatase
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calcineurin for binding to NFAT and, in effect, sequester NFAT in the cytosol to prevent its
dephosphorylation and, thus, translocation to the nucleus (Huang et al., 2008). In this
manner, the Homers can regulate all of the many roles of NFAT in cell differential and
function. Interestingly, phosphorylation of Homer3 by calcium/calmodulin-dependent kinase
II (CaMKII) regulates its targeting to the plasma membrane and its interaction with cytosolic
proteins (Mizutani et al., 2008). CaMKII also phosphorylates NFAT at the site
dephosphorylated by calcineurin (Crabtree and Olson, 2002). This raises the possibility that
a CaMKII-Homer-NFAT-calcineurin complex operates to control the function of NFAT.

In addition to binding of NFAT, Homer2 also regulates signaling by G-protein-coupled
receptors (GPCRs) through regulation of the GTPase-activating protein (GAP) activity of
Regulators of G proteins Signaling (RGS) proteins and of PLCβ (Shin et al., 2003). Deletion
of Homer2 in mice reveals that Homer2 is involved in the pathway that underlies response to
cocaine and alcohol (Kalivas et al., 2004; Szumlinski et al., 2005; Szumlinski et al., 2003).
In G protein signaling in the unstimulated state, Gαq is bound with GDP and is associated
with Gβγ. Receptor stimulation catalyzes the exchange of GDP for GTP on Gαq (Freissmuth
et al., 1989; Gilman, 1987). Termination of the signal requires hydrolysis of GTP by Gαq
that is markedly accelerated by RGS proteins (Ishii and Kurachi, 2003; Ross and Wilkie,
2000) and PLCβ (Ross, 2008). Homer2 accelerates the GAP activity of both RGS proteins
and PLCβ to attenuate the intensity of the Ca2+ signal (Shin et al., 2003).

Homer1 and gating of TRPC channels
Of all the Homers, the function of Homer1 is best documented and understood. Homer1
binds to mGluRs (Beneken et al., 2000) and to the N-terminus of the IP3Rs (Yuan et al.,
2003), linking them to the Shank proteins to form a Ca2+ signaling complex that regulates
Ca2+ release (Fagni et al., 2002; Sala et al., 2005). Homer proteins also affect interaction and
communication of several other Ca2+ signaling receptors and proteins in the PSD, as
reviewed in (Worley et al., 2007a). Of these interactions, the interaction of Homer1 with
TRPC channels and regulation of channel activity by Homer1 have been explored
extensively.

A role of Homer1 in the regulation of Ca2+ influx was revealed by the increased
spontaneous Ca2+ influx in cells from which Homer1 was deleted (Yuan et al., 2003). TRPC
channels express the Homer binding ligand øPPXF in their C-terminus. Accordingly, Homer
proteins bind to all TRPC channels and assemble them into complexes with IP3Rs (Yuan et
al., 2003). Disruption of the Homer binding ligand of the TRPC channels prevents their
binding to Homer. Most notably, disruption of the TRPC1-Homer-IP3Rs complex by
mutation in the Homer ligand or by expression of Homer1a results in spontaneously active
TRPC channels (Yuan et al., 2003). Moreover, cell stimulation results in IP3-dependent
dissociation of the TRPCs-Homer1-IP3Rs (Kim et al., 2006). These findings clearly indicate
that Homer1 is essential to maintain the TRPC channels in the closed state. At the basal
state, TRPC channels are present in a complex with IP3Rs that is formed by the long
Homer1b/c to keep the channel inactive. Upon cell stimulation, the complexes are
dissociated to allow activation of TRPC channels.

STIM1
STIM1 was discovered by a search for the molecular identity of the Ca2+ influx pathway
and its regulators. In particular, STIM1 is the molecule that mediates the communication
between ER Ca2+ load and activation of the Ca2+ influx channels at the plasma membrane
(Liou et al., 2005; Roos et al., 2005). The suggestion that Ca2+ influx channels are activated
in response to Ca2+ release from the ER was based on the assumption that reloading of the
ER occurs at resting [Ca2+]i (Putney, 1986). Reloading at resting [Ca2+]i was shown
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experimentally for the first time by direct measurement of [Ca2+]i (Muallem et al., 1986)
with parallel measurement of reloading the Ca2+ stores after their complete discharge
(Muallem et al., 1986; Pandol et al., 1987) and analysis of unidirectional Ca2+ fluxes across
the ER and plasma membrane (Muallem et al., 1988; Pandol et al., 1987). Subsequent
demonstration that both passive depletion of the stores by inhibition of the sarco/
endoplasmic reticulum Ca2+-ATPase (SERCA) pumps with thapsigargin and receptor
stimulation activate the same Ca2+ influx pathway established the relationship between ER
Ca2+ load and gating of Ca2+ influx channels (Takemura et al., 1989). The molecule that
transmits the information of the ER Ca2+ load to the plasma membrane Ca2+ influx channels
remained a mystery until the finding of STIM1 (Liou et al., 2005; Roos et al., 2005). The
role of STIM1 in Ca2+ influx was established by demonstrating that deletion of STIM1
resulted in inhibition of Ca2+ influx and clustering of STIM1 at plasma membrane
microdomains in response to Ca2+ release from the ER (Liou et al., 2005; Roos et al., 2005).
This was later shown to occur in all cells examined.

STIM1 is a type 1, single transmembrane-span protein with its N-terminus in the ER lumen
and its C-terminus in the cytoplasm. The N-terminus has at least two functional domains, an
EF hand low affinity Ca2+ binding domain and a sterile alpha motif (SAM), and at least one
regulatory site at cysteine 56. The EF hand Ca2+ binding affinity is relatively low in the
range of 0.5–1 mM (Stathopulos et al., 2009) and, when bound with Ca2+, traps STIM1 in
the ER. Dissociation of Ca2+ from the EF hand results in the clustering of STIM1 at ER/
plasma membrane microdomains (Liou et al., 2005; Roos et al., 2005). The SAM domain
functions to facilitate clustering of STIM1 (Stathopulos et al., 2006; Stathopulos et al.,
2008). STIM1 cysteine 56 is S-glutathionylated and, thus, may function as an oxidant sensor
(Hawkins et al., 2010). Gating of Ca2+ influx channels is achieved by the STIM1 C-
terminus, which opens all channels gated by STIM1 (Huang et al., 2006; Lee et al., 2010a;
Yuan et al., 2009). The C-terminus starts with an ERM domain that encompasses several
functional domains., the most notable of which is a minimal sequence of STIM1(344-442)
termed STIM1 Orai-activating region (SOAR) (Yuan et al., 2009), CRAC (Ca2+-release
activating Ca2+ current) Activating Domain (CAD) (Park et al., 2009) or coiled-coil domain
containing region b9 (CCB9) (Kawasaki et al., 2009). This domain is sufficient to fully
activate the Orai channels. SOAR has a coiled-coil domain that interacts with the C-terminal
coiled-coil domain of the Orais (Korzeniowski et al., 2010; Muik et al., 2009; Schindl et al.,
2009; Yuan et al., 2009) to fully activate them. The CRAC-modulatory domain/Ca2+-
dependent inactivation (CMD/CDI) sequence is located downstream of SOAR in the Ezrin/
Radixin/Moesin (ERM) domain.. The Orai channels undergo fast Ca2+-dependent
inactivation (Lis et al., 2007) that is mediated by the CMD/CDI patch (Derler et al., 2009;
Lee et al., 2009; Mullins et al., 2009). The CMD/CDI patch interacts with a calmodulin
binding site at the N-terminus of Orai1 (Mullins et al., 2009) and with conserved glutamates
at the C-terminus of the three Orais to determine the isoform-specific fast Ca2+-dependent
inactivation (Lee et al., 2009). Downstream of the ERM domain, there are several
phosphorylation sites that can be phosphorylated by several kinases and appear to control
Ca2+ influx during mitosis (Smyth et al., 2009), although these sites have no apparent role
during meiosis (Yu et al., 2009). STIM1 is also phosphorylated by Extracellular Regulated
Kinase1/2 (ERK1/2), which may control interaction of STIM1 with Orai1 (Pozo-Guisado et
al., 2010).

TRPC channels and STIM1
Another domain of STIM1 at end of the C-terminus is the polybasic lysine-rich domain (K-
domain). The K-domain has several known roles. The K-domain anchors STIM1 to the
plasma membrane and facilitates its clustering (Korzeniowski et al., 2010; Liou et al., 2007).
A key function of the K-domain is gating of TRPC channels (Huang et al., 2006; Lee et al.,
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2010b; Yuan et al., 2007). For a long time, TRPC channels have been considered the
primary receptor-stimulated and store-operated Ca2+-influx channels. (Montell, 2005;
Parekh and Putney, 2005), the latter based on the findings that their downregulation and
inhibition reduce SOC activity (Kiselyov et al., 2007; Villereal, 2006). The discovery of
STIM1 and the Orai channels shifted attention to the Orai channels as the primary SOCs
(Cahalan et al., 2007; Lee et al., 2010a). Although it is clear that Orai1 is required for all
forms of Ca2+ influx (Lee et al., 2010a), growing evidence implicate TRPC channels in SOC
and receptor-operated Ca2+-influx channel (ROC) activity and in their regulation by STIM1.
For example, inhibition of TRPC3 with Pyrazole 3 inhibited ROCs (Kiyonaka et al., 2009;
Shirakawa et al., 2010), and inhibition of TRPC1 (Beech et al., 2003), TRPC3 (Chen et al.,
2010), TRPC5 (Xu et al., 2006) and TRPC6 (Saleh et al., 2008) with anti-TRPC channel
antibodies inhibited ROCs and SOCs. Knockdown by siRNA of several TRPC channels
(Villereal, 2006) and gene deletion in mice of TRPC1 (Hong et al., 2010; Liu et al., 2007),
TRPC3 (Kim et al., 2009) and TRPC4 (Freichel et al., 2001; Tiruppathi et al., 2002) reduced
ROCs and SOCs.

Regulation of TRPC channels by STIM1 was suggested when it was discovered that
TRPC1, TRPC4 and TRPC5, but not TRPC3, TRPC6 and TRPC7, interact with STIM1 and
that STIM1 is required for the activity of TRPC1 (Huang et al., 2006). Subsequently, a role
for STIM1 in the regulation of native and expressed TRPC channels has been demonstrated
in several cell types, including the function of TRPC channels in salivary gland (Liu et al.,
2007; Ong et al., 2007), vascular (Takahashi et al., 2007) and pulmonary arterial (Ng et al.,
2010) smooth muscle, HL-7702 (Zhang et al., 2010), intestinal (Rao et al., 2010), mesangial
(Sours-Brothers et al., 2009) and mast cells (Ma et al., 2008).

That STIM1 must be regulating channels other than Orai1 is further concluded from
studying the localization of the native Orai1 and TRPC channels and the recruitment of
STIM1, in particular in polarized secretory cells where Ca2+ signaling complexes are highly
compartmentalized (Kiselyov et al., 2006). In response to store depletion, over-expressed
Orai1 and STIM1 always co-cluster at the same puncta and show perfect co-localization
(Huang et al., 2006; Korzeniowski et al., 2010; Liou et al., 2007; Mercer et al., 2006; Park et
al., 2009; Yuan et al., 2009; Zhang et al., 2005). This is clearly not the case with the native
proteins where overexpression artifacts are avoided. Orai1 is expressed almost exclusively at
the apical pole of pancreatic and salivary glands acinar cells. By sharp contrast, Ca2+ store
depletion resulted in recruitment of only a fraction of STIM1 to the apical pole, while the
majority of STIM1 is recruited to the lateral pole that appears to be free of Orai1 (Hong et
al., 2010). This indicates that STIM1 interacts with Orai1 and additional Ca2+ influx
channels, which turn out to be TRPC channels since TRPC1 is also expressed at the lateral
pole, deletion of TRPC1 (Hong et al., 2010; Liu et al., 2007) and TRPC3 (Kim et al., 2009)
reduces SOC, and the native STIM1 co-immunoprecipitate with the native TRPC1 and
Orai1. Localization and co-immunoprecipitation of the native proteins is illustrated in Fig. 2,
which was taken from (Hong et al., 2010). Another recent study reported expression of small
amount of Orai1 in the lateral membrane domain of acinar cells that does not express IP3Rs
(Lur et al., 2011). However, the role of this Orai1 is not known since the expression level is
very low and whether STIM1 is recruited to this domain was not determined. The key
finding of luminal membrane domains, identified by both Cadherin and Laminin, that do
express high level of STIM1 but no Orai1 and the co-IP of STIM1 with TRPC channels in
response to store depletion (Hong et al., 2010), indicates that STIM1 most likely regulates
the native TRPC channels.
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Opening of TRPC channels by STIM1
To address the question of the mechanism by which STIM1 opens the TRPC channels, we
analyzed the role of the K-domain in TRPC channels function since deletion of the K-
domain resulted in a dominant negative STIM1 inhibitor of TRPC1 (Huang et al., 2006),
although the K-domain is not required for activation of Orai1 by STIM1 (Zeng et al., 2008).
The K-domain likely folds as an α-helix with several positive charges at the helix surface,
including the two terminal lysines (Huang et al., 2006). Deletion or mutation of the two
terminal lysines also resulted in a dominant negative STIM1 that inhibits, rather than
activates, TRPC1. One possibility was that the two terminal lysines of STIM1 may interact
with negative charges in TRPC channels. A search for a negative patch in TRPC channels
identified at least two conserved DD/E residues in the C-terminus of the TRPC channels
(Lee et al., 2010b; Zeng et al., 2008). Mutational and functional analysis and
complementation showed that the two terminal STIM1 lysines K684 and K685
communicate electrostatically with the conserved DD/E of TRPC channels to gate channel
opening (Lee et al., 2010b; Zeng et al., 2008). These findings, therefore, indicate that STIM1
can directly gate the TRPC channels.

The sequence of the TRPC channels’ C-terminal domains, where these conserved DD/E
residues are located, is shown in red letters in Fig. 3A. The blue letters show the localization
of the Homer ligand. Remarkably, only 4 residues separate the two sites. As outlined above,
binding of Homer1 to TRPC channels and coupling them with IP3Rs keep the channels in a
closed state. Interaction of the TRPC channels’ DD/E with STIM1(K684,K685) switches the
channels to the open state. These findings lead to the model in Fig. 3B. The model proposes
that, in the resting state, the ER is filled with Ca2+, which binds to the EF hand of STIM1 to
keep STIM1(K684,K685) away from the DD/E residues of the TRPC channels. The N-
terminal domain of the IP3R is in the conformation that exposes its Homer1-binding ligand
to allow binding to Homer1 that also binds to the Homer1-binding ligand in the C-terminus
of the TRPC channels. The TRPC-Homer-IP3R channel complex shields the DD/E from
STIM1(K684,K685). Sequestration of STIM1 in the ER and formation of the TRPC-Homer-
IP3R channel complex together ensure that the TRPC channels are kept in the closed state.
Once the cells are stimulated to generate IP3, binding of IP3 to the IP3Rs dissociates the
IP3R-Homer1-TRPC channel complexes. At the same time, IP3 activates the IP3Rs to
release ER Ca2+, and dissociation of Ca2+ from STIM1 EF hand results in the clustering of
STIM1 with the TRPC channels, so that now STIM1(K684,K685) can access the DD/E
residues of the TRPC channels and stabilize the TRPC channels open state. As indicated
throughout this review, the model in Fig. 3B is supported by multiple lines of evidence.
However, the direct relationship between interaction of STIM1 and Homer1 with TRPC
channels has not been explored yet. Such a study should test directly the validity of the
model.

Conclusions
In this review, the molecular mechanism of gating of TRPC channels by Homer and STIM1
is highlighted. Homer binds to and couples TRPCs to IP3Rs to keep the channels in a closed
state, while STIM1 gates open TRPCs in response to depletion of ER Ca2+ stores. STIM1
can also regulate Orai1 channels present in the same cell type. This is exemplified best in
polarized cells, where Orai1 is confined to the apical pole while TRPCs and STIM1 present
in the apical and lateral membranes. The same can also be seen in other cell types. Presence
of multiple store-operated Ca2+ influx channels in the same cells can serves to mediate
selective cellular functions. An excellent recent example is the efficient activation of NFAT
by Orai1-mediated, but not by TRPC-mediated, Ca2+ influx, while TRPC1-mediated Ca2+

influx activates K+ channels and NFκB (Cheng et al., 2011).
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Fig. 1. The Homers and their localization
Panel (A) shows the domains of Homer1a and of the long Homers (Homer1, Homer2 and
Homer3). Panel (B) lists some of the Ca2+ signaling proteins that have Homer ligands and
have been shown to bind to the EVH domain and co-localize with the Homers. Panel (C)
shows the localization of Homer1 and Homer2 at the apical pole and Homer3 in the basal
pole of mouse pancreatic acini. The images in panel C were taken from (Shin et al., 2003).
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Fig. 2. Localization of NATIVE STIM1 and Orai1 in polarized cells
In panels (A–C), ZO1 was used to mark the tight junction at the apical pole of mouse
pancreatic acinar cells. Panel (A) shows that small fraction of native STIM1 is at the apical
pole and most of native STIM1 is at the lateral plasma membrane and panel (B) shows that
native Orai1 is confined exclusively to the apical pole. The fraction of native STIM1 and
native Orai1 at the apical pole is shown in panel (C). All experiments in panels (A–C) are
with store-depleted cells. Panel (D) shows that native STIM1 and TRPC1 and STIM1 and
Orai1 are co-immunoprecipitated, the co-IP of STIM1 and TRPC1 (but not of STIM1 and
Orai1) is enhanced by cell stimulation that depletes the Ca2+ stores and the complexes are
broken with 2APB, which dissociates STIM1-formed complexes. The figure is reproduced
from (Hong et al., 2010).
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Fig. 3. A model for gating of TRPC channels by Homer1 and STIM1
Panel (A) depicts the localization of the Homer1 binding ligand (blue) and the conserved
DD/E site that interacts with STIM1(K684,K685) (red) in the C-terminus of the TRPC
channels. Panel (B) is a model for the proposed relationship between Homer1 and STIM1 in
keeping TRPC channels in closed or open state, respectively. Further details are given in the
text.
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