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Abstract

Microarray experiments are capable of determining the relative expression of

tens of thousands of genes simultaneously, thus resulting in very large data-

bases. The analysis of these databases and the extraction of biologically relevant

knowledge from them are challenging tasks. The identification of potential can-

cer biomarker genes is one of the most important aims for microarray analysis

and, as such, has been widely targeted in the literature. However, identifying a

set of these genes consistently across different experiments, researches, micro-

array platforms, or cancer types is still an elusive endeavor. Besides the inherent

difficulty of the large and nonconstant variability in these experiments and the

incommensurability between different microarray technologies, there is the issue

of the users having to adjust a series of parameters that significantly affect the

outcome of the analyses and that do not have a biological or medical meaning.

In this study, the identification of potential cancer biomarkers from microarray

data is casted as a multiple criteria optimization (MCO) problem. The efficient

solutions to this problem, found here through data envelopment analysis

(DEA), are associated to genes that are proposed as potential cancer bio-

markers. The method does not require any parameter adjustment by the user,

and thus fosters repeatability. The approach also allows the analysis of different

microarray experiments, microarray platforms, and cancer types simultaneously.

The results include the analysis of three publicly available microarray databases

related to cervix cancer. This study points to the feasibility of modeling the

selection of potential cancer biomarkers from microarray data as an MCO

problem and solve it using DEA. Using MCO entails a new optic to the identi-

fication of potential cancer biomarkers as it does not require the definition of a

threshold value to establish significance for a particular gene and the selection

of a normalization procedure to compare different experiments is no longer

necessary.

Introduction

Microarrays are frequently used to simultaneously analyze

the expression level of tens of thousands of genes. Analysis

of microarray data has become a useful tool for the study

of different illnesses including all types of cancer [1–3].
Microarray analyses are carried out, essentially, with the

objective to detect variation patterns of genetic expression.

In cancer research, these patterns can be used for various

purposes such as eliciting a diagnosis or prognosis, char-

acterizing a particular illness stage, or detecting and pro-

posing the role of specific genes in the development of

cancer. In this last classification, lies the detection of can-

cer biomarkers. Because biomarker genes detected using

only microarray data are not experimentally validated yet,

at that point they are deemed potential biomarkers.
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Microarray experiments generate large amounts of

information whose analysis and interpretation are non-

trivial [4]. Traditional statistical approaches are chal-

lenged by large variances, incommensurability,

nonnormality, and the small number or replicates fre-

quently present in these experiments. These challenges

hamper finding consistent analysis results [5], thereby

leading to a large number of potential biomarkers to be

investigated, the research of which could prove lengthy

and very expensive.

An example that illustrates the difficulties of obtain-

ing cancer biomarkers consistently is the 70-gene signa-

ture for identification of patients with a high

probability for breast cancer relapse after its eradication.

The original results are reported previously [6]. A 76-

gene signature is reported in Wang et al. [7] with the

same purpose; however, there are only three genes that

intersect with the original signature. This issue has been

also reported for the specific case of breast cancer by

Ein-Dor et al. [8].

It is also notorious that truly integrated work across

disciplines is not frequent in most microarray analysis

works. Biology and Medicine experts are usually left with

the burden of using coded analysis tools with a series of

parameters – of statistical, computational, or mathemati-

cal nature – that significantly affect the outcome of the

software packages [4]. This leads to issues in results’

reproducibility and comparability between studies.

These challenges motivate the search for microarray

analysis techniques from which consistent results can be

achieved across several experiments and researches, partic-

ularly for the identification of potential cancer bio-

markers. In this study, a multiple criteria optimization

(MCO) approach is proposed for the identification of

potential cancer biomarkers from microarray data. An

MCO problem aims to find the best compromises

between two or more conflicting criteria [9]. The best

compromises are located in the so-called Pareto-efficient

frontier. It is proposed that the genes in the efficient fron-

tier of the MCO problem, built with performance mea-

sures relating to the significant change in gene expression,

are potential cancer biomarkers.

The potential of an MCO analysis for the identification

of relevant genes has been recognized before [10] through

the use of ranking methods. Here, the proposed MCO

problem is solved through the use of data envelopment

analysis (DEA) [11]. DEA has been used to find the con-

vex efficient frontier of MCO problems [12]. DEA is a

very computationally convenient technique that is capable

to deal with multiple and incommensurable performance

measures. A clear applicability to meta-analysis follows

from these characteristics. Using MCO provides a new

optic to the identification of potential cancer biomarkers

as it does not require the definition of a threshold value

to establish significance for a particular gene and the

selection of a normalization procedure to compare differ-

ent experiments is no longer necessary.

The proposed method is tested here through its initial

application to a microarray database related to cervix can-

cer [13] and the results are successfully validated through

the information available in the literature for the selected

genes. Furthermore, two additional studies involving two

independent experiments using the same microarray [14,

15] platform further corroborate the performance of the

proposed method. Finally, the novelty of this approach is

contrasted with the use of a single criterion – or perfor-

mance measure – to find potential biomarkers.

Methods

Potential biomarkers through MCO

In microarray experiments, it is critical to be able to

quantify changes in genetic expression. A series of mea-

surements have been proposed in the literature that

include variations of pure magnitude of relative change of

expression versus a control [16] as well as P-values

obtained from various statistical tests [17]. A P-value, in

statistical comparison procedures, can be understood as

the probability associated with finding – by pure chance –
a difference in the populations being compared that is at

least as large as the observed difference of the samples

involved. Lower P-values indicate larger differences and

therefore show stronger evidence favoring statistical sig-

nificance. Due to their interpretation capabilities, P-values

have been a favored performance measure in microarray

experiments in recent years. Obtaining a P-value for a

particular gene is illustrated in Figure 1.

A P-value, when obtained for a particular gene in a

microarray experiment, can be thought of as a criterion

to be minimized since the smaller the P-value the more

important the change in expression of the gene under

consideration. Now, if more than one P-value is available

for a particular gene, then the task at hand is one of mul-

tiple criteria minimization. An illustrative example with a

series of genes is shown in Figure 2. In this figure, each

gene is represented by a pair of P-values. Because low

P-values are attractive, the ideal gene would be found in

the southwest corner of the graph. When no single gene

is best in all criteria under consideration, a conflict exists.

The key idea in this study is that the potential biomar-

ker genes can be identified as efficient solutions of the

MCO problem that results from representing each gene

under analysis through a series of associated P-values. In

order to develop the idea, two issues must be addressed

(i) how can one obtain several P-values for one gene?
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and (ii) which method can be used to solve the MCO

problem.

Obtaining multiple P-values for a particular
gene

Consider the results of a microarray experiment laid out

on a table where the first column contains the names of

the n genes under study; the columns to the right contain

the measurements for l healthy tissues followed by m can-

cer tissues. Thus, for each gene, there are l replicated

measurements of relative expression for state 1 (healthy)

and m replicates for state 2 (cancer).

A statistical comparison procedure can be used to

obtain a P-value when contrasting parameters from the

two states – cancer and healthy – for a particular gene. A

common interest is to compare the population centers,

which are estimated either through sample means or sam-

ple medians. For MCO purposes, however, more than

one P-value per gene is necessary. Two cases can be dis-

tinguished here: (c1) having a single microarray experi-

ment to study one type of cancer and (c2) having several

microarray experiments to study one type of cancer. In

c1, if a leave-one-out strategy is applied to the tissues per-

taining to one state, then it is possible to obtain several

P-values. In c2, an additional P-value can be obtained for

the genes that are common to both experiments. This

study focuses on c1 to introduce the proposed analysis

strategy, leaving c2 for future publication.

For c1, the leave-one-tissue-out strategy implies

extracting a particular tissue associated with one state

(“leaving one column out”). By removing a vector (col-

umn), a replicate is deleted from the set, thereby forcing

a P-value that is different from the original one. Thus,

two different P-values are effectively created. The selection

of the tissue to be removed to create a distinct matrix is

performed considering the variance of expression on each

tissue (stored in each column). Then, a first matrix is

Cervix tissue   
patient A with

cancer

Cervix tissue 
patient B with

cancer

Cervix tissue 
patient C with

cancer

Healthy
cervix
tissue

Healthy
cervix
tissue

Healthy
cervix
tissue

Control material Study material (condition)

Gene 1

Gene 2

Gene 3

Gene n

… … … … … … …

Expression 
level for 
gene 3 in 
this �ssue

Microarray experiment – cervix cancer 

Statistical comparison for gene 3 
Ho: Control = Cancer 
Ha: Control ≠ Cancer 

if P-value < α
then Reject Ho, that is

“Conclude that level of expression for gene 3 changed significantly from the healthy
tissues to the tissues with Cancer”

The lower the P-value, the more significant the change in level of expression

Running this analysis 
for every gene 

results in having n 
genes and their 

respec�ve P-values

i.e. each gene with a 
value of a 

performance 
measure to be 

minimized

Figure 1. Schematic example of how to obtain a P-value. This is a schematic example of how to obtain one P-value for a particular gene in a

microarray experiment with l = 3 healthy tissues as controls and m = 3 tissues with cancer. If statistical comparison is carried out for each gene,

then at the end one has n genes each one with an associated P-value.

Genes represented by two P-values

0.5

0.4

0.3

0.2

0.1

0.10.0 0.2 0.3 0.4 0.5
P-value 1

P-
va

lu
e 

2

Figure 2. Pareto-efficient frontier. The existence of conflict causes

that different genes be attractive when lying in the southwest

envelope of the gene set. In general, in multiple criteria optimization

(MCO), that envelope is called a Pareto-efficient frontier and it is

conformed by Pareto-efficient solutions.
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built leaving out the tissues (columns) with the highest

variance for each state and the second matrix by leaving

out the tissues with the lowest variance for each state.

Through this strategy, the resulting matrices show

extreme cases in terms of data variance. Any other combi-

nation of tissues to leave out would have statistical differ-

ences lying between these two “extreme” cases.

Thus, two extreme cases span all the possible cases in

terms of variance for the leave-one-out cases. This fact

can be used to avoid unnecessary computational effort

and, by using just two dimensions, it is possible to illus-

trate the problem graphically.

c1 is important because the vast majority of published

microarray experiments are instances of this type, and –
as explained previously – it is the subject of study in this

manuscript. c2 can be built from several c1 instances,

however, it is envisioned that this case becomes an arche-

type for a study designed to keep the same genes

throughout all microarrays experiments involved. c2 will

also represent the case where meta-analysis must be

addressed and will be approached in a future publication.

Solving the MCO problem

The decision that must result from the solution of the MCO

problem can be stated as “a selection of those genes that

show the highest possible expression change in all experi-

mental instances when considered simultaneously.” Due to

the large variability encountered in microarray experiments,

this is a nontrivial decision that will lead to a set of genes that

will have very low P-values in certain instances, although

not necessarily in all of them, that is, the genes that are

Pareto-efficient as illustrated in Figure 2.

DEA is a technique that has been shown capable to

identify the efficient solutions located in the convex hull

of an MCO problem [11]. In its most popular form, DEA

finds the Pareto-efficient solutions through the sequential

solution of a series of linear optimization models. One of

the most popular and effective DEA formulations is the

Banker–Charnes–Cooper model (BCC), which is shown

next in its two formulations (input oriented and output

oriented):

where l and m are vectors containing nonnegative multi-

pliers and lþ0 ; l
�
0 ; m

þ
0 and m�0 are scalar numbers to be

determined optimally, Ymin
j and Ymax

j are vectors contain-

ing the values of performance measures to be minimized

and maximized, respectively, for the jth solution. The

subindex 0 is used to denote the solution currently under

analysis, and e is a small constant usually set to a value of

1 9 10�6. The results of solving these two linear optimi-

zation problems, for the n genes in a set, are a series of

hyperplanes that forms a convex envelope around this set,

as depicted in Figure 2.

Because of the nature of DEA, the model needs at least

one performance measure to be maximized. For the case

under consideration, a transformation of at least one set

of P-values is required. The following transformation is

applied to switch from minimization to maximization in

a set of n P-values:

P-value�i ¼ðMax P-value þMin P-valueÞ � P-valuei; ð1Þ
i¼ 1ton

where the transformation is carried out for the ith gene.

Maximizing the transformed performance measure is fully

equivalent to minimizing the original P-value.

DEA has several advantages including (i) computa-

tional efficiency owing to its linear optimization struc-

ture; (ii) objectivity and consistency of results, which

follows from not requiring the adjustment of parameters

or assigning weights to the different performance mea-

sures; and (iii) capability of analyzing several microarray

experiments with incommensurate units. Furthermore,

linear optimization is – by far – the most coded type of

optimization. Algorithms for linear programing (as this

type of optimization is known as) are available in mod-

ules from the very common MS Excel package to the

mathematically oriented software Matlab [18] and to the

very specialized solvers like Lingo [19]. There are also

DEA solvers like DEA Solver Pro [20] that make adopt-

ing the proposed approach even easier. So, in order to

use the approach proposed here, all the user needs is a

list of genes, with one P-value obtained as usual, and a

Find l; m; lþ0 ; l
�
0 to Find m; l; mþ0 ; m

�
0 to

Maxmize lTYmax
0 þ lþ0 � l�0 Minimize mTYmin

0 þ mþ0 � m�0
Subject to Subject to

mTYmin
0 ¼ 1 lTYmax

0 ¼ 1
lTYmax

j � mTYmin
j þ lþ0 � l�0 � 0 j ¼ 1; . . .; n mTYmin

j � lTYmax
j þ mþ0 � m�0 � 0 j ¼ 1; . . .; n

lT � e � 1 mT � e � 1
mT � e � 1 lT � e � 1
lþ0 ; l

�
0 � 0 mþ0 ; m

�
0 � 0
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second P-value transformed using equation (1), and an

optimization solver capable to deal with linear program-

ing to use the DEA formulations outlined above.

One limitation of DEA is that of depending on a series

of local linear approximations, as shown in Figure 2.

Every time that a hyperplane is superimposed over the set

under analysis, there are genes lying in the nonconvex

part of the set frontier that escape detection. These genes

could be potential biomarkers, however.

In order to circumvent this limitation, it is proposed

that DEA be applied successively 10 times, each time

removing the genes found in a particular iteration from

the set for subsequent analyses. This strategy results in 10

frontiers, as seen in Figure 3.

Results

Analysis of a single microarray experiment
to study one type of cancer

The first results on the application of the proposed

method include the analysis of the microarray database

used by Wong et al. [13] related to cervix cancer. The

database consists of eight healthy tissues and 25 cervix

cancer tissues, all of them with expression level readings

for 10,692 genes from a cDNA microarray. The Mann–
Whitney nonparametric two-sided test for comparison of

medians was used to generate two different P-values per

gene [21], following the leave-one-tissue-out strategy as

outlined in the methods section. Both formulations were

applied to each gene characterized by a P-value as an

input and as a transformation of the other P-value as an

output (equation 1). The first 10 frontiers were identified,

and they contained 28 potential biomarkers. Numerically,

reducing 10,692 genes to only 28 of them evidences the

screening power of the proposed method. Table 1 out-

lines the genes identified in the analysis. These were then

investigated in the literature to assess their cervix cancer

biomarking potential as discussed next.

In the first efficient frontier there is only one gene: the

NAB1 gene that codes for EGR1-binding protein 1, which

has been reported as a potential tumor suppressor in dif-

ferent cancer types including prostate cancer [22], breast

cancer [23], esophageal cancer [24], hepatoma [25], and

leukemia [26].

The LIM domain 7 (LMO7) gene was selected in the

second frontier. The protein product of the LMO7 belongs

to the PDZ-LIM family. Regulation problems with these

proteins can support the development of cancer [27].

Third frontier holds DDR2, PPP1R1A, ARF4, and

KPNA6. Changes in expression of DDR2 have been linked

to several human cancers, for example, in non-small cell

lung carcinoma (NSCLC) [28] and in nasopharyngeal car-

cinoma [29]. The PPP1R1A product is the protein phos-

phatase 1, regulatory (inhibitor) subunit 1A. In a recent

study, the PPP1R1A expression in lung, colorectal, and

gastric cancer cell lines was different from that of the nor-

mal tissues [30], as well as in some cell lines developed

from different pediatric tumors [31]. The ADP-ribosylation

factor 4 (ARF4) gene protein product interacts with epider-

mal growth factor receptor (EGFR) mediating the EGF-

dependent cellular activation of phospholipase D2 (PLD2)

[32]. An increased PLD2 activity has been reported for

human cancers including breast, colon, gastric, and kidney

[33]. The ARF4 has also been proposed as an antiapoptotic

gene in human glioblastoma-derived U373MG cells [34].

The product of the KPNA6 gene has been reported to play

an important role in the antioxidant response and in keep-

ing the redox homeostasis of the cell [35]. Its downregula-

tion was reported to inhibit HeLa cell proliferation [36].

The fourth frontier holds RAD52 along with an

expressed sequence tag (EST). RAD52 codes for a protein

that is homolog to the Saccharomyces cerevisiae Rad52. The

overexpression of RAD52, along with RAD51 and TOP2A,

all three DNA repair genes, has been reported to be predic-

tive of poor relapse-free survival for melanoma [37].

The genes in the fifth frontier are RBM25 and UBE3A.

The product of the RBM25 gene is an RNA-binding pro-

tein that acts as a splicing factor and has been shown to

act on the alternative splicing of apoptotic factors [38].

0.10.0 0.2
0.2

0.3

0.3

0.4

P-value 1

Tr
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sf
or

m
ed
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ue
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0.4

0.5

0.5

0.6

0.6

0.7

1st Efficient frontier
2nd Efficient frontier
3rd Efficient frontier

10th Efficient frontier

0.7

0.8

0.8

0.9

Figure 3. The two performance measures for each gene. This figure

schematically shows a case with genes characterized by two

performance measures: an untransformed P-value and a transformed

one with equation (1). Referring to this figure, and following the

proposed method, at this point it is recommended to identify the first

10 efficient frontiers. This can be easily done by identifying the genes

in the first efficient frontier through data envelopment analysis (DEA),

then removing them from the set and continuing with a second DEA

iteration. This is repeated until the tenth frontier is identified. A

method to determine the number of adequate frontiers to be

analyzed is currently under development by our research group.
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The product of the UBE3A gene is an E3 ubiquitin pro-

tein ligase, the E6-associated protein (E6AP). This protein

is used by the E6 oncoprotein, from high-risk human

papillomavirus (HPV) types, to produce the proteolysis of

the tumor suppressor p53 [39]. The E6AP is also used by

E6 to stimulate the telomerase activity, generally present

in cancer cell lines [40].

CA II, the gene in the sixth frontier, has been reported

to be expressed in the neovessel endothelium and the

tumor cell cytoplasm of medulloblastomas and primitive

neuroectodermal tumors [41] and has been proposed as a

biomarker gene for gastrointestinal stromal tumors [42].

In the seventh frontier KCNE3, the uncharacterized

conserved protein LOC729991, and the EST yh88d01.s1

were selected. The KCNE3 gene codes for the potassium

voltage-gated channel, Isk-related family, member 3. An

increase in the activity of plasma membrane voltage-gated

potassium channels promote neuronal cell death by apop-

tosis [43].

The genes in the eighth frontier are ALDH3B1, CYP3A7,

and PRPSAP1. In a recent study, the expression of ALDH3B1

was found to be tissue dependent, being upregulated in a high

percentage of tumors used in the study (lung >
breast = ovarian > colon) [44]. CYP3A7 codes for a protein

from the cytochrome P450 superfamily of enzymes. Proteins

of this family play an important role in carcinogenesis

because they metabolically activate precarcinogens and can

metabolize anticancer drugs. The product of the PRPSAP1

gene has been suggested to play a negative regulatory role in

5-phosphoribose 1-diphosphate synthesis and to bind to

Table 1. List of the 28 genes identified in the first 10 frontiers of the proposed multiple criteria optimization (MCO) problem.

Frontier Accession number Symbol Name

Expression in

cervix cancer

(using data from

Wong et al. [13])

1 AA488645 NAB1 NGFI-A-binding protein 1 (EGR1 binding protein 1) Underexpressed

2 H22826 LMO7 LIM domain 7 Overexpressed

3 AI553969 KPNA6 Karyopherin a6 (importin a7) Overexpressed

3 T71316 ARF4 ADP-ribosylation factor 4 Overexpressed

3 AA243749 DDR2 Discoidin domain receptor tyrosine kinase 2 Overexpressed

3 AA460827 PPP1R1A Protein phosphatase 1, regulatory (inhibitor) subunit 1A Underexpressed

4 AA454831 EST: zx79c10.s1 Overexpressed

4 AA913408, AA913864 RAD52 DNA damage repair and recombination

protein RAD52 pseudogene

Overexpressed

5 AA487237 UBE3A Ubiquitin protein ligase E3A Underexpressed

5 AA446565 RBM25 RNA-binding motif protein 25 Overexpressed

6 H23187 CA2 Carbonic anhydrase II Overexpressed

7 AI221445 KCNE3 Potassium voltage-gated channel, Isk-related

family, member 3

Overexpressed

7 R36086 EST: yh88d01.s1 Underexpressed

7 AA282537 LOC729991 Hypothetical protein LOC729991 Overexpressed

8 N93686 ALDH3B1 Aldehyde dehydrogenase 3 family, member B1 Underexpressed

8 R91078 CYP3A7 Cytochrome P450, family 3, subfamily A, polypeptide 7 Overexpressed

8 R44822 PRPSAP1 Phosphoribosyl pyrophosphate synthetase-

associated protein 1

Underexpressed

9 AI334914 ITGA2B Integrin, alpha 2b (platelet glycoprotein IIb of

IIb/IIIa complex, antigen CD41)

Overexpressed

9 R93394 Transcribed locus Overexpressed

9 AA621155 MSH5 MutS homolog 5 (Escherichia coli) Underexpressed

9 AA705112 MOCS1 Molybdenum cofactor synthesis 1 Overexpressed

9 R52794 PTPRT Protein tyrosine phosphatase, receptor type, T Underexpressed

10 AA424344 UROD Uroporphyrinogen decarboxylase Overexpressed

10 H69876 LOC100132707 Hypothetical LOC100132707 Underexpressed

10 H55909 SRSF1 Serine/arginine-rich splicing factor 1 Underexpressed

10 W74657 KLF2 Kruppel-like factor 2 (lung) Overexpressed

10 AI017398 ACCN2 Amiloride-sensitive cation channel 2, neuronal Overexpressed

10 H99699 POLR3H Polymerase (RNA) III (DNA directed)

polypeptide H (22.9 kD)

Overexpressed

The table shows complete list of genes identified in the first 10 efficient frontiers. In the last column, the expression change from the normal state

to the cancer state is shown.
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PRPS1 and PRPS2 [45], enzymes involved in the synthesis of

purine and pyrimidine nucleotides.

The genes in the ninth frontier are ITGA2B, MSH5,

MOCS1, and PTPRT. The ITGA2B gene codes for the

integrin alpha chain 2b. Integrins can activate protein

kinases involved in the regulation of cell growth, division,

survival, differentiation, migration, and apoptosis. The

MSH5 gene codes for a member of the mutS family of

proteins. These proteins are involved in promoting ioniz-

ing radiation-induced apoptosis [46]. A recent study

found that the level of mRNA for genes involved in mis-

matching repair, including MSH5, was lower in colorectal

cancer samples than in normal tissues [47]. The product

of the MOCS1 gene is involved in the molybdenum co-

factor biosynthesis. Deficiency in molybdenum cofactor

produces deficiency in the sulfite oxidase, xanthine dehy-

drogenase, and aldehyde oxidase [48]. Xanthine oxido-

reductase has been associated with various forms of

cancers as well as other human diseases (reviewed in

[49]). The PTPRT gene codes for a tyrosine phosphatase

protein, receptor type T, and has been suggested that its

product has tumor suppression functions [50].

In the 10th frontier, the genes selected by the analysis

method used in this study are UROD, LOC100132707,

SRSF1, KLF2, ACCN2, and POLR3H. The UROD gene

has been reported to be overexpressed in biopsies from

patients with head and neck cancer [51]. LOC100132707

is a hypothetical gene, the product of which is uncharac-

terized. The SRSF1 gene codes for a member of the argi-

nine/serine-rich splicing factor protein family, its product

works activating or repressing splicing of pre-mRNA [52].

It has been proposed that KLF2 could have a tumor sup-

pressor activity in the MCF-7 mammary carcinoma cells

[53]. Also, the expression of KLF2 has been reported to

inhibit Jurkat T leukemia cell growth [54]. The ACCN2

product is an acid-sensing ion channel (ASIC) shown to

have higher expression in human glioblastoma multi-

forme cells as compared with primary human astrocytes

[55]. The POLR3H gene codes for the polymerase (RNA)

III (DNA-directed) polypeptide H. RNA polymerase (pol)

III synthesizes several products required for protein syn-

thesis, and there have been detected high rates of pol III

transcription in several cancers (reviewed in [56]).

As it can be seen, the literature marshaled about the genes

detected by the proposed method evidences the biological rel-

evance of the analysis output. The following section presents

cross-validation studies that support analysis consistency.

Cross-validation studies of results in cervix
cancer

The proposed method is capable to importantly accelerate

the detection of potential cancer biomarkers, as shown in

the previous study. In the following studies, the objective

was to cross-validate the use of the method following

(1) a genetic signature approach and (2) a statistical clas-

sification procedure.

Two independent cervix cancer databases using the

same microarray platform, the Affymetrix U133A (with

22,283 probe set), were identified [14, 15]. Using the pro-

posed method as in the previous study, and considering

only the healthy and cancer data, a series of potential bio-

markers was selected using solely database 1 [14]. These

genes were then identified in database 2 [15] and the

change in expression was compared between the datasets.

Table 2 shows the overlap between the reference signature

behavior from database 1 and the behavior of genes in

database 2. The overlap amounts to 28 genes (29 probes

with two probes for gene SMC4), which is 71.8% of the

original signature, evidencing the effectiveness of

the method. Table 2 also summarizes evidence found in

the literature to support the genes’ potential biomarking

role in cervix cancer or in other types of cancer.

An important fact to emphasize in this study is, also,

that of the discrimination power of the tool. The micro-

array platform used by both databases involved in the val-

idation study contained 22,283 probes set. The fact that a

signature of 39 genes was feasible to be built and tested

evidences the advantage of using the proposed method.

A second cross-validation study entailed building a lin-

ear classifier with the set of genes identified as potential

biomarkers in database 1, but applying it to classify the

tissues in database 2. The classification rate in the 56 tis-

sues of database 2 (24 healthy tissues and 32 cancer tis-

sues) was 100%. The classifier was built with linear

discriminant analysis and the results imply that the selec-

tion of potential biomarkers in database 1 achieved per-

fect linear separability in database 2. This provides solid

evidence on the competitiveness of the proposed method.

Contrast with the single performance
measure strategy

The single performance measure strategy is prevalent in

the literature for the selection of genes that change their

expression significantly between the conditions under

comparison. It generally involves defining a threshold to

select a number of potential biomarkers based on a single

measurable criterion. The definition of such threshold

may vary from experimenter to experimenter, however.

In this section, a multiple simultaneous hypothesis test-

ing approach with a Bonferroni correction by Holms

[101] was used to contrast a single performance measure

strategy with the multiple performance measure strategy

proposed here. For each gene in database 1 [14], a P-value

was obtained based upon the Mann–Whitney non-
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Table 2. List of genes from the cross-validation study.

Gene probe Gene name

Sign of expression change from

healthy tissues to cancer tissues
Efficient frontier

in which it was

identified

Examples of cancer

types where the

gene is involved ReferenceDatabase 1 [14] Database 2 [15]

202575_at CRABP2 � � 3 Head and neck, breast [57, 58]

205402_x_at PRSS2 � � 10 Colorectal, gastric tumorigenesis [59, 60]

218677_at S100A14 � � 9 Esophageal squamous cell

carcinoma cells, oral squamous

cell carcinoma

[61, 62]

202096_s_at TSPO � � 7 Thyroid, breast [63, 64]

212249_at PIK3R1 � � 7 Endometrial, colorectal [65, 66]

212567_s_at MAP4 � � 6 Breast, non-small cell lung carcinomas [67, 68]

211366_x_at CASP1 � � 9 Cervical squamous carcinoma cells [69]

213449_at POP 1 � + 3 Esophageal adenocarcinoma [70]

214933_at CACNA1A � + 5 Lung cancer cell lines [71]

212889_x_at GADD45GIP1 � � 6 SKOV3 and HeLa cell lines [72]

217912_at DUS1L � + 7

206626_x_at SSX1 � � 1 Prostate, multiple myeloma [73, 74]

213450_s_at ICOSLG � � 8 Metastatic melanoma, ductal

pancreatic adenocarcinoma

[75, 76]

220405_at LOC100127998 � � 5

208032_s_at GRIA3 � � 2 Pancreatic [77]

205690_s_at BUD31 � � 4

206543_at SMARCA2 � � 7 Prostate, skin [78, 79]

203716_s_at DPP4 + � 1

212291_at HIPK1 + + 3 Acute myeloid leukemia [80, 81]

221632_s_at WDR4 + � 10

66053_at HNRNPUL2 + � 3

207142_at KCNJ3 + � 3 Pancreas, breast, lung [57,58]

207742_s_at NR6A1 + � 3 Germ cell tumors of the testis [82]

211615_s_at LRPPRC + + 1 Lung adenocarcinoma cell lines,

esophageal squamous

cell carcinoma, stomach,

colon, mammary and

endometrial adenocarcinoma,

and lymphoma

[83]

209245_s_at KIF1C + � 3 Breast, non-small cell lung

cancer metastatic spread

to the brain

[84, 85]

213694_at RSBN1 + � 6

222027_at NUCKS1 + + 7 Breast [86]

205362_s_at PFDN4 + + 6 Colorectal [87]

208706_s_at EIF5 + � 4 Chronic myeloid leukemia [88]

211929_at HNRNPA3 + + 7 Non-small cell lung cancer [89]

203738_at C5orf22 + + 3

201794_s_at SMG7 + + 2

200607_s_at RAD21 + + 5 Breast [90]

201011_at RPN1 + + 9 Hematologic malignancies [91]

201761_at MTHFD2 + + 8 Bladder, breast [92, 93]

203880_at COX17 + + 1 Non-small cell lung cancer [94]

212255_s_at ATP2C + + 9 Breast, cervical [95, 96]

205112_at PLCE1 + + 8 Gastric adenocarcinoma, colorectal [97, 98]

201663_s_at SMC4 + + 9 Breast, cervical [14, 99, 100]

201664_at SMC4 + + 7 Breast, cervical [14, 99, 100]

The table shows genetic signature obtained in the cross-validation study. Both the matching and the nonmatching genes (shaded) are provided in

this list along with evidence of their roles in cervix and other types of cancer.
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parametric test for difference of medians between two

groups. All genes and their associated P-values were sorted

in increasing order in terms of P-value. To decide whether

a gene in the (i)th place of the ordered sequence shows

significantly different relative expression levels with the

presence of cancer, the following criterion is evaluated:

PðiÞ� a
q� iþ 1

(2)

where a is the family-wise error rate and q is the number

of total hypothesis tests being carried out, which in this

instance, corresponds to the number of genes under eval-

uation.

The choice of the value of a is habitually left to the

user. With database 1, when a < 0.1280, no gene is

deemed to change its relative expression significantly. At

a = 0.1280, a total of 86 genes are deemed to have chan-

ged their relative expression significantly. The number of

genes in this category goes up to 116 at a = 0.1530. The

choice of a by the user, as it can be seen, greatly affects

the number of genes that are considered important.

To make a fair comparison with the proposed multiple

criteria method in this study, only the top 39 genes were

chosen to build a linear classifier to be applied to data-

base 2 [15] as in the previous section. The classification

rate was also of 100% in both healthy tissues and cancer

tissues. It is important to notice that although both meth-

ods achieved 100% classification rate in an independent

database, the proposed multiple criteria method did not

require for the user to set any parameter.

Conclusions

The search for potential cancer biomarkers can be greatly

enhanced through the use of optimization techniques. In

this study, a multiple criteria representation of the gene

expression changes identification problem using micro-

array data is proposed. As a first case, the analysis of a

single microarray experiment has been used to extract

biologically relevant information in terms of potential bi-

omarkers. The methodology can be extended to find the

best compromises between data from different experi-

ments for the same cancer type.

DEA is shown as a promising first approach to charac-

terize the convex-efficient frontier of the MCO problem,

and therefore to point toward potential biomarkers in a

parameter-free and consistent fashion.

The proposed method, when applied to a publicly avail-

able microarray database from cervix cancer, identified

genes already reported as relevant for different cancer types

or cellular processes related to cancer. When the behavior

of a selected gene was contrary to what was expected

(NAB1 [AA488645], RBM25 [AA446565], UBE3A

[AA487237], ALDH3B1 [N93686], PRPSAP1 [R44822]),

the original data were reexamined. For those genes the

readings showed great dispersion, from one run to the next,

making the signal very noisy, which can explain the odd

observed behavior. Genes without previous report of their

relevance can be proposed for further in vitro validation.

Similarly, in the cross-validation studies, 39 genes were

identified as potential cervix cancer biomarkers in a data-

base. Of these genes, there was an overlap of 29 genes

with similar behavior in a second database using the same

microarray platform. These genes are proposed in this

study as potential cervix biomarkers. A second cross-

validation study showed that the proposed selection of

potential biomarkers achieved perfect linear separability

in an independent database, adding evidence in favor of

the performance of the proposed approach. Furthermore,

the convenience of not requiring the user to set parame-

ters that affect the output of the analysis was demon-

strated through a comparison with a commonly used

strategy based on a single performance measure.

New methodologies for biological characterization have

emerged after microarrays. The issues in handling large

amounts of data, analysis reproducibility, and consistency,

as well as computational convenience will continue to be

challenges. This situates the proposed approach as a

promising tool capable to accelerate biological discovery

and to facilitate meta-analysis.
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