
Original Contribution

Analysis of Occupational Asbestos Exposure and Lung Cancer Mortality Using

the G Formula

Stephen R. Cole*, David B. Richardson, Haitao Chu, and Ashley I. Naimi

* Correspondence to Dr. Stephen Cole, Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina,

McGavran-Greenberg Hall, Box 7435, Chapel Hill, NC 27599-7435 (e-mail: cole@unc.edu).

Initially submitted January 3, 2012; accepted for publication August 8, 2012.

We employed the parametric G formula to analyze lung cancer mortality in a cohort of textile manufacturing

workers who were occupationally exposed to asbestos in South Carolina. A total of 3,002 adults with a median

age of 24 years at enrollment (58% male, 81% Caucasian) were followed for 117,471 person-years between 1940

and 2001, and 195 lung cancer deaths were observed. Chrysotile asbestos exposure was measured in fiber-years

per milliliter of air, and annual occupational exposures were estimated on the basis of detailed work histories.

Sixteen percent of person-years involved exposure to asbestos, with a median exposure of 3.30 fiber-years/mL

among those exposed. Lung cancer mortality by age 90 years under the observed asbestos exposure was 9.44%.

In comparison with observed asbestos exposure, if the facility had operated under the current Occupational Safety

and Health Administration asbestos exposure standard of <0.1 fibers/mL, we estimate that the cohort would have

experienced 24% less lung cancer mortality by age 90 years (mortality ratio = 0.76, 95% confidence interval: 0.62,

0.94). A further reduction in asbestos exposure to a standard of <0.05 fibers/mL was estimated to have resulted in

a minimal additional reduction in lung cancer mortality by age 90 years (mortality ratio = 0.75, 95% confidence

interval: 0.61, 0.92).

asbestos; bias (epidemiology); epidemiologic methods; healthy worker effect; occupations

Abbreviations: CI, confidence interval; OSHA, Occupational Safety and Health Administration.

Exposure to asbestos fibers has been associated with an
increased risk of lung cancer mortality in a number of pro-
spective occupational studies (e.g., the studies by Doll (1)
and Hein et al. (2)), and there is consensus that asbestos
exposure increases the risks of lung cancer and mesotheli-
oma (3). However, the evidence base derived from occupa-
tional studies is susceptible to the healthy worker survivor
bias. The healthy worker survivor bias may occur when
leaving the workplace while being at risk for the outcome is
a time-varying confounder affected by prior exposure (4, 5).
A time-varying confounder is a variable that is associated
with subsequent levels of the time-varying exposure and
is an independent predictor of the outcome (6). Employ-
ment status is a time-varying predictor of workplace asbes-
tos exposure; in many settings, cessation of employment is
associated with subsequent increases in mortality. If the

level of a time-varying confounder, such as employment sta-
tus, is affected by prior asbestos exposure, standard statisti-
cal methods will fail to consistently estimate the net effect
(i.e., direct and indirect) of exposure on the outcome (6).

Robins (7) developed the parametric G formula to
account for time-varying confounding, such as that which
occurs with the healthy worker survivor bias. However, to
our knowledge, there have been few published examples of
the parametric G formula regarding cases with time-varying
exposures (8–10), with a single early paper that applied the
parametric G formula to a setting with the healthy worker
survivor bias (7). The G formula (11), G estimation of struc-
tural nested models (12), and inverse probability weighting
of marginal structural models (6, 13) are collectively known
as G methods, where G stands for “generalized.” These
methods can be used to estimate contrasts of potential
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outcomes when exposures are time-varying and time-
varying confounders are affected by prior exposure. In addi-
tion, these methods can be used to adjust for confounders
affected by prior exposure without inducing collider-
stratification bias (14), and they allow epidemiologists to cir-
cumvent issues of noncollapsibility of effect estimates (15).
Here we use the parametric G formula to analyze the lung
cancer mortality that would have been observed under
various asbestos standards in a cohort of persons occupa-
tionally exposed to asbestos fibers in the textile manufactur-
ing industry.

MATERIALS ANDMETHODS

Study population

The cohort included 3,072 men and women employed at
a textile production plant for at least 1 month (the run-in
period) between January 1, 1940, and December 31, 1965.
The plant was located in South Carolina and began produc-
tion using raw chrysotile asbestos fibers in 1909 (16). For
analyses, we began follow-up at 18 years of age; therefore,
we excluded 70 of the 3,072 persons who left work before
reaching age 18 years.
Date of birth, year of study entry, sex, race (i.e., Caucasian

vs. non-Caucasian), prevalent asbestos exposure (prior to
completion of the 1-month run-in period), and a time-
varying indicator of employment status were ascertained
from employment records. Participants were followed until
loss to follow-up (i.e., dropout), death, or administrative cen-
soring at age 90 years or December 31, 2001. Data were
administratively censored at 90 years of age because esti-
mates made at older ages were imprecise due to the small
number of persons at risk. This study was conducted on
deidentified existing records and therefore was deemed not
to be research on human subjects.

Mortality ascertainment

Vital status through 1978 was determined using informa-
tion from the Social Security Administration, the Internal
Revenue Service, the postal mail correction service, state
driver’s license files, and vital statistics offices (2, 16, 17).
Persons not identified using these sources were further
investigated using telephone listings, property records, voter
registration lists, and local funeral home records. Between
1979 and 2001, the National Death Index was used to obtain
vital status. Persons who were confirmed as alive on January
1, 1979, with valid Social Security numbers and not shown
to be deceased by the National Death Index between 1979
and 2001 were considered to be alive as of 2001. Those lost
to follow-up before January 1, 1979, were censored at the
date on which they were last known to be alive. Prior to
1979, death certificates were obtained from the state vital
records offices, and the underlying cause of death was coded
by a qualified nosologist. After 1979, the National Death

Index provided underlying causes of death for deceased
persons. All deaths were coded according to the revision of
the International Classification of Diseases that was in
effect at the time of death. The outcome of interest was lung
cancer mortality (code 162 in the Eighth and Ninth revisions
of the International Classification of Diseases and codes
C33−C34 in the Tenth Revision).

Exposure assessment

Detailed work histories listing beginning and ending
dates in departments and operations were available for
each cohort member, as previously described (2). Each day
during those years in which the participant was not
employed was assigned an asbestos exposure of zero. Each
day during years in which the person was employed was
assigned a chrysotile exposure concentration, expressed as
fibers longer than 5 µm per milliliter of air (fibers/mL). Expo-
sure concentrations were estimated using a department-,
operation-, and calendar-time-specific job exposure matrix
(18). Annual exposure was defined as the product of the
amount of the year worked and the average exposure con-
centration, and was expressed as fiber-years per milliliter
(fiber-years/mL). This job exposure matrix and fiber-years/
mL exposure metric have been used in prior analyses of this
cohort (2, 16, 19–22).

Statistical methods

The 3,002 participants were indexed by i = 1 to N. Age (in
years) was indexed by j = 18 to 90, with Si denoting age at
entry. Time was discretized as years of age. Let uppercase
letters represent random variables and lowercase letters rep-
resent possible realizations.
For participant i, let ViðSiÞ be the vector of time-fixed

covariates measured at entry, namely calendar year, preva-
lent asbestos exposure, and indicators of female sex and
non-Caucasian race. Let Wij = 1 indicate that participant i
was at work during age j, and 0 otherwise. Note that at study
entry, all participants were at work, or WiðSiÞ ¼ 1 for all i.
Let Xij represent asbestos exposure during age j, measured in
fiber-years/mL. Note that when a participant was not at
work during a given year, there was no opportunity for
workplace-based exposure; that is, if Wij = 0, then Xij = 0.
Let Cij = 1 indicate censoring due to dropout at age j. Let
Dij = 1 indicate death due to causes other than lung cancer
at age j. Finally, let Yij = 1 indicate death due to lung cancer
at age j. For each age j, we assume the following
temporal order: ViðSiÞ, Wij, Xij, Cij, Dij, Yij. The history of a
time-varying variable is denoted with an overbar. For
example, the observed exposure history for individual i up
to age j is denoted �Xij ¼ fXiðSiÞ;XiðSiþ1Þ; : : :;Xið j�1Þ;Xijg.
Below, we sometimes suppress the subscript i to simplify
notation.

990 Cole et al.

Am J Epidemiol. 2013;177(9):989–996



The cumulative lung cancer mortality in the observed data by age j can be written as

Ið jÞ ¼
Xj

k¼18

X
v

X
�wj

X
�xj

PðYk ¼ 1jV ¼ v; �Wk ¼ �wk; �Xk ¼ �xk; �Yk�1 ¼ �Dk ¼ �Ck ¼ 0; S � kÞ

8>>>>>><
>>>>>>:

�
Yk
m¼18

PðDm ¼ 0jV ¼ v; �Wm ¼ �wm; �Xm ¼ �xm; �Ym�1 ¼ �Dm�1 ¼ �Cm�1 ¼ 0; S � mÞ�
PðCm ¼ 0jV ¼ v; �Wm ¼ �wm; �Xm ¼ �xm; �Ym�1 ¼ �Dm�1 ¼ �Cm�1 ¼ 0; S � mÞ�

PðXm ¼ xmjV ¼ v; �Wm ¼ �wm�1; �Xm�1 ¼ �xm�1; �Ym�1 ¼ �Dm�1 ¼ �Cm�1 ¼ 0; S � mÞ�
PðWm ¼ 1jV ¼ v; �Wm�1 ¼ �wm�1; �Xm�1 ¼ �xm�1; �Ym�1 ¼ �Dm�1 ¼ �Cm�1 ¼ 0; S � mÞ�

f ðV ¼ vÞ�
PðYm�1 ¼ 0jV ¼ v; �Wm�1 ¼ �wm�1; �Xm�1 ¼ �xm�1; �Ym�2 ¼ �Dm�1 ¼ �Cm�1 ¼ 0; S � m� 1Þ

2
666666664

3
777777775

9>>>>>>>>=
>>>>>>>>;

; ð1Þ

for j = 18 to 90, where, by design, I(17) = D17 = C17 = Y17 = Y16 = 0.
Under the identifying assumptions of exchangeability (conditional on covariates), positivity, and consistency, the G

formula can be used to consistently estimate the mean of a potential outcome under a hypothetical treatment intervention
(23). Here, we consider interventions of the form, “If at work, set the exposure history to a specified value, �xj, and allow
no censoring by dropout, �cj ¼ 0.” When our observed data structure is used, the G formula for cumulative lung cancer
mortality by age j under an intervention of this form is

Ið jÞ�xj;�cj¼0 ¼
Xj

k¼18

X
v

X
�wj

PðYk ¼ 1jV ¼ v; �Wk ¼ �wk;�xk; �Yk�1 ¼ �Dk ¼ �ck ¼ 0; S � kÞ

8>>>>>><
>>>>>>:

�
Yk
m¼18

PðDm ¼ 0jV ¼ v; �Wm ¼ �wm;�xm; �Ym�1 ¼ �Dm�1 ¼ �cm�1 ¼ 0; S � mÞ�
1�
1�

PðWm ¼ 1jV ¼ v; �Wm�1 ¼ �wm�1;�xm�1; �Ym�1 ¼ �Dm�1 ¼ �cm�1 ¼ 0; S � mÞ�
f ðV ¼ vÞ�

PðYm�1 ¼ 0jV ¼ v; �Wm�1 ¼ �wm�1;�xm�1; �Ym�2 ¼ �Dm�1 ¼ �cm�1 ¼ 0; S � m� 1Þ

2
666666664

3
777777775

9>>>>>>>>=
>>>>>>>>;

. ð2Þ

In this analysis, we are specifically interested in evaluating the right side of equation 2 for 5 different exposure scenar-
ios. First, as a check on the parametric models and as our reference setting, we assess lung cancer mortality under the
natural course observed in the data. In other words, we compute lung cancer mortality (using equation 2) under the expo-
sure history observed for each individual. Second, we estimate the lung cancer mortality that would have been observed
had the 1971 Occupational Safety and Health Administration (OSHA) asbestos exposure standard of <5 fibers/mL been
enforced throughout the entire study period. If a participant’s asbestos exposure exceeded 5 fibers/mL in any year, it
was capped at that level. Third, we assess the lung cancer mortality that would have been observed had the 1976 OSHA
asbestos standard of <2 fibers/mL been enforced. Fourth, we assess the lung cancer mortality that would have been
observed had the current OSHA asbestos standard of <0.1 fiber/mL been enforced. Fifth, we assess the lung cancer mor-
tality that would have been observed had a possible standard of <0.05 fiber/mL been enforced. We implement these stan-
dards by setting those person-years with asbestos exposure greater than the standard to the standard as if the participant
had been monitored and removed from the exposed workplace when the standard was exceeded. Therefore, we are
estimating the total effect of the following dynamic regime: If at work, receive asbestos exposure no greater than q
fibers/mL in any year, and if not at work, receive no asbestos exposure, for q = {5, 2, 0.1, 0.05}, compared with the
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natural course of exposure. For all scenarios explored,
censoring due to dropout is abolished, but left-truncation
at the age of study entry, administrative censoring at age 90
years, and deaths due to competing causes remain. These
features are accounted for using an extensionof theKaplan-
Meier approach that accommodates left-truncation, right-
censoring, and competing risks and yields an estimate of
the cumulative subdistribution (of lung cancer mortality)
function (24).
When there are relatively few, discrete-valued covariates,

the data are low-dimensional, and one can calculate the right

side of equation 2 nonparametrically. In high-dimensional
data, parametric models are required to estimate each com-
ponent in equation 2, and a Monte Carlo simulation is
required to approximate the sum, because directly comput-
ing the sum becomes infeasible as all possible covariate his-
tories cannot be enumerated.
The steps needed to estimate lung cancer mortality using

a Monte Carlo algorithm for the parametric G formula are as
follows. First, the observed data are used, and parametric
models are fitted for 1) the probability of remaining at work,
2) the probability of incurring any asbestos exposure, 3) the
level of asbestos exposure among the exposed, 4) the proba-
bility of being lost to follow-up, 5) the probability of dying
from a competing cause, and 6) the probability of dying
from lung cancer. Second, a large Monte Carlo sample is
drawn randomly with replacement from the observed partici-
pants. Third, the fit of the parametric models in the first step
is used to recreate the follow-up experience for each person
in the Monte Carlo sample. Fourth, the survival curve is esti-
mated by using the Monte Carlo sample to obtain the cumu-
lative lung cancer mortality through 90 years of age. Details
of the Monte Carlo algorithm are presented in the Web
Appendix, which is available at http://aje.oxfordjournals.
org/. For further technical details, refer to the paper by
Taubman et al. (8), Young et al. (9), or Westreich et al. (10).
For each exposure scenario, we quantify lung cancer mor-

tality by using the cumulative mortality curve, and we esti-
mate the differences and ratios of lung cancer mortality by
90 years of age as measures of association. As a measure of
precision, we present 95% confidence intervals with the
standard error estimated as the standard deviation from 200
nonparametric bootstrap resamples with replacement, each
of size 3,002. For each exposure scenario, the number of
persons required to follow that scenario to reduce the lung
cancer mortality by age 90 years by 1 case—that is, the
number needed to treat—was calculated as the reciprocal of
the estimated risk difference (25). To assess the sensitivity
of findings to the prolonged follow-up after 1980 when
asbestos exposure had greatly diminished, we also present
results administratively censoring follow-up in 1980. SAS

Table 1. Characteristics of 3,002 South Carolina Textile Workers at Entry Into a Study of Lung Cancer Mortality by

Occupational Asbestos Exposure and During 117,471 Person-Years of Follow-up Between 1940 and 2001

Characteristic
Study Entry (n = 3,002) Follow-up (n = 117,471)

Median (IQR) No. % Median (IQR) No. %

Age, years 24 (20–31) 48 (36–60)

Calendar year 1943 (1941–1947) 1967 (1955–1981)

Male sex 1,749 58 67,178 57

Caucasian race 2,436 81 97,277 83

Employed 3,002 100 21,867 19

Asbestos exposure

Exposed 2,984 99 19,312 16

Fiber-years/mLa 1.83 (0.89–3.51) 3.30 (1.49–5.00)

Abbreviation: IQR, interquartile range.
a Among the exposed.

Figure 1. Number of persons at risk for lung cancer mortality (solid
curve) and number of cases of lung cancer death (solid vertical lines)
by age among 3,002 South Carolina textile workers exposed to
asbestos, during 117,471 person-years of follow-up between 1940 and
2001.
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software, version 9.2 (SAS Institute, Inc., Cary, North Caro-
lina), was used for analyses.

RESULTS

Table 1 provides the characteristics of the cohort and
person-time under follow-up. At study entry, the cohort of
3,002 persons had a median age of 24 years; 58% were male
and 81% were Caucasian. During 117,471 person-years of
follow-up, 195 lung cancer deaths and 1,703 other deaths
occurred, and 297 (10%) of 3,002 persons were lost to
follow-up. Figure 1 depicts the number of persons at risk for
lung cancer mortality and the number of lung cancer deaths
by age. These overlaid histograms provide the distribution of
person-years and indicate the age at which lung cancer mor-
tality occurred. While 2,653 (88%) of the 3,002 persons
entered follow-up after age 18 years, only 103 (3%) entered
follow-up at or after the age of 46 years, which was the
youngest age at which a lung cancer death occurred.

Sixteen percent of person-years involved exposure to any
asbestos (n = 19,312) or to more than 0.1 fiber-year/mL
(n = 18,994); 12% of annual exposures were greater than
2 fiber-years/mL (n = 13,747), and 4% were greater than
5 fiber-years/mL (n = 4,745).

Table 2 shows participants’ characteristics according to
person-years of data collection, as well as for each of the 5
simulated exposure scenarios. The natural-course scenario
replicates the observed data well. For example, the median
age is 1 year different from the observed data, and sex,
employment status, and exposure status are each within 4%
of the observed data. However, note the exception that the
exposure distribution among the exposed is slightly higher
for the simulated natural course than for the observed data.
Importantly, Figure 2 shows the overlap between cumulative
lung cancer mortality in the observed data and the simulated
natural course.

Figure 3 depicts cumulative lung cancer mortality under
the explored exposure scenarios. We observe a dose
response whereby a reduction in asbestos exposure results in
a reduction in cumulative lung cancer mortality. In Table 3,
we numerically summarize the results for cumulative lung
cancer mortality at 90 years of age. For instance, the abso-
lute difference in lung cancer mortality by age 90 years was
−2.23 fiber-years/mL (95% confidence interval (CI): −3.79,
−0.66) when the current OSHA standard was compared
with the natural course; the mortality risk ratio for this com-
parison was 0.76 (95% CI: 0.62, 0.94). Compared with the
current OSHA standard of <0.1 fiber/mL, the possible
reduced standard of <0.05 fiber/mL showed a near-null
reduction in cumulative risk of lung cancer mortality by age
90 years (mortality risk ratio = 0.99, 95% CI: 0.95, 1.04).

The numbers needed to treat to protect 1 person were
152, 56, 45, and 43 for exposure scenarios of <5, <2, <0.1,
and <0.05 fiber-years/mL, respectively, all compared with
the natural course. With the current OSHA standard as
the reference level, the number needed to treat to protect
1 person was 1,111 under the exposure scenario of
<0.05 fiber-years/mL.

When data were administratively censored in 1980, 64 of
the 195 lung cancer deaths had occurred during 87,623T
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person-years. The mortality differences, compared with the
natural course, were −0.94%, −2.05%, −2.37%, and −2.47%
for exposure scenarios of <5, <2, <0.1, and <0.05 fiber-
years/mL, respectively.

DISCUSSION

We combined data from 3,002 adult textile workers who
were occupationally exposed to asbestos fibers and were fol-
lowed for mortality for up to 60 years with quantitative
methods built to accommodate the healthy worker survivor
effect. We estimated the total effect of asbestos exposure on
lung cancer mortality; some of this total effect may have
been mediated by leaving work. We found that when the
current OSHAworkplace standard of <0.1 asbestos fiber per
milliliter was applied throughout the follow-up period, there
was a notable reduction in lung cancer mortality compared
with the observed exposure.
The lung cancer mortality risk of approximately 7% by

age 90 years estimated under asbestos exposure of
<0.1 fiber-years/mL may be expected given the likely high
proportion of persons who smoked during this calendar
period (e.g., 40% of blue-collar workers smoked in 1986
(26)). Lifetime lung cancer mortality among smokers has
been estimated to be as high as 17% (27).
In the present work, we assumed counterfactual consis-

tency, or that exposure levels corresponded to well-defined
interventions (28). Beyond possible issues surrounding fiber
length, this assumption probably holds, because the expo-
sures explored were interventions that cap annual exposure
to asbestos fibers. One can imagine personal monitoring
devices that would alert the worker and supervisor once a
threshold has been reached, as used in workplaces with radi-
ation exposure. We would likely have observed even stron-
ger associations if, rather than capping exposure values

Figure 3. Cumulative lung cancer mortality according to asbestos
exposure under the simulated natural course of exposure (solid black
line) and under simulated exposure to asbestos at a level of <5 fiber-
years/mL (long-dashed black line), <2 fiber-years/mL (short-dashed
black line), <0.1 fiber-years/mL (short- and long-dashed black line),
and <0.05 fiber-years/mL (solid gray line) among 3,002 South
Carolina textile workers during 117,471 person-years of follow-up
between 1940 and 2001.

Figure 2. Cumulative lung cancer mortality according to asbestos
exposure in the observed data (gray line) and under the simulated
natural course of exposure (black line) among 3,002 South Carolina
textile workers during 117,471 person-years of follow-up between
1940 and 2001.

Table 3. Cumulative Lung Cancer Mortality by Age 90 Years Under

Various Simulated Asbestos Exposure Scenarios for 3,002 South

Carolina Textile Workers During 117,471 Person-Years of Follow-up

Between 1940 and 2001

Exposure
Scenario,
fiber-years/

mLa,b

Lung
Cancer
Mortality,

%

Risk
Difference,

%

Risk
Ratio

95%
Confidence
Intervalc

Natural
coursed

9.22 0 1 Reference

<5 8.56 −0.66 0.93 0.88, 0.99

<2 7.45 −1.77 0.81 0.71, 0.93

<0.1 6.99 −2.23 0.76 0.62, 0.94

<0.05 6.90 −2.32 0.75 0.61, 0.92

a 1971, 1976, and current Occupational Safety and Health

Administration asbestos exposure standards are <5, <2, and

<0.1 fibers/mL, respectively.
b Simulation was based on a Monte Carlo sample size of 50,000.
c Standard error calculated as the standard deviation of 200

bootstrap samples.
d Lung cancer mortality by age 90 years in observed data was

9.44%.
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larger than the OSHA standard, we had set all actively
employed persons to the OSHA standard. We followed the
more conservative route here because it more closely mimics
hypothetical monitoring of asbestos exposure.

We also assumed conditional exchangeability, which
implies that we adequately accounted for confounding and
selection bias. First, it is possible that there was uncontrolled
confounding—for example, by smoking. While smoking is
an established cause of lung cancer mortality, its association
with occupational asbestos exposure in this cohort is not
well understood. Because the association between smoking
and lung cancer is strong, any confounding of the relation-
ship between asbestos exposure and lung cancer mortality
by smoking is constrained primarily by the association
between smoking and asbestos exposure: If smoking behav-
ior were similar for all participants regardless of asbestos
exposure, then confounding would be small. Second, we did
not attempt to estimate the total effect of exposures incurred
prior to study entry (e.g., prevalent asbestos exposure)
because of possible selection bias. Specifically, persons who
entered the study had survived any prior exposures (29, 30).
Finally, other time-varying confounders (e.g., intermittent
time off work, use of protective equipment) may also cause
bias, but here we were limited to studying leaving the work-
place because of available data.

In addition, we assumed correct specification of the
models for employment status, competing risk of death, and
lung cancer mortality. We did not need a correct parametric
model for the distribution of each of the baseline variables
because we drew values from the joint empirical distribution
using a nonparametric bootstrap. Specification of the models
for exposure and censoring was less important than for the
aforementioned models, because we intervened on these var-
iables. The overlap between the cumulative lung cancer
mortality in the observed data and the simulated natural
course (Figure 2) supports the assertion that we adequately
captured the salient features of these data in the parametric
models used for the G formula. While persons exposed in
the generated data had somewhat higher median asbestos
exposure, we are not overly concerned because 1) our para-
metric models were able to recreate the cumulative lung
cancer mortality under the observed exposure in the natural-
course scenario (Figure 2), 2) the generated data closely
approximated features of the observed data (Table 2), and
3) we used the generated (rather than observed) natural
course as the reference group. On a related point, we assume
that the G null paradox is not an explanation for our nonnull
findings. The G null paradox states that, under the null
hypothesis, it may be impossible to correctly specify the
parametric models required for the G formula (11). There-
fore, in large samples, the parametric G formula may reject
the null hypothesis, even when it is true. In our context we
are not overly concerned about the G null paradox, because
asbestos is an established cause of lung cancer (31).

Positivity, or the condition that there are exposed and
unexposed persons at every level of confounders (32), is
required generally for inference (23). However, as discussed
by Robins (7, p. 145s), the G formula can be used to esti-
mate the effects of dynamic exposure regimes defined in
such a way as to circumvent nonpositivity. Recall, we are

estimating the total effect of the dynamic regime: If at work,
receive asbestos exposure no greater than q fibers/mL in any
year, and if not at work receive no asbestos exposure, for
various q. This dynamic regime circumvents nonpositivity
caused by there being no exposure among persons who have
left the workplace. However, we are precluded from decom-
posing this total effect into the direct effect of asbestos on
lung cancer mortality not mediated through leaving the
workplace, because there is no asbestos exposure among
persons who have left the workplace.

There have been few implementations of the parametric G
formula. Robins (7) published a first example on occupa-
tional exposure to arsenic and mortality. Taubman et al. (8)
published an example on lifestyle behaviors (e.g., smoking,
exercise, and diet) and cardiovascular disease. Young et al.
(9) and Westreich et al. (10) published examples on treat-
ment for human immunodeficiency virus and progression to
acquired immunodeficiency syndrome or death. Our imple-
mentation differed from that of Taubman et al. (8) and
Young et al. (9) only in that we calculated a distinct
outcome for each person-year, rather than the conditional
probability of the outcome for each year. While our imple-
mentation provides more flexibility in calculating outcome
measures, it is computationally more intensive. Future
implementations might explore the introduction of prior
knowledge into the parametric G formula through Bayesian
methods.

The present work had several strengths. First, the data
were extensive in terms of the sample of 3,002 persons, the
195 lung cancer deaths, and the 60-year follow-up. Second,
the data were of high quality, with asbestos exposure
assessed by job exposure matrix and detailed mortality
ascertainment. Third, we used an innovative quantitative
method that allowed comparisons that are of more direct use
to health policy planning than typical associations of asbes-
tos exposure and risk of lung cancer mortality. As a final
strength, in occupational cohort studies, often a lengthy
amount of time is required between beginning employment
and cohort enrollment. In such cases, the resultant cohort is
selected for persons who survive long enough to enter, and
may induce survivor bias. Moreover, in such settings it is
impossible to consistently estimate the effect of exposure
prior to study entry (11). Here we had a relatively short 1-
month window, which should not have induced notable sur-
vivor bias.

In conclusion, when compared with the observed asbestos
exposure, the current OSHA asbestos standard of <0.1 fiber/
mL yielded 24% less lung cancer mortality by age 90 years.
A further reduction to a possible standard of <0.05 fiber/mL
yielded no discernible additional reduction in lung cancer
mortality.
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