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Conservatism of lizard thermal tolerances
and body temperatures across
evolutionary history and geography

Joseph W. Grigg and Lauren B. Buckley

Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA

Species may exhibit similar thermal tolerances via either common ancestry

or environmental filtering and local adaptation, if the species inhabit similar

environments. We ask whether upper and lower thermal limits (critical

thermal maxima and minima) and body temperatures are more strongly

conserved across evolutionary history or geography for lizard populations

distributed globally. We find that critical thermal maxima are highly con-

served with location accounting for a higher proportion of the variation

than phylogeny. Notably, thermal tolerance breadth is conserved across

the phylogeny despite critical thermal minima showing little niche con-

servatism. Body temperatures observed during activity in the field show

the greatest degree of conservatism, with phylogeny accounting for most

of the variation. This suggests that propensities for thermoregulatory behav-

iour, which can buffer body temperatures from environmental variation,

are similar within lineages. Phylogeny and geography constrain thermal

tolerances similarly within continents, but variably within clades. Conser-

vatism of thermal tolerances across lineages suggests that the potential for

local adaptation to alleviate the impacts of climate change on lizards may

be limited.
1. Introduction
Similarities in species’ thermal niches across evolutionary history (phylogenetic

niche conservatism [1]) and geography can aid in forecasting responses to cli-

mate change. Thermal physiology and the magnitude of recent warming

successfully predict patterns of recent lizard extinction, potentially owing to cli-

mate change restricting the activity of species with low upper thermal limits [2].

Lizard thermal physiologies exhibit conservatism across both phylogeny and

geography as some forest-dwelling, non-basking lineages remaining restricted

to the tropics and open-habitat, basking lineages extending into temperate

zones [3]. Lineages with phylogenetically conserved thermal tolerances may

be unlikely to adapt locally to climate change. Species with strong geographical

gradients in thermal tolerance may be more likely to use dispersal and

adaptation to track their environmental niches through climate change.

Does evolutionary history or geography better explain global patterns of

lizard thermal physiology? We use a statistical method [4] to partition variance

into spatial and phylogenetic contributions for the following four thermal

metrics. We consider the upper and lower thermal limits on performance

(CTmax and CTmin), which ranges from 33.48C to 51.08C and 1.98C to 14.18C
respectively, as well as the distance (8C) between these limits (thermal tolerance

breadth, TTB). CTmax and CTmin determine how the environment influences fit-

ness as well as susceptibility to acute thermal stress [5]. We additionally

consider activity body temperature (Tb), which range from 14.58C to 42.18C.

While Tb is sometimes used as a more readily available proxy for thermal

tolerances [2], it is additionally influenced by microclimate selection.
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The propensity for such thermoregulatory behaviour may be

phylogenetically conserved, and may enable coping with cli-

mate change through environmental buffering [6].

Conversely, this buffering may reduce selection for elevated

CTmax [7] and ultimately preclude the evolutionary responses

necessary to cope with long-term climate change.

Broad-scale patterns of temperature means and seasonal-

ity both pose strong selection on thermal physiology [3,5,8].

Indeed, the CTmax of reptiles relates to thermal variability,

whereas CTmin relates to mean annual temperature [9]. The

limited temperature seasonality in the tropics selects for

reduced TTB [3,5]. We first use distance as a proxy (‘geo-

graphical space’) for environmental similarity as location

captures trends in both means and seasonality. We then

examine environmental similarity directly.
0121056
2. Material and methods
We analysed 481 Tb measures for 254 lizard species from 34

families [2] (see the electronic supplementary material, table

S1). We expanded a previous database [8] to include CTmax,

CTmin and TTB values for 68, 60 and 60 species, respectively (see

the electronic supplementary material, table S2). We used a

supertree of squamate reptiles constructed using matrix rep-

resentation parsimony analysis and dated based on fossils and

molecular data [10]. For each observation, we extracted annual

means of daily minimum, mean and maximum air temperatures

as well as seasonality calculated as the variance of monthly mean

temperatures (0.58 resolution, which is sufficient resolution to

account for broad elevational differences, IIASA database A03).

We additionally combined these measures into a single principle

component describing the environment (‘temperature space’).

We conducted our analysis in R v 2.13.1 [11] using the pack-

age APE [12]. We determined the relative contribution of space

and phylogeny to variation in each metric using a method

derived from phylogenetically independent contrasts (PIC) [4].

The following method (equation (2.7) of [4]) produces three posi-

tive parameter estimates (w, l0 and g), which sum to 1 and

describe the variance in the metric as follows:

V(w,l) ¼ gh þ l0S þ wW. (eqn 2.7 in [4])

Here, w represents the relative contribution of spatial effects,

l0 ¼ (1 – w)l represents the relative phylogenetic contribution,

and g ¼ (1 – w)(1 – l) represents the relative contribution of

effects independent of both phylogeny and space. V, S and W

are variance–covariance matrices describing the expectation,

phylogenetic distances and spatial distances, respectively. h is a

vector of the heights of tips on the phylogeny. The l used in cal-

culating l0 is Pagel’s [13] estimate of phylogenetic signal. We

additionally estimate Blomberg’s K because it is a commonly

implemented metric that indicates the amount of phylogenetic

signal in the tip data relative to the expectation (K ¼ 1) for a

trait that evolved by Brownian motion [14]. We assessed signifi-

cance by comparing the variance of independent contrasts for

1000 randomized (tip-swapped) trees with that of the observed

trees (phylosignal function in R package picante). We computed

PIC to examine correlations between the thermal metrics (R pack-

age APE). Correlations were estimated based on 1000 iterations

to account for randomization.

Because the analysis requires a binary phylogeny, we

resolved polytomies using a birth–death model of diversification

(methods follow [15]) and repeated the analyses over 2500 poten-

tial phylogenies. Tb values were randomly selected (when

multiple values were available for a single species) for each of

the potential phylogenies. We estimated w, l0 and g assuming
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Figure 2. The stacked contributions of phylogeny (w, black) and space (l0, grey) to patterns of thermal tolerance vary by metric (unaccounted for variance: g, light
grey). 95% CIs across the randomizations are depicted. We depict the contributions when characterizing both (a) geographical and (b) (mean annual) temperature
space. We additionally analyse the determinants of body temperature (Tb) within continents.
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that the traits followed a gradual Brownian motion model of

evolution (branch lengths proportional to time).
3. Results and discussion
We find that body temperatures are less conserved across

geography than evolutionary history (figure 1). Phylogeny

accounts for most of the variation in Tb patterns (w ¼ 0.087,

l0 ¼ 0.877 and g ¼ 0.036, figure 2). The strong phylogenetic

signal of Tb (K ¼ 1.075, p ¼ 0.001) is notable because one

would expect body temperatures to be strongly influenced

by air and surface temperatures, which exhibit pronounced

geographical gradients. However, many lizard species are

able to maintain their preferred body temperatures through

behavioural thermoregulation and habitat selection [16–18].

The propensity for thermoregulatory behaviour varies

between lineages [3], but its phylogenetic conservatism has

not been formally assessed.

The influence of phylogeny and geography varies

between thermal tolerance metrics. Space accounts for more

variation in CTmax than phylogeny (w ¼ 0.549, l0 ¼ 0.270

and g ¼ 0.181; figure 2a). CTmin shows little conservatism

across either phylogeny or space (w ¼ 0.073, l0 ¼ 0.009 and

g ¼ 0.917). Interestingly, TTB shows a greater contribution

of phylogeny than either CTmax or CTmin (w ¼ 0.083,

l0 ¼ 0.547 and g ¼ 0.369). CTmax (K ¼ 0.585, p ¼ 0.001),

CTmin (K ¼ 0.427, p ¼ 0.02) and TTB (K ¼ 0.458, p ¼ 0.002)

exhibit significant phylogenetic conservatism, but to a lesser

extent than Tb. A previous, counterintuitive result is that

both CTmin and CTmax increase with latitude, because many

temperate lizards are basking species that inhabit warm

and thermally variable desert environments [3]. The conser-

vation of thermoregulatory behaviour across lineages may

alter selection and thus geographical patterns of thermal tol-

erance. Patterns of conservatism are similar when we

consider temperature space rather than geography (see

figure 2b and electronic supplementary material, table S3)

with several exceptions. Habitat selection may cause more
thermal similarity than would be expected based on geogra-

phy and account for these exceptions. Indeed, environmental

temperatures account for more of the variation in Tb and TTB

than geography.

We used PIC (standardized) to investigate why TTB exhi-

bits greater phylogenetic conservatism than CTmax or CTmin

(see the electronic supplementary material, figure S1). We

find that lizards have a broad TTB owing to either a low

CTmin (F1,52 ¼ 117, p , 10215 and r2 ¼ 0.69) or high CTmax

(F1,52 ¼ 18.2, p , 1024 and r2 ¼ 0.26). However, CTmin and

CTmax are not correlated ( p ¼ 0.70). We find that Tb is posi-

tively correlated with CTmax ( p , 0.01, r2 ¼ 0.56) but is not

related to CTmin ( p ¼ 0.4). These findings suggest that

narrow TTB, which confers sensitivity to climate warming,

is not associated with a particular range of thermal tolerance.

The importance of the thermal metrics as determinants of

activity time and thermal stress varies latitudinally, and is

likely to shift through climate warming: CTmin may become

less important as a constraint on activity in temperate areas,

whereas CTmax is likely to become increasingly important

as a determinant of thermal stress in the tropics [6].

Is Tb conservatism similar within geographical and

phylogenetic subsets (see figure 2c and electronic supple-

mentary material, table S3)? The importance of phylogeny

persists within North America (n ¼ 71, w ¼ 0.027, l0 ¼ 0.946

and g ¼ 0.027) and South America (n ¼ 40, w ¼ 0.067, l0 ¼

0.741 and g ¼ 0.192). Greater conservatism across geographical

and temperature space occurs in Australia, perhaps owing to

its pronounced aridity gradient (n ¼ 62, w ¼ 0.451, l0 ¼ 0.413

and g ¼ 0.136 for geographical space). Patterns of conservatism

are more variable across clades (defined by Sites et al. [19]).

Conservatism was substantially stronger across phylogeny

than geography for the Anguimorpha (n ¼ 23) and Scincoidea

(n ¼ 67) clades, and somewhat stronger for Lacertoidea (n ¼
36). Estimates of conservatism varied between geographical

and temperature space for Iguania (n ¼ 96), and were generally

low for Gekkota (n ¼ 27). These results suggest that thermore-

gulatory behaviours diverged deep within the lizard

phylogeny and have persisted through colonization and
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radiations on different continents. The thermal niches of ants

(l � 0.9) [20] and amphibians [21] also exhibit phylogenetic

conservatism, whereas geography is more important for

mammals [22].

Our analysis suggests that thermal tolerances are con-

served deep within evolutionary history rather than being

determined by ecological filtering, dispersal, or local adap-

tation (perhaps due to limits to adaptation). The potential

for local adaptation to alleviate the impacts of climate

change on lizards may be limited [23] particularly in the
tropics [3,17], where narrow TTBs can correspond to low gen-

etic variation and limited evolutionary potential [24].

However, strong phylogenetic signal in body temperatures

suggests that some lineages may effectively use thermoregu-

lation to avoid thermal stress [6].

We thank Rob Freckleton for contributing R code, and J. Kingsolver,
G. Thomas, members of the Buckley and Kingsolver research groups
and reviewers for comments. Work supported in part by NSF grant
no. EF-1065638 to L.B.B.
BiolLett
References
9:20121056
1. Wiens JJ et al. 2010 Niche conservatism as an
emerging principle in ecology and conservation
biology. Ecol. Lett. 13, 1310 – 1324. (doi:10.1111/j.
1461-0248.2010.01515.x)

2. Sinervo B et al. 2010 Erosion of lizard diversity
by climate change and altered thermal niches.
Science 328, 894 – 899. (doi:10.1126/science.
1184695)

3. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz
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