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Abstract

Stochasticity in gene regulation has been characterized extensively, but how it affects cellular growth and fitness is less
clear. We study the growth of E. coli cells as they shift from glucose to lactose metabolism, which is characterized by an
obligatory growth arrest in bulk experiments that is termed the lag phase. Here, we follow the growth dynamics of
individual cells at minute-resolution using a single-cell assay in a microfluidic device during this shift, while also monitoring
lac expression. Mirroring the bulk results, the majority of cells displays a growth arrest upon glucose exhaustion, and resume
when triggered by stochastic lac expression events. However, a significant fraction of cells maintains a high rate of
elongation and displays no detectable growth lag during the shift. This ability to suppress the growth lag should provide
important selective advantages when nutrients are scarce. Trajectories of individual cells display a highly non-linear relation
between lac expression and growth, with only a fraction of fully induced levels being sufficient for achieving near maximal
growth. A stochastic molecular model together with measured dependencies between nutrient concentration, lac
expression level, and growth accurately reproduces the observed switching distributions. The results show that a growth
arrest is not obligatory in the classic diauxic shift, and underscore that regulatory stochasticity ought to be considered in
terms of its impact on growth and survival.

Citation: Boulineau S, Tostevin F, Kiviet DJ, ten Wolde PR, Nghe P, et al. (2013) Single-Cell Dynamics Reveals Sustained Growth during Diauxic Shifts. PLoS
ONE 8(4): e61686. doi:10.1371/journal.pone.0061686

Editor: Christophe Herman, Baylor College of Medicine, United States of America

Received January 29, 2013; Accepted March 12, 2013; Published April , 2013

Copyright: � 2013 Boulineau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organization
for Scientific Research (NWO). S.B. was supported by Netherlands Institute for Systems Biology (NISB). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tans@amolf.nl

Introduction

In the presence of two carbon sources, bacterial cells may either

metabolize them both at the same time, or first use one and then

the other. The latter strategy has been termed diauxic growth [1].

A classical example is the growth of E. coli on a mixture of glucose

and lactose, which is characterized by initial rapid growth on

glucose, followed by a phase of arrested growth when glucose is

depleted, until the lac enzymes are expressed that allow growth on

lactose [2]. Studies of glucose-lactose diauxie have led to many key

discoveries on biological regulation, ranging from the existence of

regulatory proteins and operator regions [3] to catabolite re-

pression [4]. More generally, nutritional shifts experiments have

revealed the dynamic changes of key classes of cellular

components, such as protein, DNA, and ribosomes [5,6,7,8,9].

However, our understanding of the cellular growth response to

environmental change has been obtained primarily using bulk

techniques [7,9,10,11,12,13] that measure the growth rate of the

population as a whole. As a result, it is unclear how the growth of

individual cells responds during diauxic shifts.

This question is central to understanding how cells compete.

Cellular heterogeneity within populations could critically affect the

ability to consume limited resources before they are exhausted by

competitors, which can be decisive for survival. For instance,

populations could respond fast by following a bet-hedging strategy,

in which the expression of genes is randomly turned on, thus

generating sub-populations that are primed for diverse future

environmental changes [14]. On the other hand, stochasticity in

regulatory control could be disadvantageous, as the costs of

spuriously expressing genes may lower the rate of growth and

reproduction [15]. Stochasticity in gene regulation may thus have

important consequences for fitness, and therefore, shed a new light

on the function of regulatory systems in complex natural

environments, as well as their historical evolutionary origins.

The advent of single-cell techniques has in recent years

quantitatively characterized the stochastic nature of gene expres-

sion [16,17,18,19]. The lac system in particular has been shown to

display stochasticity in expression [19], as well as in the underlying

repressor-operator association and dissociation events [20]. In

response to changes in artificial inducer, lac expression was shown

to exhibit bistability [21,22] and heterogeneity in the timing of

induction [23]. However, it remains poorly understood how

cellular growth is affected. To address this issue, we have studied

the dynamics of diauxic growth at the single-cell level. We used

a microfluidic approach to control glucose and lactose levels in the

cellular environment, accurately determined cellular lengths at

high time resolution, and used GFP labeling to monitor expression

of the lac operon.

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e61686

30



Results

Population Growth and Expression Dynamics during
Diauxie

To control the environment, we used a microfluidic device in

which microcolonies of cells were growing between a membrane

and a coverslip [24,25] (Figure 1A and Material and methods). By

flowing different media above the permeable membrane, cells

were exposed to a variable but spatially uniform environment. We

measured the depletion of a fluorescent glucose analog from the

cellular area, upon instantaneous switch to plain minimal medium,

and found an exponential decay with a half-life of ,5 min

(Figure 1B). Starting with one or two cells, growing microcolonies

were monitored by phase-contrast microscopy for 8–9 generations,

yielding 200 to 500 cells for each microcolony at the end of the

experiment. The lengths of the cells were determined using phase

contrast images acquired every 1 to 2 min, and custom image

analysis software (Material and methods and Text S1). We started

by characterizing the steady-state growth limitations, using fixed

external nutrient concentrations (Figure 1C and D and Figure S1

and S2). The data for both glucose and lactose were consistent

with the Monod relation [1], indicating characteristic limiting

concentrations of 5 mM for glucose and 70 mM for lactose. For

glucose a value of ,1 mM has been found previously in batch

cultures [26]. Induction with artificial inducers IPTG and TMG

has been shown to lead to bistability in lac expression [20,21,22].

Here we did not observe bistability, thus confirming theoretical

predictions that natural inducers do not give rise to bistability

because they are actively degraded by metabolism [27,28].

We then subjected cells to an environmental switch after 4–5

generations. Switching from glucose to lactose or from a mixture

of glucose and lactose to lactose only, gave similar results as

expected (Figure S3). We used a starting glucose concentration at

which the growth rate is maximal (555 mM, see Figure 1C). The

population growth, quantified by adding the lengths of all cells

within the microcolony, displayed the prototypical diauxic growth

behavior (Figure 2A): first a phase of rapid exponential growth,

followed by a lag phase, after which growth restores to exponential

growth. The two exponential growth rates matched the values for

the fixed glucose and lactose media (,1 doubling/hr, and ,0.8

doubling/hr respectively). The duration of the lag phase was about

20 min, comparable to batch culture data [2,29]. Expression of

the lac operon was monitored using a GFP reporter (see Material

and methods). The mean fluorescence intensity within the

microcolony in the first exponential phase was near the cellular

autofluorescence, consistent with expected repression of the lac

operon when growing on glucose [2]. Upon the shift, the mean

fluorescence increased and reached a steady state level on

a timescale that is similar to that observed for the growth rate

(about 300 min, Figure 2B). The fluorescence started to increase

rapidly 30 min after the shift, though the precise onset of

expression increase could not be determined precisely because

the rise was smooth. Overall, these observed population dynamics

of growth and expression are consistent with previous results from

batch experiments.

Growth Dynamics in Single Cells during Diauxie
We followed the growth of individual cells during the diauxic

shift by determining their length over time. The instantaneous

growth rate was determined at sub-cell cycle resolution by fitting

the cell length over time to an exponential function (see Text S1).

We observed no significant changes in cell width during the

experiment. Cells within one colony displayed diverse growth

behaviors (Figure 2C and D). For the majority, traces of length

versus time showed a sharp transition from the glucose growth rate

(1.0 doubling/hr) to a low growth rate (between 0.2 and 0.6

doubling/hr), followed by a smoother transition to the lactose

growth rate (0.8 doubling/hr). The low growth rate was similar to

growth in media without any added carbon sources, which we

could observe either in constant conditions (Figure 1C and D), or

when switching from glucose to a medium without added carbon

sources (Figure S4). These experiments suggested the intermittent

growth at low rate was supported predominantly by metabolism of

contaminants in the media, which unlike in batch cultures are

continuously replenished in these experiments. Other minor

contributions to growth after the shift could potentially come

from internal cellular glucose reserves, residual glucose that was

not depleted, and from lactose metabolized by leaked lac enzymes

produced at low repressed levels. The length analysis sometimes

displayed measurement artifacts at cell division, but their

amplitude was small compared to the general trend and therefore

did not affect the growth analysis (Figure 2C, red). The data thus

showed that the lag phase did manifest itself at the single-cell level.

To characterize the variability in growth dynamics, we de-

termined the moment of growth decrease (DTm1) and restoration

(DTm2). Both are quantified relative to the moment of switching

the fluid flow, which we refer to as the shift time. The difference

between DTm2 and DTm1 is a measure for the duration of the lag

phase in individual cells. We found that DTm1 and the duration of

the lag phase are not significantly correlated (Figure S5),

suggesting that the growth decrease and the growth restoration

are independent processes. DTm1 was narrowly distributed close to

zero (mean of the distribution: 13 min), which shows the growth

process responds rapidly to the glucose decrease (Figure 3A). DTm2

on the other hand displayed a broad and asymmetric distribution

that extended to lag times of up to hundreds of minutes (79 min on

average) (Figure 3B). A small fraction of lineage, ,5%, even failed

Figure 1. Experimental setup. (A) Layout of the microfluidic device.
The cells are growing between a glass coverslip and a polyacrylamide
gel membrane. The medium reaches the cells and is exchanged by
diffusion through the membrane. (B) Estimation of the fluid exchange
time by means of the fluorescent glucose analog 2-NBDG (30 mM). 2-
NBDG is removed at time zero. The experimental curve is shown in red;
the exponential decay fit is shown in black. (C–D) Mean growth rate of
E. coli in steady-state growth in minimal media containing glucose (C)
or lactose (D) as the only carbon source. In both cases, the fitted line is
a Monod growth curve taking into account a non-zero growth rate on
contaminants.
doi:10.1371/journal.pone.0061686.g001

Diauxic Shift in Single Cells
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to resume exponential growth within the timescale of the

experiment. These delays thus exceed by far the average lag time

of 20 min. This broad distribution of lag times suggests that escape

from lag is strongly affected by the timing of stochastic internal

cellular events. We did not find correlations between progression

into the cell cycle and the timing of the growth transitions

(r2<0.03, p-value = 0.02 for growth decrease; r2<0.001, p-

value = 0.7 for growth recovery, N = 185).

Interestingly, not all cells showed a lag phase. Some cells

displayed no discernible decrease in growth rate (15% of all traces)

(Figure 2D), in contrast with the abrupt entry into lag seen in the

other cells. The absence of a lag phase did not appear to be related

to correlations with the cell cycle, or the position of the cell within

the microcolony (Figure S6). The DTm2 distribution extended

monotonically down to zero, which suggested that the cells without

lag do not represent a distinct sub-population (Figure 3B). To

understand the origins of this lack of a lag phase in some cells,

information on the dynamics of lac operon expression is required.

Correlations between Growth and Expression in Single
Cells

We determined the mean fluorescence per unit area within

single cells as a measure for the lac operon expression. The

fluorescence versus time for individual lineages had a sigmoidal

shape: a low level close to the background during growth on

glucose, followed by a rise some time after the shift to lactose, until

a constant steady-state level was achieved on the order of the

doubling time (Figure 2E). However, different lineages displayed

significant variability. For instance, the fluorescence level at the

end of the experiment varied by up to 40% (see Figure 2E),

reflecting heterogeneity in protein production between cells [19] as

well as incomplete entry into steady state for some lineages. This

final fluorescence level did not correlate significantly with the

timing of induction (r2 = 0.04 and p-value = 0.003, N = 216).

The timing of induction was also variable, as observed

previously for the ara system [30]. The time between the shift

and the moment at which fluorescence reaches half-maximum,

which we here denote as DTF, was distributed with a width and

shape similar to that of DTm2 (133 min on average) (Figure 3C).

We found DTF and DTm2 to be strongly correlated (Figure 3D,

r2 = 0.85, p-value ,0.001). This correlation is directly evident in

the individual traces (Figure 2C–E), where the red lineage

displayed both a long growth arrest and a long induction delay,

while the blue lineage with a smaller growth arrest exhibited

a correspondingly smaller induction delay. The correlations also

indicated that DTF was systematically larger than DTm2, which we

will address below. Overall, these data are consistent with a simple

model in which the lag phase is caused by the lac operon being in

the repressed state, and exit out of the lag phase is triggered by the

stochastic lac induction.

However, this model did not explain the sustained growth. In

particular, at the moment of glucose exhaustion (DTm1) the lac

operon in these cells was still ‘off’, with expression at low repressed

levels (N = 31, mean fluorescence 15 min after the time of shift:

0.7660.34 (SD) a.u.). While we did not observe spatial heteroge-

neity of nutrients, for instance when using the fluorescent glucose,

we cannot formally exclude that some spatial differences in the

precise moment of glucose exhaustion occur. However, delayed

glucose exhaustion should merely delay all events, including the

moment at which the repressible effect of glucose is alleviated

(catabolite repression). Hence, while spatial nutrient inhomogene-

ity could lead to growth arrests occurring at different times for

different cells, it does not explain the absence of a growth arrest.

The fluorescence traces also showed no sign of lac bistability,

where the lac operon spontaneously switches between repressed

and induced expression levels, as has been observed for artificial

inducers that are not metabolized [21,22,23]; bistability is thus

excluded as the cause of sustained growth. It has also been shown

that the moment of lac induction upon a change in the artificial

inducer TMG depends on the lac expression level before the

change [23]. Hence we wondered whether the leaky stochastic

expression of the repressed lac operon [19,31], could underlie the

variability in growth responses. If so, the lac expression level before

the shift should correlate with DTF. However, such a correlation is

difficult to detect, as the measured expression level during glucose

growth is similar to the autofluorescence of wild-type cells.

Nonetheless, the mean fluorescence 120 min before the shift did

exhibit a weak but significant correlation with DTF (r2<0.08 and

p-value ,0.001, N = 216). This result suggests that the sub-

population of cells exhibiting sustained diauxic growth originated

from pre-existing variations in expression that had developed

stochastically during glucose growth.

While the data supported the idea that expression variability

caused the observed differences in the growth dynamics of

individual cells, a number of questions remained unanswered.

For instance, how can the low leaky expression when glucose is

exhausted be sufficient to maintain the growth rate at high levels,

and why does growth restoration seem to precede induction? The

latter is seen by DTF being systematically larger than DTm2 by up

Figure 2. Dynamics at the population level and in single cells. (A) Growth curve for a typical microcolony, indicating the sum of all cell
lengths within the colony. (B) Mean fluorescence intensity (per unit area) within cells, averaged over a microcolony. (C) Single-cell length over time for
three different lineages, representing cases with no growth rate decrease (green), a lag phase (blue) and a longer lag phase (red). Arrows indicate cell
division events. The curves are vertically shifted for clarity. (D) Elongation rates obtained by exponential fits to the length data at sub-cell cycle
resolution. Drawn lines are fitted parameterized functions. DTm2 is the time difference between the time of shift and the half maximum to growth
recovery after shift. (E) Fluorescence levels for the three lineages in (C) and (D). Drawn lines are fitted parameterized functions. DTF is the time
difference between the time of shift and the half maximum to induction after shift. Black bar: 120 min before the shift, over which data was averaged
to determine the expression level prior to the shift.
doi:10.1371/journal.pone.0061686.g002

Diauxic Shift in Single Cells
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to hundreds of minutes (Figure 2D), and hence cannot be

explained by the ,10 min GFP maturation time [30]. To address

these questions we have developed a stochastic model, which is

detailed in the next section.

Stochastic Model of Diauxic Growth
Diauxic growth has been studied extensively using mathemat-

ical models [32,33,34,35,36]. With the aim to gain intuitive insight

into the main features of observed heterogeneity, we developed

a minimal stochastic model that focuses on key features and

neglects various known details (Figure 4A; see Text S1 for

complete description). For instance, for simplicity we considered

the stochastic binding and dissociation of repressor at a single

operator site and neglected other operator sites, as well as

stochasticity arising from variabilities in the lac repressor levels

[23]. The free and bound operator states yielded respectively

a high and low rate of stochastic transcription events, with the

latter resulting from brief partial repressor dissociations. Cellular

metabolism and growth depended on lac expression through

lactose import and metabolism, following deterministic Michaelis-

Menten kinetics and using the experimentally determined de-

pendence of growth on glucose (Figure 1C). In turn, lac expression

depended on metabolism through the deactivation of free LacI

repressors and random dissociation of DNA-bound repressors

stimulated by intracellular lactose. Inducer exclusion and regula-

tion by the cAMP pathway were modeled phenomenologically.

Cells divided at a specified size, and their contents were randomly

partitioned between the two daughters. Parameter values for the

various reactions were, where possible, taken from direct

experimental measurements; otherwise, these were inferred in-

directly or fit to available experimental data (see Text S1 for

details). An initial population of 100 cells was simulated for

210 min on both glucose and lactose, after which external glucose

decreased exponentially (decay time t= 5 min, Figure 4B). Delay

times DTm1, DTm2 and DTF were determined using the same

criteria as for the experimental data. Overall, we found growth

Figure 3. Statistical analysis and correlation between expression and growth. (A) Distribution of growth decrease times DTm1. (B)
Distribution of growth recovery times DTm2. (C) Distribution of fluorescence recovery times DTF. N = 216 for all histograms. (D) Scatter plot of the
delays in growth recovery versus delays in fluorescence increase for 185 cell lineages. r2 = 0.85, p-value ,0.001. The line drawn is DTm2 =DTF. (E)
Elongation rate versus internal lac levels for all lineages (scatter plot, in grey) and the three lineages in Figure 2C. Arrows are directed towards
increasing time.
doi:10.1371/journal.pone.0061686.g003

Diauxic Shift in Single Cells
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and lac expression dynamics to be similar to the experiments

(Figure 5A–C). While most cells showed sharply decreased growth

around 20 min after the shift, a small fraction of the cells did not

and instead maintained a high growth rate (,15% of cells, green

trace, Figure 5A). Note that the simulated growth rates do not

account for random perturbations of the growth rate from other

sources as observed in the experiments (,20% of the mean growth

rate), and are thus artificially smooth. The moment of growth

restoration was again highly variable, with DTm2 and DTF

distributed similarly as for the experiments (Figure 5C).

Analysis of the temporal dynamics revealed how growth rates

could be maintained at high levels during diauxie. First, stochastic

leaky expression of the lac proteins during glucose growth gave

a fraction of cells a somewhat higher lac protein concentration just

before the shift, while still at repressed levels [20,31] (see Figure 5B

and D). The resulting comparatively high lactose import triggered

the start of induction of the lac operon. However, when external

glucose becomes exhausted in these cells, the lac expression and

hence the concentration of LacZ enzymes that can metabolize

lactose is still near repressed levels. A non-linear dependence of

growth on lac expression is therefore essential as a third ingredient,

while metabolism of contaminants and residual glucose may also

provide small contributions to the overall growth rate. The

relation between cellular growth and expression can here be

studied directly by plotting the fluorescence intensity against the

concurrent instantaneous growth rate (Figure 3E). The data after

growth restoration shows that induction to just 20% of fully

induced levels is sufficient to induce near maximal growth on

lactose. Thus, even low lac levels can generate high growth rates,

which is essential to sustaining growth at high levels during the

transition. The steep dependence also explains the observed delays

of induction with respect to growth for the cells with a lag phase

(Figure 3D): growth reaches a near-maximal rate as enzyme

production is only beginning to be ramped up.

The inherent positive feedback in the system is crucial for the

rapid escape from the lag phase: LacY permeases allow lactose to

enter the cell, which in turn leads to lac induction and hence

increased numbers of permeases. We find that the threshold level

of transporters required to initiate this positive feedback is small,

with just a few lac transporters at the time of shift sufficient for

Figure 4. Stochastic model. (A) Within each cell the concentrations of lactose, LacYZ and LacI are simulated, as well as the operator state. Lactose
imported from the environment or glucose lead to cell growth. (B) Each cell is simulated until it reaches a specified length, at which point it divides to
produce two daughter cells. The proteins of the parent cell are partitioned randomly between the two daughters. The daughters are then simulated
until their subsequent division. Growth and fluorescence recovery times (TF and Tm) are extracted from the reconstructed cell lineages.
doi:10.1371/journal.pone.0061686.g004

Figure 5. Results of the stochastic model. (A) Example time-series
of cell growth rate for a cell with fast (green), slow (blue) and very slow
(red) response. (B) Fluorescence time-series for the cells shown in (A).
Inset: The same data on a logarithmic scale, showing that cells with
higher expression levels at the time of shift of medium tend to be
induced more rapidly. (C) Histograms of growth (red) and fluorescence
(green) recovery times, DTm2 and DTF. In panels (C) and (D), cells at
DTm2 = 0 showed a decrease in growth rate of less than 20%. (D) Lac
expression of each lineage at tshift plotted against growth recovery time.
Cells which did not reach the induction threshold in the time of the
simulations are placed at DTm2 = 500 min. Cells with initial concentra-
tions above ,10 nM typically have a rapid recovery of growth rate.
Note that the plot range does not represent the full range of initial
expression levels.
doi:10.1371/journal.pone.0061686.g005

Diauxic Shift in Single Cells
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a rapid induction within ,90 min (see Figure 5D and Figure S7).

On the other hand, cells without permease at the time of shift

exhibit a very broad distribution of induction delays (mean

DTF<180 min), with a significant probability of not being induced

at all within the time-frame of the simulations. The major

component of this delay is waiting for a first stochastic burst of

production caused by a partial repressor dissociation (mean

waiting time of ,200 min), consistent with a previous study of

lac induction kinetics [20] and a recent theoretical model [37].

Dissociation of repressor typically follows rapidly (within about

20 min), such that expression can be induced to the threshold level

(in about 50 min) (see for example Figure 5A and B, red trace,

around 250 min). We note that the high threshold for the number

of lac transporters required for induction reported in a recent study

[20] was related to the bistability of that system and the

intermediate amounts of inducer that were added, which can

explain the difference with our observations. We find that two

mechanisms counter this escape from lag: metabolism of lactose

and dilution of lactose by volume expansion both decrease its

concentration, which tends to drive cells back towards the off

expression state, and ultimately arrest of growth. However, both

metabolism and dilution are comparatively slow during the lag

phase, and hence even a small number of permeases can maintain

an appreciable internal concentration of lactose. Once full

induction is achieved the import rate is sufficiently fast to support

a high internal lactose concentration, making repressor rebinding

rare, and the induced rapid growth state stable.

Genealogical Relations
Our results indicated that expression history can determine the

timing of future switching events. This non-genetic cellular

‘memory’ could result in correlated behavior between genealog-

ically related cells [38]. To test this possibility we compared the

delay in growth recovery (DTm2) of a recovering cell with the

recovery delay of its sister (or, if this sister does not recover, the

sister’s progeny). We find a weak but significant correlation

(r2 = 0.52, p-value ,0.001, Figure 6A). A control with randomly

picked pairs of recovering cells does not display any correlation

(r2 = 0.008, p-value = 0.47). The simulations also show a weak

correlation between growth recovery times (Figure 6B). One may

wonder what causes this correlation between sister cells, as the

gene expression bursts that underlie exit from the lag phase are

stochastic, which should make them independent and uncorrelat-

ed. However, a newborn cell inherits lac enzymes expressed by the

mother, intracellular lactose, as well as lac repressors, which all

affect the escape probability from the lac-repressed state. In

particular, both daughter cells will inherit a similar propensity for

repressor dissociation and hence full induction. The persistence of

correlations between sisters for lag times up to 250 min is

surprisingly long, but consistent with the expected decorrelation

time for protein concentrations, which are much longer in the lag

phase due to the slow growth and volume expansion (the doubling

time during lag phase can be up to 5 hours). Additionally, the time

between the division event generating the two sisters and

induction, which is the time available for decorrelation of the

two sister lineages, can be much shorter than the overall lag time if

the sister cells divided after the shift of medium. If a cell divides

after a small production burst but before dissociation of the

repressor, which typically takes tens of minutes after such

a production burst, then both daughter cells are likely to inherit

some of the lac proteins and a significant level of lactose. The two

daughter cells will therefore both be induced shortly after division,

resulting in very similar values of DTm2 for the two daughter

lineages.

Discussion

Monod’s original glucose-lactose diauxic growth assays have

become the prototypical illustration of the regulation of gene

expression. Not only did they reveal the underlying molecular

mechanisms, but also how growth and survival in complex

environments – the essential cause of their evolutionary origins – is

impacted. In the last decade, novel methods to monitor single cells

over time has highlighted the stochastic nature of gene expression

and its causal molecular mechanisms, and has allowed us to begin

uncovering its impact on signal propagation and differentiation

[39,40]. But how molecular stochasticity of biological systems

affects their growth and survival remains poorly understood

[41,42]. Here we aimed to begin addressing this problem by

interrogating how stochasticity in lac expression impacts the

dynamics of growth, upon switch from glucose to lactose on single-

cell level.

We found that although a population as a whole may display

diauxic lag, a significant fraction of the cells within this population

(,15%) does not and thus produces an immediate growth

response. This result counters the common notion that the speed

of the response to lactose changes is determined by the processes of

lac operon induction, protein dilution and degradation [43]. While

correct for the transcriptional response, this study shows that

growth responses can be much faster. Our experiments showed

cells maintaining a continuously high growth rate, uninterrupted

by the switch from glucose to lactose detection and metabolism.

Paradoxically, the expression of the lac enzymes importing and

metabolizing lactose was repressed at the time of shift, and turning

on their expression required of order 100 min – conditions that

seems more consistent with an obligatory lag phase. However,

stochastic simulations together with experimental correlations

between expression and growth pointed to a plausible explanation:

the stochastic basal lac expression before the shift provided some

cells with limited but sufficient lac permeases to achieve rapid

induction, which in turn yielded sufficient lac catabolic enzymes to

support near-maximal growth rates on lactose by the time glucose

was depleted. Limited permease levels were sufficient owing to the

positive feedback between lac expression and the lactose import

rate. Furthermore, the steep dependence of growth on lac enzyme

concentration permits rapid growth shortly after induction and

well before full expression levels are reached. We note that while

this model accurately predicts the central experimental features, it

is a minimal one, and additional mechanisms can be considered.

Figure 6. Switching synchrony of sister cells. The growth recovery
delays DTm2 are plotted for pairs of sister cells. (A) Data obtained from
experiments. N = 75, r2 = 0.52, p-value ,0.001. (B) Data resulting from
simulations. N = 660, r2<0.13 and p,0.001. Note that in both cases
lineages in which one cell switches but its sister or its progeny does not
are not plotted (in total: 22 pairs for the experimental data, 146 pairs for
the numerical data).
doi:10.1371/journal.pone.0061686.g006

Diauxic Shift in Single Cells
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For instance, one could imagine that growth during the switch is

supported rather by other compounds such as acetate that are

produced by metabolism overflow during growth on glucose [36].

However, this seems unlikely as such compounds will be depleted

at the same rate as glucose by the external flow. Growth could also

be briefly supported by internally-buffered compounds [44],

though this should not result in the observed heterogeneous

growth dynamics.

While a minor fraction of cells continues to grow after the sugar

switch, another fraction of the population displayed surprisingly

long lag phases. Lag times often exceeded the doubling time as

well as the population average lag time by several fold. We showed

that these long delays are consistent with the experimentally-

observed timescale of rare bursts of lac expression in the repressed

state, combined with an expression threshold that must be crossed

for the ‘on’ state to remain stable [20]. The stringent response has

been shown to be involved in diauxic shifts [45,46]. Thus

stochasticity in cellular components associated with the stringent

response, such as ribosomes, could be another source of variability

in the growth response, in addition to variability originating from

lac operon expression. Our results further put a different

perspective on the gradual exit from stationary phase as observed

at the population level. Exit from the lag phase is significantly

more abrupt for individual cells, with the gradual exit seen in bulk

assays stemming from averaging over cells with a wide distribution

of lag times.

The findings have implications for competition and survival

when resources are limited. In general, cells may follow various

strategies in heterogeneous environments [41,47]. One option is

responsive switching, in which cells detect the changes in the

environment and thus can change their phenotype appropriately.

The advantage is that all cells within a population can de-

terministically exploit new opportunities, but at the cost of

expressing a sensing machinery [15], and of time delays involved

in changing a cellular phenotype. While the cellular response may

be affected by noise in the sensing machinery during and after the

environmental change, any cellular heterogeneity prior to the

change does not play a role. In contrast, in the stochastic switching

strategy [41], cells in constant conditions continually switch in

a stochastic manner between phenotypes, and the population as

a whole thus displays many different phenotypes. Here, cells are

not burdened by sensing costs, yet some cells will be well-adapted

directly and thus can act upon opportunities without delay.

However, there are significant costs in spuriously expressing

phenotypes that are not utilized, and not all cells within the

population can exploit transient opportunities.

The data presented here suggest a hybrid third option, namely

a stochastic sensing strategy, which overcomes the central

tradeoffs. Here, a stochastic expression of the sensing machinery

allows a fraction of the population to respond deterministically,

without delay, at minimal costs. While the lac repressor - a sensor

in the lac system - is constitutively expressed in line with

a responsive strategy, the lac transporter also plays a central

sensing role, and it is expressed stochastically at low repressed

levels in the absence of lactose. As a result, some cells respond

immediately while others respond slowly as they wait until the

expression of their sensing machinery randomly gets turned on.

The costs for the rapidly responding cells are limited, as the

sensing function of the lac enzymes - nutrient detection - requires

just a fraction of transporters that are expressed at full induction.

Note that while it is weak, a tradeoff does remain, as the slowly

responding cells express even less of the sensing machinery in

glucose. Importantly, even the metabolic function of the lac

enzymes - nutrient import and catalysis - initially requires just

a fraction of full induction because of the non-linear expression-

growth relation. This enables immediate growth responses with

zero delay, despite the delays involved in turning expression up

until fully induced levels. Rapid growth responses are particularly

acute when competing for limited resources: those genotypes

capable of responding rapidly may consume all resources before

slow genotypes respond, and hence dramatically out-compete

them. Stochasticity is an essential ingredient in this strategy, as it

limits the burden of maintaining the responsive state to just

a fraction of the population, and thus hedging its bets at minimal

cost on future episodes when lactose becomes available.

Materials and Methods

Strain and Media
All experiments were performed with the E. coli strain AB460

(created by A. Böhm and kindly provided by M. Ackermann).

AB460 is a derivative of MG1655 (rph-1 ilvG- rfb-50). To measure

the expression of the lac operon, lacA was replaced with GFPmut2

[48] and chloramphenicol resistance using the protocol described

by Datsenko and Wanner [49].

Cells were grown in M9 minimal medium (47.7 mM Na2HPO4,

25 mM KH2PO4, 9.3 mM NaCl, 17.1 mM NH4Cl, 2.0 mM

MgSO4, 0.1 mM CaCl2) (all the chemicals were provided by

Merck), with 0.2 mM uracil (Sigma), supplemented with 0.01%

(w/v) glucose (Merck) or 0.1% (w/v) lactose (Fluka). The M9

medium supplemented with lactose also contained cells with

a knocked-out lac operon (NCM520, obtained from the Coli

Genetic Stock Center). These cells cannot grow on lactose but can

grow on the contaminants present in the medium. NCM520 cells

were inoculated from glycerol stock in M9+0.1% (w/v) glucose for

growth overnight. The following day, cells were washed with

M9+0.1% (w/v) lactose and transferred to the same medium to be

used for experiments. To control for glucose depletion, the red

fluorescent dye sulforhodamine 101 (0.01 mg/mL) was systemat-

ically added to the M9 medium containing glucose.

Growth Protocol
Cells were initially inoculated from glycerol stock in TY

medium and grown until the OD .0.02 and next diluted in M9

medium with 0.01% (w/v) glucose for growth overnight. The

following day, the overnight culture was diluted in M9 medium

with 0.01% (w/v) glucose (OD ,0.005) and transferred to the

microfluidic chamber. 10 mL of culture were deposited on a glass

coverslip, the polyacrylamide gel membrane was put on top and

left to dry for about two minutes before the setup was assembled.

All these steps were performed at 37uC.

Microfluidic Device Fabrication
The microfluidic system consists of a polyacrylamide gel

membrane (thickness ,500 mm) and a PDMS flow cell whose

channel (3 cm * 3 mm * 91 mm) contains evenly spaced square

pillars (400 mm, spaced by 600 mm) to ensure a uniform pressure

on the membrane. The flow was controlled by a manual valve

(Hamilton, HV 4-4) connected to two syringe pumps (ProSense,

NE-1000 and NE-300) by polyethylene tubing of 0.58 mm

internal diameter (Smiths medical International Ltd.). The flow

rate was maintained at a constant value of 20 mL.min21

throughout the experiments. The polyacrylamide gel membrane

was formed by mixing 1.25 mL 40% acrylamide (Bio-Rad),

3.7 mL deionized sterile water, 50 mL 10% ammonium persulfate

(Sigma) and 5 mL TEMED (Bio-Rad). 450 mL of the mixture were

poured in a mold consisting of a cavity aluminum slide glued to

a silanized glass slide with silicon grease. A silanized glass coverslip
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was deposited on top and the solution was left to polymerize for

about 1.5 h. After polymerization, the gel was cut in a piece of 4 *

1.5 cm and stored in a flask with sterile water.

The master mold consisted of one layer patterned by negative

phototransparency masks on a silicon wafer. This layer was

deposited using SU-8 (MicroChem). The PDMS flow cell was

fabricated by molding silicone elastomer (Sylgard 184, Dow

Corning) to this master mold. PDMS was mixed 1:10 (v/v) ratio of

catalyst and resin, poured to the master mold, degassed for 1 h

and cured in an oven at 75uC for 1 h.

Microscopy and Data Analysis
Imaging was performed with an inverted microscope (Nikon,

TE2000), equipped with 100X oil objective (Nikon, Plan Fluor NA

1.3), cooled CCD camera (Photometrics, CoolSnap HQ), xenon

lamp with liquid light guide (Sutter, Lambda LS), GFP filter set

(Chroma, 41017), computer-controlled shutters (Sutter, Lambda

10-3 with SmartShutter) and automated stage (Märzhäuser,

SCAN IM 1206100). An additional intermediate 1.56 magnifi-

cation was used, resulting in images with pixel size corresponding

to a length of 41 nm. The microscope control software used was

MetaMorph.

Phase contrast images (300 ms exposure time with GIF filter)

were taken every 75 secs; fluorescence images every 25 min

(1000 ms exposure) or 15 min (500 ms exposure). Images were

then analyzed with a custom Matlab program (Schnitzcells,

originally provided by M. Elowitz) as detailed in Text S1. The first

step consists in the detection of the cell contour for every cell in

every frame. Once this segmentation step is done, a tracking step is

performed to create a genealogical tree. Finally, length is

measured and fluorescence is extracted. The instantaneous

exponential growth rate was determined by fitting the length

versus time data to an exponential function in a 12 to 24 min time

window. For each experiment, 2 microcolonies were used for

analysis, yielding in total 6 microcolonies.

Supporting Information

Figure S1 Growth of E. coli in minimal medium
containing different concentrations of glucose as the
sole carbon source (A–D). Each curve represents the total cell

length of a microcolony over time and indicates exponential

growth. (E) Growth of E. coli in minimal medium containing no

carbon source (growth on contaminants).

(TIF)

Figure S2 Growth of E. coli in minimal medium
containing different concentrations of lactose as the sole
carbon source. Each curve represents the total cell length of

a microcolony over time and indicates exponential growth.

(TIF)

Figure S3 Shift from a medium containing glucose and
lactose to a medium containing lactose only. (A) Example

of a growth traces showing a decrease upon shift to lactose. As in

the main text, the fit is shown in thick lines. (B) Example of

a growth traces showing no visible growth decrease. Continuously

growing cells represent ,10% of the total lineages analyzed,

which compares to the 15% obtained from glucose-only to lactose

experiments.

(TIF)

Figure S4 Example of a growth trace for a cell lineage
during a shift from a glucose-only medium to a medium
with no carbon source.

(TIF)

Figure S5 Scatter plot of duration of the lag phase
(Tm22Tm1) versus delays in growth decrease (DTm1).
N=185. r2<0.01 and p-value=0.104. No significant corre-

lation is observed.

(TIF)

Figure S6 Absence of lag phase is not due to cell cycle or
spatial dependence. (A) Distributions of time of shift - time of

birth for cells with growth arrest (N = 105, mean = 27612 min

(SD); light grey) and continuously growing cells (N = 22,

mean = 2869.8 min (SD); dark grey), showing that the two

distributions are similar. (B) Phase contrast images of micro-

colonies at the time of shift. Continuously growing cells are

colored. The colors were chosen randomly, but sister cells were

given the same color.

(TIF)

Figure S7 Distribution of computed fluorescence in-
duction times for cell lineages with (green) and without
(red) permease present at the time of shift.

(TIF)

Text S1

(DOC)
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enzymes exemplify entropic principles in metabolism. Mol Syst Biol 7: 542.

45. Fischer D, Teich A, Neubauer P, Hengge-Aronis R (1998) The general stress
sigma factor sS of Escherichia coli is induced during diauxic shift from glucose to

lactose. J Bacteriol 180: 6203–6206.
46. Chang DE, Smalley DJ, Conway T (2002) Gene expression profiling of

Escherichia coli growth transitions: an expanded stringent response model. Mol

Microbiol 45: 289–306.
47. Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and

information in fluctuating environments. Science 309: 2075–2078.
48. Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the

green fluorescent protein (GFP). Gene 173: 33–38.
49. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes

in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–

6645.

Diauxic Shift in Single Cells

PLOS ONE | www.plosone.org 9 April 2013 | Volume 8 | Issue 4 | e61686


