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Abstract
Objective—Several lines of evidence implicate gray matter abnormalities in the prefrontal cortex
and anterior cingulate cortex in patients with bipolar disorder. Findings however, have been
largely inconsistent across studies. Differences in patients’ medication status or mood state, or the
application of traditional volumetric methods that are insensitive to subtle neuroanatomic
differences may have contributed to these inconsistent findings. Given this, we used magnetic
resonance imaging (MRI) in conjunction with cortical pattern matching methods to assess cortical
thickness abnormalities in euthymic bipolar subjects who were not treated with lithium.

Method—Sixty-five subjects, including 34 lithium-free euthymic subjects with bipolar (type I)
disorder and 31 healthy subjects were scanned using magnetic resonance imaging (MRI). Data
were processed to measure cortical gray matter thickness. Cortical pattern matching methods
associated homologous brain regions across subjects. Spatially normalized thickness maps were
analyzed to assess illness effects and associations with clinical variables.

Results—Relative to healthy subjects, euthymic bipolar I subjects had significantly thinner gray
matter in bilateral prefrontal cortex (Brodmann Areas 11, 10, 8 and 44) and left anterior cingulate
cortex (Brodmann Areas 24/32). Additionally, thinning in these regions was more pronounced in
patients with a history of psychosis. No areas of thicker cortex were detected in bipolar subjects
versus healthy subjects.
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Conclusions—Using a technique that is highly sensitive to subtle neuroanatomic differences,
significant regional cortical thinning was found in euthymic subjects with bipolar disorder.
Clinical implications are discussed.

Introduction
Bipolar disorder affects 1.5–3% of the population (1), yet the neurophysiologic basis for this
disorder remains unknown. Structural neuroimaging studies using region of interest based
techniques have reported that bipolar subjects exhibit volumetric reductions in gray matter
subregions of the frontal lobe, including left subgenual (2, 3), left dorsomedial (4), bilateral
inferior and middle prefrontal cortex (4, 5) and bilateral anterior cingulate cortex (6).
However, other region of interest-based studies of bipolar disorder have reported increased
volume (7) or no change (8) in these regions relative to healthy subjects. Studies using
methods that compare gray matter on a point-by-point basis, such as voxel based
morphometry, have found similar gray matter deficits in left subgenual (9), left middle (9),
bilateral inferior prefrontal cortex (10) and left anterior cingulate cortex (10). Yet other
voxel based morphometry studies have found either no change in frontal regions (11, 12), or
an increase in gray matter in patients compared to healthy subjects (13).

Among the possible causes for these inconsistencies is the heterogeneity of patient samples.
Most studies have included patients treated with lithium, a medication associated with
increases in cortical and subcortical gray matter volume (14–16). Most prior reports have
also included patients in various mood states at the time of scanning, despite recent evidence
demonstrating volume reductions in depressed versus euthymic bipolar subjects (8, 17). A
majority of prior reports have additionally not controlled for the wide variations in gyral
patterning that naturally exist between individuals, and which may cause errors in
registration and subsequent morphometric analyses (18).

Given these issues, we sought to examine cortical thickness abnormalities using surface-
based brain mapping methods in a sample of bipolar I subjects who were free from lithium
medication and were in a euthymic mood state. We employed a specialized registration
procedure, known as cortical pattern matching, which improves upon traditional registration
approaches by aligning structural or functional MR images across subjects using sulcal
features. Through explicitly identifying sulcal landmarks and using these as anchors in a
warping process, cortical pattern matching achieves an overlapping sulcal alignment across
subjects. This matching of sulcal anatomy eliminates much of the confounding anatomical
variance when pooling data and significantly boosts power, making it easier to identify and
localize subtle differences in brain structure between groups (19). Using these methods, we
hypothesized, based on previous structural neuroimaging studies and studies of
neurocognitive function (4, 9), that lithium-free, euthymic bipolar subjects would show
reduced gray matter thickness in prefrontal cortex and anterior cingulate cortex compared to
healthy subjects.

Method
Subjects

The Institutional Review Boards at UCLA and the VA Greater Los Angeles Healthcare
System approved the study. Each subject provided written informed consent. Subjects with
bipolar I disorder were recruited through the outpatient UCLA Mood Disorders Clinic, and
the outpatient Bipolar Disorders Clinic of the Veterans Affairs Greater Los Angeles Health
Care System. Healthy subjects were recruited by advertisement in local newspapers and
campus flyers. Exclusion criteria for all subjects included left-handedness, hypertension,
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neurological illness, metal implants and a history of skull fracture or head trauma with loss
of consciousness >5 minutes.

All bipolar and healthy subjects were evaluated using the Structured Clinical Interview for
DSM-IV (SCID) to confirm diagnosis or absence thereof. Bipolar subjects with other active
Axis I co-morbidities or current lithium use were excluded. Current lithium use was defined
as treatment with lithium medication within one month prior to scanning. Healthy subjects
were excluded for current or past psychiatric diagnosis (including history of substance
abuse) or current medication use.

In total, 34 subjects with bipolar type I disorder (13f; 38.1±12.0 years), currently euthymic,
and 31 healthy subjects (13f; 37.8±13.1years) were included in the study. Demographic and
clinical characteristics for all subjects are presented in Table 1. Euthymia was defined as a
lack of meeting criteria for a current manic, hypomanic or depressive mood episode for the
past month as assessed by the SCID interview. Additionally, a Young Mania Rating Scale
(YMRS) (20) score of <7, and a 21-item Hamilton Depression Rating Scale (HAM-D) (21)
score of <7 on the day of scanning were required for participation. History of psychosis was
assessed using SCID interviews.

Information on prior course of illness and prior and current medication use for patients was
obtained by self-report, by reference to medical records when available, and by
corroboration of family members or significant others when subjects allowed this. No
patients were taking lithium medication at the time of scanning; only 8 (27%) had taken this
medication in the past; 10 were taking no medications at the time of scanning, and 24 were
taking other medications (Table 1).

Data acquisition
Contiguous sagittal high-resolution three-dimensional MP-RAGE T1-weighted images were
obtained using a 1.5 Tesla Siemens Sonata MRI scanner, at the UCLA Ahmanson-Lovelace
Brain Mapping Center (160 slices, field of view: 256 mm; isotropic voxel size 1 mm3;
TR=1900 ms; TE=4.38 ms; flip angle: 15 degrees; averages=4; total scan time=8.14 min).

Data analysis
Analysis of demographic variables—Statistical analysis of demographic variables was
performed using the R statistical software package (http://www.r-project.org). Group
differences in categorical and continuous demographic variables were checked for using 2-
tailed Fisher’s exact and independent t-tests, respectively. Statistical significance was
defined at α=0.05.

Analysis of image data—MR images were processed on a Silicon Graphics Reality
Monster supercomputer by an image analyst (L.C.F.R.) who was blinded to subject
information using a series of manual and automated procedures that are described below and
summarized in Figure 1.

Image preprocessing—Image preprocessing steps consisted of: (1) adjustment for head
position and transformation of data into a common stereotaxic coordinate system without
scaling (http://www.bic.mni.mcgill.ca/software); (2) automated removal of cerebellum and
non-brain tissue (22); (3) correction of artifactual intensity non-uniformities (23); (4)
resampling at 0.33mm cubic voxels to allow estimation of cortical thickness with sub-voxel
accuracy, and (5) automatic classification of voxels into gray matter, white matter and
cerebrospinal fluid (CSF) using a partial volume classification method (22).
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Analysis of whole brain and segmented tissue volumes—Total brain volume was
calculated from preprocessed MRI volumes. Total gray and white matter volume were
calculated from segmented MRI volumes. Diagnosis effects on gray matter volume and
white matter volume were examined in R using multiple regression, controlling for age,
gender and total brain volume. Diagnosis effects on total brain volume were examined
controlling for age and gender.

Measurement of cortical gray matter thickness—Prior to registration using cortical
pattern matching, cortical thickness was first computed separately for each subject.
Thickness was defined as the shortest three-dimensional distance from the cortical white-
gray matter boundary to the hemispheric surface without crossing voxels classified as CSF.
The three-dimensional Eikonal equation (19) was applied to voxels segmenting as gray
matter to compute this distance (in millimeters) in a fully automated manner at each point
along the cortical surface. Because we expected to find differences at approximately the size
of a gyrus or larger, we used a uniform spatial filter of a radius of 15mm. These methods
have been shown to produce thickness measurements that agree with those found in
postmortem samples (24, 25), and that are stable over time in validation studies using short-
interval repeat scanning of multiple subjects (25).

Cortical pattern matching procedure—Following image preprocessing, each subject’s
scan was processed to create a three-dimensional surface model of the cortex using
automated software that deforms a spherical mesh surface to fit cortical surface tissue using
a threshold intensity value that differentiates extra-cortical CSF from brain tissue (26).
Thirty-one separate sulci were then manually delineated on each subject’s surface model.
Sulcal tracing was performed using the MNI-Display software package (http://
www.bic.mni.mcgill.ca/software) by a trained researcher (J.S.) who was blind to subject
characteristics using a previously validated surface-based anatomical protocol (25). Tracer
reliability was measured using the three-dimensional root mean square difference (in mm)
between sulci in a set of six test brains and those of a gold standard set. Disparities between
the test and gold standard brains were computed to be <2mm for all landmarks.

Warping algorithms computed the amount of shift in the x, y and z directions needed to
explicitly match each sulcus in each subject to that of the average anatomical study template,
generated from subjects in the current study (patients and healthy subjects, combined) (19).
Importantly, cortical pattern matching algorithms were used to associate the same parameter
space coordinates across subjects, without actually warping cortical surface models. This
process re-parameterized individual cortical models so that corresponding anatomy across
subjects bears the same coordinate locations.

Group differences in cortical thickness—Following the alignment of individual
subject thickness maps using cortical pattern matching procedures, statistical analyses were
performed at each cortical surface point to assess group differences in gray matter thickness
using R (http://www.r-project.org). Between-group (healthy versus bipolar) differences in
cortical gray matter thickness were determined using a general linear model at each of
65,536 points across the cortical surface while controlling for age, gender and total brain
volume. Statistics from this analysis were mapped as uncorrected color-coded p values to
provide a visual representation of illness effects. The maps were corrected for multiple
comparisons using the procedures described below.

Based on our strong a priori hypotheses regarding specific brain regions that might be
affected in bipolar illness, we assessed thickness in two regions, the prefrontal cortex and
anterior cingulate cortex. The anatomic boundaries for each of the two regions of interest
have been defined previously (14). Briefly, the prefrontal cortex contained all cortical gray
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matter anterior to the precentral sulcus and superior and anterior to the cingulate sulcus. The
anterior cingulate cortex contained all cortical gray matter anterior to the paracentral sulcus,
inferior to the cingulate sulcus and posterior to the pericallosal sulcus. Exploratory follow-
up analyses were also conducted to determine which subregions of the prefrontal and
anterior cingulate cortex were driving any overall significant findings. These smaller
subregions were positioned within the broader prefrontal cortex and anterior cingulate
regions of interest and defined using Brodmann’s Areas that were deformed to the study-
specific average anatomical template using the Deformable Brodmann Area Atlas (27)
(Figure 2).

For these and all other thickness analyses, correction for multiple comparisons (arising from
fitting a separate model at each surface point within each region) was performed using
permutation testing (19). This method randomly permutes group membership 1,000,000
times to measure the distribution of features in the statistical maps that would be observed
by accident. This resulted in a single p value for each region of interest that was corrected
for multiple comparisons across surface points contained within that region. A two-tailed
alpha level of 0.05 was set as the threshold for statistical significance. Given that our
primary hypotheses were limited to two brain regions, and given that the follow-up
subregional (Brodmann Area) analyses were exploratory in nature, no additional correction
(e.g. Bonferroni) was made for the number of regions tested.

Association of cortical thickness with course of illness variables—Point-wise
associations between gray matter thickness and continuous course of illness variables were
explored using partial correlation analyses. Gender and total brain volume were included as
covariates in analyses of course of illness variables that were highly collinear with age, such
as illness duration (r=0.82, p< 0.0001). All other analyses controlled for gender, total brain
volume and age. Correlations were screened for within search regions defined by areas
showing a significant group difference in the analysis of diagnosis effects in prefrontal
cortex and anterior cingulate cortex.

Examination of history of psychosis effects on cortical thickness—To examine
whether a history of psychosis was associated with alterations in cortical gray matter,
patients with and without a history of psychosis were compared using multiple linear
regression at each cortical surface point, controlling for age, gender and total brain volume.

Results
Subject demographics

Bipolar subjects did not differ significantly from healthy subjects in age, gender,
handedness, educational level or race (Table 1). On the day of the scan, bipolar patients’
average HAMD and YMRS scores were 4.5±2.3 and 1.7± 2.2, respectively. Seventeen
(50%) of the bipolar subjects had experienced psychotic symptoms during prior manic or
depressive episodes, as determined during SCID interviews, and were classified as having a
history of psychosis.

Whole brain tissue volumes
Multiple regression analyses revealed no significant effects of diagnosis on cortical tissue
volumes, including total brain volume (F=0.70, df=1, 61, p=0.407), gray matter volume
(F=1.48, df=1, 60, p=0.228) or white matter volume (F=0.44, df=1, 60, p=0.508).
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Cortical gray matter thickness
Pointwise analysis of cortical gray matter thickness, controlling for age, gender and total
brain volume, revealed significant effects of diagnosis across widespread areas of the cortex.
Spatial patterns of regional thinning in patients relative to healthy subjects are mapped onto
the three-dimensional group averaged hemispheric surface model as uncorrected p values
(Figure 3). These uncorrected two-tailed probability maps are thresholded at a value of 0.05
with more significant regions encoded by corresponding color bars. Regional corrected p
values, obtained using permutation methods described above, are shown in Table 2.
Permutation testing results revealed a significant effect of diagnosis in prefrontal cortex
bilaterally (left: F=6.88, df=1, 60, p=0.011; right: F=4.41, df=1, 60, p=0.040,) and in the left
anterior cingulate cortex (left: F=5.53, df=1, 60, p=0.022; right: F=0.91, df=1, 60, p=0.343).
Within the prefrontal cortex, permutation testing revealed that cortical thinning in patients
was localized to bilateral orbital (Brodmann Area 11, F=8.12, df=1, 60, p=0.006), left
dorsomedial (Brodmann Area 8, F=4.15, df=1, 60, p=0.046), left ventrolateral (Brodmann
Area 44, F=4.50, df=1, 60, p=0.038) and left frontopolar cortex (Brodmann Area 10,
F=5.62, df=1, 60, p=0.021). Within the anterior cingulate cortex, permutation testing
showed thinning was localized to the left anterior cingulate (Brodmann Area 24, F=7.08,
df=1, 60, p=0.010) and left pericingulate (Brodmann Area 32, F=6.14, df=1, 60, p=0.016)
cortices. No areas of thicker cortex were detected in patients relative to healthy subjects.
While these subregional analyses were intended as exploratory, we note that several of the
results would survive an additional correction for multiple comparisons. In particular, a
Bonferroni correction for the 8 Brodmann’s Areas within the prefrontal cortex would reduce
the significance threshold from α=0.05 to α*=0.00625 (0.05/8), a standard that is met by
thinning in bilateral orbitofrontal cortex (Brodmann Area 11, p=0.006). Similarly, thinning
in the left anterior cingulate (Brodmann Area 24, p=0.0100) would survive a correction to
α*=0.0125 (0.05/4) for the 4 Brodmann’s Areas contained within this area.

The impact of current medications on cortical thickness was additionally explored through
direct pointwise group comparisons between euthymic patients who were currently (N=24)
or were not currently (N=10) treated with medications at the time of scanning. These
analyses revealed no areas of significant difference (all p’s>0.05).

Furthermore, to examine the influence of prior lithium exposure as a potential confound on
cortical gray matter thickness, analyses were conducted comparing cortical thickness
between patients who had (N=8) and who had not (N=22) been clearly documented to have
taken this medication in the past. Results from this analysis showed no areas of significant
group difference in cortical thickness (all p’s>0.05), suggesting that prior lithium use itself
was not a significant confounder.

Association with prior course of illness
Within prefrontal and anterior cingulate cortex Brodmann Areas of patients, thickness was
negatively associated in the left hemisphere with duration of illness (Brodmann Areas 24, 43
and 8, F≥4.17, df=1, 30, p≤0.05), duration of time between illness onset and initiation of
medication treatment (Brodmann Areas 24, 32 and 8; F≥4.17, df=1, 30, p≤0.05) and prior
number of depressions (Brodmann Areas 8, 10 and 11; F≥4.17, df=1, 30, p≤0.03). However,
because age shared a high collinearity with these variables, we, like prior studies (28, 29),
could not disentangle course of illness effects from the effects of normal aging.
Additionally, although no main effect of illness was detected in subgenual region of the left
prefrontal cortex (Brodmann Area 25), a highly significant positive association was detected
in this region between thickness and prior number of hospitalizations for mania (F=5.21,
df=1, 29, p=0.030).
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Examination of history of psychosis effects on cortical thickness
Relative to patients without a history of psychosis, those with such a history demonstrated
significantly greater thinning within left ventrolateral prefrontal cortex (Brodmann Area 44,
F=4.57, df=1, 29, p=0.041), left dorsomedial prefrontal cortex (Brodmann Area 8, F=4.22,
df=1, 29, p=0.049) and the left temporal pole (Brodmann Area 38, F=8.43, df=1, 29,
p=0.007).

Discussion
Using cortical matching methods in conjunction with tools for measuring gray matter
thickness, we found significant thinning in bilateral prefrontal and left anterior cingulate
cortices in euthymic bipolar subjects relative to healthy subjects. Within these regions,
thinning was localized to specific subregions including bilateral orbital (Brodmann Area
11), left frontopolar (Brodmann Area 10), left dorsomedial (Brodmann Area 8), left
ventrolateral prefrontal cortex (Brodmann Area 44), left anterior cingulate (Brodmann Area
24) and left pericingulate (Brodmann Area 32) cortices.

Only two studies, to our knowledge, have examined brain structure in recurrently ill adult
subjects with bipolar disorder using cortical thickness methods in conjunction with MRI.
Lyoo et al. (29) reported thinning of prefrontal cortical gray matter in 25 bipolar subjects
relative to 21 healthy subjects in left Brodmann Areas 46, 24 and 32 and right Brodmann
Area 10. And, in a region of interest-driven study, Fornito et al. (6) found thinning in left
Brodmann Area 24 and right Brodmann Area 32 in 24 patients relative to 24 healthy
subjects. In the current study, which used a larger sample of 34 patients and 31 healthy
subjects, cortical pattern matching methods were used to allow a more precise mapping of
thickness abnormalities in bipolar disorder (30, 31). These methods improve upon the
traditional registration approaches by aligning corresponding anatomy across subjects using
sulcal features, eliminating much of the confounding anatomical variance when pooling data
across subjects, thereby making it easier to identify and localize subtle group differences in
brain structure (19). Using this highly sensitive technique, we replicated and extended the
above prior study findings.

The current study has several unique strengths. First, unlike a majority of previous studies
which have either not specified (32), or included a number of patients who were receiving
treatment with lithium at the time of scanning (4, 8, 10, 12, 29), all subjects in our patient
sample were free from current treatment with this medication. This aspect may be
particularly important given recent evidence showing that lithium medication is associated
with significant increases in cortical gray matter. Moore et al. (33) observed total gray
matter volume increased by 3%, on average, in bipolar subjects after 4 weeks of lithium
treatment. Sassi et al. (16, 34) found larger total gray matter volume in lithium-treated
bipolar subjects, compared to both untreated patients and healthy subjects. And Bearden et
al. (14) found prefrontal cortical gray matter density was greater in bipolar subjects treated
with lithium relative to both healthy subjects and bipolar subjects not treated with this
medication. Our group has also found lithium-associated gray matter enlargement of
subcortical structures in bipolar subjects (15). Use of lithium, therefore, may serve to
explain why some prior structural neuroimaging studies of bipolar disorder have either
failed to detect gray matter reductions in patients (11), or found group differences in the
opposite direction (i.e., gray matter increases in bipolar versus healthy subjects (7, 12, 13)).

A second strength of the current study is that all bipolar subjects in our patient sample were
in the same mood state (euthymia) at the time of scanning. Although prior studies have not
controlled for this factor, recent data from our group (17) and others (8) suggest that, it, too
may in fact impact MRI results. Brooks et al. (17) found, compared to euthymic bipolar
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subjects, that depressed bipolar subjects exhibited lower gray matter density in dorsal
prefrontal cortices. Nery et al. (8) also found gray matter reductions in the orbitofrontal
cortex of depressed relative to euthymic bipolar patients. A similar pattern of gray matter
volume reductions has been more recently found by our group in patients scanned
longitudinally (in different mood states) as well (J.O. Brooks et al., unpublished 2010 data).

A third strength of our study is that all subjects in the current patient sample were diagnosed
with bipolar I (not II) disorder. Whether bipolar subtype (I or II) is associated with distinct
cortical abnormalities is not known, but could add to the heterogeneity in structural
neuroimaging findings. Only one study, to our knowledge, has specifically examined the
impact of subtype on brain structure. In this study, unmedicated patients with bipolar type I
disorder were found to exhibit smaller volumes of the left amygdala compared to
unmedicated patients with bipolar type II disorder (35). This finding, as well as data from
studies which show bipolar type I disorder to be associated with greater neuropsychological
impairment (36), a higher risk for psychosis, and more severe manias than bipolar type II
disorder, suggests that bipolar subtype could be associated with distinct patterns of thinning
in cortical gray matter. Studies that directly compare cortical gray matter in patients with
bipolar type I versus bipolar type II disorder are needed, however, to more thoroughly
examine this issue.

With these efforts to study a more homogenous bipolar population and to control for some
known confounds, we found reduced thickness in the prefrontal and anterior cingulate
cortices of patients with bipolar disorder. The etiology of this thinning remains to be further
understood. One possibility is that reduced thickness in the prefrontal and anterior cingulate
cortex of patients is the result of an underlying neurodegenerative process associated with
possible toxic effects of mood episodes. In line with this, and consistent with prior studies
(28, 29, 37), we found significant widespread negative associations between cortical
thickness and prior course of illness. Although it is tempting to speculate that decreased
thickness in patients is causally associated with greater illness duration and a higher number
of prior depressive episodes, because these variables were highly correlated with age, we,
like prior studies (28, 29) could not disentangle these effects. Future studies that sample
from bipolar patient groups that have a very narrow age range but a wide range in the
number of prior depressive episodes or other course of illness measures are needed to tease
apart these factors.

Another possibility is that reduced cortical thickness is present early in the course of the
disorder, possibly prior to illness onset, and that such thinning might alter normal inhibitory
cortico-limbic networks, resulting in an increased vulnerability to emotion dysregulation.
Data to support this comes from studies finding gray matter abnormalities in the prefrontal
cortex of unaffected relatives of individuals with bipolar and unipolar depressive disorder
(38, 39). Whether these individuals with cortical thinning go on to develop the disorder is
unclear, however, and longitudinal studies that more thoroughly explore the relation
between cortical thinning and illness onset would be of interest.

Thinning of the prefrontal and anterior cingulate cortices could contribute to some of the
behavioral changes that are observed in bipolar disorder. Lesion studies show focal damage
to the orbitofrontal cortex leads to a diminished ability for individuals to properly gauge the
positive or negative emotional consequences to their actions (40), and damage to anterior
cingulate cortex results in symptoms which include inattention and emotional instability (41,
42). At least one functional neuroimaging study, to our knowledge, has reported activation
in both the orbitofrontal and anterior cingulate cortex in healthy subjects during the
conscious regulation of negative emotional states (43). This same study found activation in
the orbitofrontal cortex was negatively correlated with that of the amygdala, suggesting an
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inhibitory connection between these regions. Other studies involving emotion regulatory
paradigms, however, have found frontal activation (and corresponding negative correlations
with amygdala activation) to be localized to the lateral portion of prefrontal cortex (e.g.
Brodmann Area 47) (44–46). Although thinning in this ventrolateral region was not
observed in patients here, it is well established that robust structural connections run
between the lateral (e.g. Brodmann Area 47) and medial (e.g. Brodmann Area 11) sectors of
the orbitofrontal cortex, but that only the medial subdivision sends direct inhibitory
projections to the amygdala (47, 48). The lateral sector of orbitofrontal cortex, therefore,
may suppress amygdala output via intermediary projections from the medial orbitofrontal
cortex. Given this, it is interesting that our group has observed increased activation of the
amygdala and decreased activation of the lateral orbitofrontal cortex (44, 49, 50), but
thinning in the medial orbitofrontal cortex (shown here). The current study data could,
therefore, provide a structural etiology for the functional abnormalities previously observed
by our group. Additional studies examining the relation between brain structure and function
in emotion regulatory circuits are currently underway in our laboratory.

With the exception of thinning in orbitofrontal cortex, which was bilateral, most of the
thinning observed in patients of the present study was localized to the left hemisphere. This
hemispheric pattern agrees with prior studies; of the four that have reported abnormal
structure of the anterior cingulate (i.e., Brodmann Area 24/32), three (10, 29, 51) found
deficits in the left hemisphere only, one (6) found deficits in bilateral anterior cingulate, and
no studies found deficits that were restricted to the right hemisphere. The reason for this
laterality is not known, although the concept of hemispheric lateralization of mood
regulation is well-documented. Current models of emotional processing suggest that positive
(or approach-related) emotions are lateralized toward the left hemisphere, whereas negative
(or withdrawal-related) emotions are lateralized toward the right hemisphere (52). Lesions to
the left prefrontal cortex, for example, have been associated with an increased risk for
depressive symptoms (53).

In addition to the negative associations observed here between cortical thickness and illness
duration and prior number of depressive episodes, there are two findings that require further
investigation. First, thickness in left subgenual prefrontal cortex was positively associated
with the number of prior of hospitalizations for mania, a finding that remained significant
when age was controlled for in our statistical model. It is possible, given recent evidence
suggesting that mood state may affect brain structure (8, 17), that the manic state itself,
particularly when severe enough to require hospitalization, may have enduring hypertrophic
effects on gray matter. Future studies, however, are needed to address this possibility.
Second, a history of psychosis in patients was associated with significantly greater thinning
in left ventrolateral prefrontal cortex (Brodmann Area 44), left dorsomedial prefrontal cortex
(Brodmann Area 8) and left temporal pole (Brodmann Area 38). More pronounced thinning
in these regions may suggest that psychotic and non-psychotic forms of bipolar disorder
could be characterized by distinct patterns of gray matter abnormalities. This pattern of
deficit is congruent with neurocognitive studies that show bipolar patients with a history of
psychosis to be impaired on some prefrontal functions such as executive functioning and
spatial working memory compared with bipolar patients without such a history (54).
Moreover, studies of patients with chronic schizophrenia (55, 56) and psychosis (57, 58)
consistently show reductions in gray matter of the left dorsomedial region of prefrontal
cortex (Brodmann Area 8). Cortical gray matter loss in this region, therefore, may be
associated with psychosis in particular. Unlike patients with schizophrenia however, cortical
gray matter in dorsolateral prefrontal cortex (e.g. Brodmann Area 46) was relatively spared
in patients of the current study. Thus, although distinct and identifiable patterns of
neuroanatomic pathology could potentially distinguish these two disorders, future studies are
needed to more accurately address this possibility.
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Our study has several limitations. First, many of our patients were taking other medications,
of which the long- and short-term effects on brain structure are not known. Our comparisons
of cortical thickness between medicated and unmedicated patients, however, showed no
evidence for a significant effect of this factor. Second, some patients had reported taking
lithium in the years prior to scanning, and prior exposure to this medication could have
affected our results. As lithium increases gray matter volume (33) however, it would be
expected that any enduring hypertrophic effects of prior treatment with this medication
would have produced group differences opposite to those observed here. Additionally,
comparisons between patients who had and had not previously taken this medication
indicate that prior lithium use itself was not a significant confounder.

In conclusion, using sensitive cortical pattern matching methods, in conjunction with tools
developed by our group to measure cortical gray matter thickness, we found significant gray
matter thinning in the prefrontal cortex and anterior cingulate cortex of a bipolar patient
sample that was carefully recruited to control for the potential confounding effects of lithium
status, mood state and diagnosis subtype. Thinning within these areas of the brain was
localized to bilateral orbital (Brodmann Area 11), left frontopolar (Brodmann Area 10), left
ventrolateral (Brodmann Area 44), left dorsomedial (Brodmann Area 8) and left anterior
cingulate cortex cortices (Brodmann Area 24 and Brodmann Area 32), brain areas which are
critical for the modulation of emotion, motivation, and attention. Studies that examine
possible associations between cortical thinning and behavior, and the impact of structural
alterations on neural circuit function are currently underway by our laboratory.
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Figure 1.
(A) Steps required to derive cortical thickness maps from the each subject’s MR image
volume (for details, see Data Analysis). (B) Cortical pattern matching is used to align
cortical features across subjects to bring cortical thickness maps into correspondence; this
procedure involves the flattening of individual cortical surfaces for alignment with a group
average sulcal pattern. (C) Once aligned to the mean template, group differences in gray
matter thickness can be mapped at each cortical surface point.
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Figure 2.
Brodmann Areas deformed to the average anatomical template using the Deformable
Brodmann Area Atlas (27).
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Figure 3.
Cortical thickness maps showing gray matter decreases (A) and increases (B) in bipolar
subjects (N=34) relative to healthy subjects (N=31). Percent difference maps (C) show the
magnitude of cortical thickness reductions in patients. Probability maps show thresholded,
uncorrected p values in color for areas showing a regional cortical thickness difference
between groups. Corrected p values are presented in Table 2.
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Table 2

Frontal lobe subregions showing different cortical thickness between subjects with bipolar disorder and
healthy subjects

Cortical region Hemisphere BA p value

Orbital PFC Left 11 0.006

Right 11 0.006

Frontopolar PFC Left 10 0.021

Ventrolateral PFC Left 44 0.038

Dorsomedial PFC Left 8 0.046

Right 8 0.085

Left 9 0.071

ACC Left 24 0.010

Left 32 0.016

BA = Brodmann Area; PFC = prefrontal cortex; ACC = anterior cingulate cortex; p values indicate corrected 2-tailed significance levels after
controlling for age, gender and total brain volume following permutation testing.
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