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Abstract
A treatment regime maps observed patient characteristics to a recommended treatment. Recent
technological advances have increased the quality, accessibility, and volume of patient-level data;
consequently, there is a growing need for powerful and flexible estimators of an optimal treatment
regime that can be used with either observational or randomized clinical trial data. We propose a
novel and general framework that transforms the problem of estimating an optimal treatment
regime into a classification problem wherein the optimal classifier corresponds to the optimal
treatment regime. We show that commonly employed parametric and semi-parametric regression
estimators, as well as recently proposed robust estimators of an optimal treatment regime can be
represented as special cases within our framework. Furthermore, our approach allows any
classification procedure that can accommodate case weights to be used without modification to
estimate an optimal treatment regime. This introduces a wealth of new and powerful learning
algorithms for use in estimating treatment regimes. We illustrate our approach using data from a
breast cancer clinical trial.
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1. Introduction
The goal of personalized medicine is to inform clinical interventions using individual patient
characteristics. These characteristics may include patient demographics, genetic or genomic
information, treatment and outcome history, ability to cope with side-effect burden, and so
on. Personalized medicine has the potential to increase the quality of patient care while
reducing cost by reducing over-treatment and making efficient use of all existing
information. There is currently a great deal of interest among clinical and intervention
scientists in the development of evidence-based personalized treatment strategies, also
known as treatment regimes. With the increasing volume, accessibility, and quality of
patient level data, statistics has an important role to play in the estimation and evaluation of
treatment regimes.
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Formally, a treatment regime is a rule that assigns a treatment, from among a set of possible
treatments, to a patient based on his/her observed characteristics. Deducing optimal
treatment regimes using data from a clinical trial or observational study can be informed, for
example, in traditional regression-based methods, by identifying patient covariates that
exhibit a qualitative interaction with treatment assignment; i.e., an interaction in which the
treatment effect changes direction depending on the covariates (Gunter et al., 2011).

Recently, there has been vigorous research on estimating optimal treatment regimes
involving a single decision or a series of decisions based on data from clinical trials or
observational studies (Murphy, 2003; Robins, 2004; Moodie et al., 2007; Robins et al.,
2008; Brinkley et al., 2009; Zhao et al., 2009; Henderson et al., 2010; Orellana et al., 2010;
Gunter et al., 2011). Much of this work involves postulating a model for the regression of
outcome on treatment assignment and covariates, and then inferring from the model the best
treatment assignment given patient covariates. Zhang et al. (2012ab) proposed a robust
method that maximizes across all regimes in a prespecified class a doubly robust augmented
inverse probability weighted estimator (AIPWE) of the population mean outcome. This
method achieves comparable performance to methods based on direct outcome regression
modeling and is more robust to misspecification of regression models. With this method, as
well as the recent inverse probability weighted estimator of Zhao et al. (2012) and methods
based on outcome regression, the parametric form of regimes has to be pre-specified, either
by practical considerations or through ad hoc preliminary data analysis.

In this article, we present a novel and general framework that facilitates flexible estimation
of optimal treatment regimes in the single decision point setting. Specifically, we recast the
original problem of finding the optimal treatment regime as a weighted classification
problem and estimate the optimal treatment regime by estimating the Bayes classifier, i.e.,
the one that minimizes the expected weighted misclassification error. This framework
allows the estimation of mean outcomes under a regime using any existing methods, e.g.,
regression estimator, inverse probability weighted estimator (IPWE) or AIPWE, and is
separated from the subsequent optimization for identifying the form of treatment regimes,
giving rise to its flexibility. Within this framework, the class of treatment regimes does not
need to prespecified and can instead be identified in a data-driven way by minimizing an
expected weighted misclassification error. Importantly, our approach allows for existing
classification algorithms to be used without modification to estimate an optimal treatment
regime. This introduces a wealth of new and powerful learning algorithms for use in
estimating optimal treatment regimes.

The remainder of this paper is organized as follows. In Section 2, we formalize the problem
of estimating the optimal treatment regime using potential outcomes and review existing
methods. In Section 3, we present a general classification framework for identification of the
optimal treatment regime. We conduct a small empirical study of the proposed method in
Section 4. We illustrate the proposed method using data from the National Adjuvant Breast
and Bowel Project (NSABP) in Section 5. Concluding remarks are made in Section 6.

2. Framework and Methods
Consider a clinical trial or observational study where n subjects from a population of interest
received one of two treatment options, denoted by A = 0 or 1. Let Y denote the observed
outcome of interest and, without loss of generality, assume that larger values of Y are
preferred. Let X denote the vector of patient characteristics collected prior to treatment. The
observed data are then (Xi, Ai, Yi), i = 1, …, n, which are assumed to be independent and
identically distributed (i.i.d.) across i.
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A treatment regime, g, is a map from the domain of X to the domain of A. The goal is to use
the data to estimate the optimal treatment regime, defined as the one that maximizes the
expected outcome if used to assign treatments to all patients in the population of interest. To
precisely define and identify the optimal treatment regime, we adopt the potential outcome
framework (Rubin, 1978). Let Y* (0) and Y* (1) denote the potential outcomes for a subject
that would be observed had the subject received treatment 0 or 1, respectively. We assume
that the actual observed outcome is connected to the potential outcomes through Y = Y*
(1)A + Y* (0)(1 − A); this is usually referred to as the consistency assumption and states
that the observed outcome is the same as the potential outcome under the treatment actually
received. We assume that there is no interference among units, also known as the stable unit
treatment assumption (SUTVA). We further assume {Y* (0), Y* (1)} ╨ A|X, where ╨
denotes statistical independence; this states that there are no unmeasured confounders, and
that treatment A, conditional on X, can be viewed as being randomly assigned. In a
randomized clinical trial, this assumption is trivially true. Under these assumptions, it is
straightforward to show that the overall population mean were all patients in the population
to receive treatment a, E{Y*(a)}, is equal to EX [E{Y|A = a, X}], where EX(·) denotes
expectation with respect to the marginal distribution of X. Thus, for an arbitrary treatment
regime g, the potential outcome for a subject randomly chosen from the population, if he/she
were to receive treatment according to g, can be defined as

The optimal regime, gopt, is defined as the one yielding the largest value of E{Y*(g)} among
the class of all potential regimes, ; i.e., gopt = arg maxg∈ E{Y*(g)}. Writing μ(a,X) = E(Y|
A = a, X), it is straightforward to show that

and hence the optimal treatment regime is given by

An intuitive approach to estimating the optimal treatment regime, which we refer to as the
regression method, is to posit a parametric regression model for μ(A, X) = E(Y|A, X), say
μ(A, X; β). If the model is correctly specified, then μ(A, X) = μ(A, X; β0) for some β0, and
the optimal regime is therefore g(X, β0), where g(X, β) = I{μ(1, X, β) > μ(0, X, β)}. Hence,

it is natural to estimate the optimal treatment regime by ,
where β̂ is an estimator of β. Clearly, if the model for μ(A, X) is incorrectly specified,

 may not be a good estimator of gopt(X).

Alternatively, a semiparametric version of the regression method, G-estimation (Robins,
2004), considers a semiparametric model for μ(A, X), exploiting the fact that the optimal
treatment regime gopt(X) only depends on the contrast function C(X) = μ(1, X) − μ(0, X)
through gopt(X) = I{C(X) > 0}. Specifically, G-estimation posits a semiparametric model
μ(A, X) = h1(X)+ACG(X; ψ), where ψ is a finite dimensional vector and h1(X) is
unspecified. The estimator ψ̂ for ψ can be found by solving appropriate estimating
equations involving a known or estimated propensity score π(X) = pr(A = 1|X) (Robins
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2004 see also Schulte et al. 2012). The optimal treatment regime is estimated by

. Like , the quality of the G-estimation estimator 
depends on how close CG(X; ψ) is to the true contrast function.

Recognizing that the posited regression model may be misspecified, Zhang et al. (2012a)
instead considered such a posited regression model as a mechanism for defining a class of
induced treatment regimes. They estimated the optimal regime within a pre-specified class
by directly maximizing a doubly robust AIPWE of the population mean outcome across all
regimes in the class. The class of regimes η, indexed by parameter η, can be derived from a
regression model μ(A, X; β), in which case η is a many-to-one function of β (see Zhang et
al., 2012a, for details) or directly specified as depending on a key subset of elements of X
based on practical considerations. The value ηopt = arg maxηE{Y*(gη)}, gη ∈ η, defines

the optimal regime in η, i.e., , which equals gopt(X) if η contains
gopt(X) and, although not the same as gopt(X) if gopt(X) is not in η, is still of considerable
interest when we focus our attention on the feasible class η. For fixed η, the AIPWE for
E{Y*(gη)} is given by

(1)

where Cη = Ag(X, η) + (1 − A){1 − g(X, η)}, π(X; γ) is a posited model for the propensity
score π(X); γ̂ is the maximum likelihood (ML) estimator for γ; πc(X; η, γ̂) = π(X; γ̂)g(X,
η) + {1 − π(X; γ̂)} {1 − g(X, η)}; m(X; η, β) = μ(1, X, β)g(X, η) + μ(0, X, β){1 − g(X, η)}
is a model for E{Y*(gη)| X }= μ(1, X) g(X, η) + μ(1, X)g(X, η) + μ (0, X){1 − g(X, η)};
μ(A, X; β) is a model for E(Y|A, X); and β̂ is an estimator for β. Denoting the value that

maximizes AIPWE(η) by , which estimates ηopt, one can then estimate  by

.

As an alternative to the AIPWE estimator, Zhang et al. (2012a) also discussed the inverse
probability weighted estimator (IPWE) for E{Y* (gη)}, given by

The definitions of the estimators  and  based on IPWE(η) follow immediately.
The method of Zhao et al. (2012) estimates the optimal treatment regime by maximizing a
concave relaxation of the above IPWE estimator. This relaxation is analogous to the use of
surrogate or proxy loss functions in classification (see, for example, Hastie et al., 2009); this
relaxation provides numerical stability and facilitates efficient computation of the maximum.

3. Treatment Regimes and Classification
In this section, we describe a general framework for transforming the problem of estimating
an optimal treatment regime into weighted classification problem. Using the previous
notation, we see that
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so that gopt = arg maxg∈ E{Y* (g)} = arg maxg∈ E{g(X)C(X)}. A natural strategy for
estimating the optimal treatment regime is to first construct an estimator Ĉ for C using the

observed data, and estimate gopt by . Next we will see
that all of the estimators discussed in the preceding section can be seen as following this
approach.

The regression method posits a model E(Y|A, X) = μ(A, X; β), that defines the class of
treatment regimes, β, indexed by β, with elements of the form g(X, β) = I{μ(1, X, β) > μ(0,

X, β)}. It then estimates gopt(x) by , which is equivalent to

arg maxg∈ βn−1 , where Ĉreg(x) = μ(1, x, β̂) – μ(0, x, β̂) is a regression
estimator of C(x).

G-estimation directly models the contrast function, which subsequently defines the class of
treatment regimes, ψ, indexed by ψ, with elements of the form g(X, ψ) = I{CG(X, ψ) > 0}.

The resulting estimator  is thus equal to arg maxg∈Gψn−1

 where ĈG(x) = CG(x, ψ̂).

The robust method in Zhang et al. (2012) considers the a priori specified class of regimes η.
The AIPWE for E{Y*(gη)} with a fixed η can be rewritten as

where

(2)

The method of Zhang et al. (2012a) estimates  by , which

is equal to arg maxg∈ ηn−1 . Note that the AIPWE estimator of the
contrast function borrows information from, but is not completely determined by the
specified parametric regression model for the outcome. In contrast to this, estimators of the
contrast function using regression or G-estimation methods are completely determined by
the specified regression models, and the IPWE estimator given below makes no use of a
regression model for the outcome given covariates. The AIPWE contrast estimates strike a
balance between the foregoing two extremes and this balance partly explains the improved
empirical performance in Section 4.
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The inverse probability weighted estimator (IPWE) for E{Y*(gη)}, is equivalent to
estimating the contrast function at each of the observed data points by

(3)

Unlike other methods for estimating the contrast function, which either are completely
determined by or incorporates information from a semiparametric or parametric outcome
regression model, the IPWE estimator of C(Xi) for each i is completely determined by the
observed outcome, weighted by an estimated propensity. The IPWE estimates of the contrast
values may be too noisy to successfully inform the class of treatment regimes, as
demonstrated by our simulations.

From the above discussion, we see that estimating the optimal treatment regime in the class
 or the restricted class η can be separated into two steps: constructing an estimator Ĉ(Xi)

of the contrast function C(Xi) for i = 1,…, n, and subsequently estimating gopt by ĝopt = arg

max n−1 , where the maximization is across all regimes in the class
considered. Note that in the regression and G-estimation methods, the class of regimes is
dictated by either μ(A, X; β) or CG(X; ψ); and the estimation of the contrast function and
the maximization of the objective function are carried out simultaneously by fitting the
corresponding regression models. As a result, if the posited regression model, μ(A, X; β) or
CG(X; ψ), is correctly specified, the corresponding estimator of the contrast function is
consistent; in such a case the estimator of the optimal treatment regime is a consistent
estimator of gopt, as β, or ψ; contains gopt. If the posited model is misspecified, however,

 or  may be far from the optimal treatment regime in  or even the optimal regime in
the corresponding restricted class β, or ψ, and thus, may perform poorly. In contrast, in the
robust AIPWE-based method of Zhang et al. (2012), the estimation of the contrast function
and the maximization of the objective function across η are separated. An advantage of this
separation is that even if η does not contain gopt, the resulting estimator may still be the
optimal one in η. In the method of Zhang et al. (2012a), the class of treatment regimes
under consideration, η, indexed by a finite-dimensional parameter, is either entirely
determined by the model for the outcomes Y or is pre-specified based on practical
considerations. In practice, one can inform the class of treatment regimes by using standard
model building techniques for the regression model of outcome on treatment and patient
characteristics. However, these model building techniques target identifying a good model
for the outcome, but not necessarily a high-quality treatment regime.

We now introduce a general framework that can address the issues discussed above.
Specifically, the problem of estimating the optimal treatment regime is reformulated as a
weighted classification problem, where the optimal treatment regime minimizes a weighted
misclassification error.

Because C(X) = I{C(X) > 0}|C(X)| − I{C(X) ≤ 0}|C(X)|, we can write g(X)C(X) as

As g(X) takes values {0, 1}, it is easy to check that
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Combining these results, g(X)C(X) can be rewritten as

Therefore, we can define the optimal treatment regime as

That is, the optimal treatment regime, gopt, is the one that minimizes E (|C(X)|[I{C(X) > 0}
− g(X)]2). This identity is what allows us to recast the problem of estimating an optimal
treatment regime as a weighted classification problem.

We view each subject as belonging to one of the two classes defined by Z = I{C(X) > 0}.
That is, the class Z = 1 is composed of those subjects who would benefit more from
treatment 1 compared to treatment 0; i.e., those who have μ(1, X) > μ(0, X), and should
therefore be treated with treatment option 1. Each subject is also given a weight W = |C(X)|,
which represents the loss that would be incurred if the subject were misclassified. In this
way, we separate the information contained in C(X) into two parts: the class label Z,
containing the information about the sign of C(X); and the weight W, containing the
information about the magnitude of C(X). Hence, E(|C(X)|[I{C(X) > 0} − g(X)]2) can be
regarded as the expected weighted misclassification error under the classification rule g(X).

In practice, the contrast function C(X) and hence the class label Z and weight W for each
subject are not available in the observed data. As discussed previously, the contrast values
C(Xi) for each i can be estimated from the data, for example, using Ĉreg, ĈG, ĈIPWE, or
ĈAIPWE. Once the estimates Ĉ(Xi), i = 1, …, n, are obtained, we can construct a class label
Ẑi = I{Ĉ(Xi) > 0}, and a weight Ŵi = |Ĉ(Xi)| for each subject, and gopt can be estimated

subsequently by arg ming∈  . The minimization of

 can then be viewed as a typical classification problem with Ẑ as the
binary “response,” Xi as the “predictor,” Ŵi as the “weight,” and g is the “classification
rule.” By reformulating the problem of estimating the optimal treatment regime as a
classification problem, existing classification techniques can be used, for example,
classification and regression trees (CART, Brieman et al., 1984) or support vector machines
(SVM, Cortes and Vapnik, 1995), to minimize the classification error across a broad class of
regimes. Therefore, the parametric form of treatment regimes does not need to be pre-
specified and instead can be selected using classification techniques.

We comment that the method of Zhao et al. (2012) can be viewed as a special case within
our framework, with the contrast function at each of the observed data points estimated by
the IPWE estimator ĈIPWE(Xi). To see this, it is straightforward to show that, corresponding
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to the IPWE estimator of the contrast function, the class label Ẑi = I{ĈIPWE(Xi) > 0} is equal
to Ai as Y is assumed to be positive in Zhao at al. (2012), and that the weight is equal to

Thus, within our framework, the weighted misclassification error rate under treatment rule g
is

which is exactly the approximated weighted classification error used by Zhao et al. (2012).
Zhao et al. (2012) minimize the above weighted classification error using support vector
machines. The method of Zhao et al. (2012) is predicated on an IPWE estimator of the
expected outcome. However, the classification framework we propose is more general and
allows estimation of the contrast function by any method, e.g., the AIPWE, as well as the
data-driven selection of the class of treatment regimes using the estimated class labels and
observation weights.

In the proposed classification framework, we disentangle two critical steps: (i) constructing
a suitable estimator of the contrast function, and (ii) finding estimated optimal treatment
rules with an interpretable form using classification techniques. This allows both greater
flexibility in modeling the outcome or contrast functions and the ability to use any
classification technique to inform the class of treatment regimes. We comment that, in our
framework, for each subject there is a corresponding “weight” and “label,” which do not
depend on a treatment regime. Therefore, exploratory analysis and model diagnostics can be
used in the classification step by a skilled data-analyst to build high-quality scientifically
defensible models. This added benefit, however, is not available in the classification method
of Zhao et al. (2012) or the previous work on robust estimation by Zhang et al. (2012a).
Also, notice that with the classification approach the interpretability of the final decision
rule does not require a parsimonious estimator of the contrast function. Consequently, we
can use flexible models for the contrast function, e.g. support vector regression (Vapnik et
al., 1997), boosting (Freund and Schapire, 1997), etc., and still produce an interpretable
decision rule. In addition, the selection of the form of treatment regimes by classification
techniques in the proposed framework is directly targeting the problem of finding the
optimal treatment regime by minimizing weighted misclassification error. In the next
section, for illustration of the proposed methods, we use classification and regression trees
(CART) to produce interpretable decision rules.

4. Simulation Studies
To evaluate the performance of the proposed methods, we have carried out two simulation
studies, each involving 1000 Monte Carlo data sets. For definiteness, we use CART to
minimize the expected weighted misclassification; other methods developed in the area of
classification could also be used.

In the first scenario, for each data set, we generated n = 200, 500, and 1000 observations (Yi,
Ai, Xi), i = 1, …, n, where Xi = (Xi1, …, Xi5)T and Xi1, …, Xi5 were independent standard
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normal; given Xi, Ai was Bernoulli with success probability satisfying logit{pr(A = 1|X)} =
−0.1 + 0.5X1 + 0.5X2, logit(u) = log{u/(1 − u)}; and outcomes were generated as Yi = μ(Ai,
Xi) + (x0220A)i for ∊i standard normal and μ(A, X) = exp{2.0 + 0.25X1 + 0.25X2 − 0.25X5
− 0.5(a − gopt(X))2}, where gopt(X) = I(X1 > −0.545)I(X2 < 0.545).

For the proposed methods, to estimate the contrast function C(X), we considered the
regression estimator Ĉreg, the AIPWE estimator ĈAIPWE, and the IPWE estimator ĈIPWE.
We considered a working regression model μ(A, X; β) = β0 + β1X1 + β2X2 + β3X3 + β4X4
+ β5X5 + A(β6 + β7X1 + β8X2 + β9X3 + β10X4 + β11X5), which is misspecified, and
estimated β = (β1, …,β11) in the model using least squares. We considered both a correctly
specified propensity model π(X; γ) = expit(γ0 + γ1X1 + γ2X2), and an incorrectly specified
model π(X; γ) = γ; these models were fit using ML. Note that when the propensity model is
constant, Ĉreg and ĈG are equivalent, thus we omit ĈG.

Once we obtained the estimated contrast function for each subject, e.g., ĈAIPWE(Xi, Ai, Yi;
γ, β̂), we defined the binary responses, e.g., Ẑi = I{ĈAIPWE(Xi, Ai, Yiγ̂ β̂) > 0}, and the case
weights, e.g., Ŵi = |ĈAIPWE(Xi, Ai, Yi; γ̂,β̂)| for each subject, so that the classification
dataset becomes {Ẑi, Xi, Ŵi}. We input this new data set into the CART algorithm to find
the estimated optimal treatment regime. We used the R function rpart with default settings,
except that we set the weights as the estimated weight Ŵ.

For the second scenario, the data generation was the same as in the first scenario except that
gopt(X) = I(X1 > X2). Note that here, in contrast to the first scenario, the class of treatment
regimes with simple tree form does not contain gopt. Thus, this scenario examines whether
or not CART can find a regime close to the optimal treatment regime gopt.

We also estimated the optimal treatment regime using the usual regression (RG) method
which models μ(A, X; β) and the robust AIPWE-based method of Zhang et al. (2012a)
which involves modeling both μ(A, X; β) and propensities; models for μ(A, X; β) and
propensities are as those used in the proposed methods. In the method of Zhang et al.
(2012a), we consider optimizing over the class of treatment regimes defined by the outcome
regression model, i.e., η = {I(β6 + β7X1 + β8X2 + β9X3 + β10X4 + β11X5 > 0)}.

Results for the two scenarios are shown in Tables 1 and 2, respectively. Under scenario 1
(Table 1) where the true gopt is in the form of a tree, it is clear that the proposed method
using the AIPWE estimator of the contrast function, i.e., ĈAIPWE, achieves the best
performance overall, with expected outcomes under the chosen regimes very close to the
expectation under the true optimal regime. This good performance, we believe, is for two
reasons. First, ĈAIPWE estimates the contrast function using the AIPWE, which, as discussed
previously, is robust and efficient relative to competing methods. Second, it exploits a
flexible classification method for optimization, without having to prespecify the parametric
form of the class of regimes under consideration. All other methods lack either one or both
of these two features. We note that ĈIPWE has the worst performance of the considered
methods across all scenarios, which may be due to instability of the IPWE. Under scenario 2
(shown in Table 2) the true gopt is linear and not well-approximated by a tree with splits
along the coordinate axes; the method of Zhang et al. (2012a) has the best performance,
which is expected since the specified class η contains the true optimal regime.
Nevertheless, the proposed method using ĈAIPWE estimates regimes with near optimal
performance.

5. Application to the NSABP Trial
As an illustration, consider data from a trial conducted by the National Surgical Adjuvant
Breast and Bowel Project (NSABP) comparing L-phenylalanine mustard and 5-fluorouracil
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(PF) to PF plus tamoxifen (PFT) in patients with primary operable breast cancer and positive
nodes (Fisher et al., 1983). The study investigators found that heterogeneity in response to
PFT exists and the response depends on age (years) and progesterone receptor level (PR,
fmol). Gail & Simon (1985) analyzed these data using a test for qualitative interaction
between treatment and covariates. Their results support the regime proposed by Fisher et al.
(1983), which recommends that subjects with age < 50 and PR < 10 fmol should receive PF,
with all others receiving PFT.

We analyzed data from n = 1276 patients with complete information on age and PR.
Because the distribution of PR is very skewed, following Zhang et al. (2012a), we make the
log transformation, i.e., LPR = log(PR + 1). We denote age and LPR by X1 and X2,
respectively. The outcome of interest is binary with Y = 1 if a subject survived disease-free
to three years from baseline, and Y = 0 otherwise. Indicator variable A denotes treatment
with A = 1 if a subject was randomized to PFT and 0 if PF.

We implemented the proposed method using the AIPWE estimator of the contrast function
and CART for the classification step. The simple form of a decision tree yielded from
CART allow us to make direct comparison with the regime of Fisher et al. (1983) and Gail
& Simon (1985). To calculate ĈAIPWE(X, A, Y; γ̂,β̂), one needs to build both outcome
regression and propensity score models. For the outcome regression, we postulated the
logistic regression model

(4)

for E(Y|A, X) = pr(Y = 1|A, X), where expit(u) = eu/(1 + eu). The propensity score π(X) was

estimated directly by the sample proportion i.e.,  for all X, as this was a
randomized study. Constructing weights and labels based on the estimated contrasts, the

estimated optimal treatment regime given by CART is (age < 59.5 and PR
< 16.5), under which a patient should receive PF if she is younger than 59.5 and has PR less
than 16.5 and should receive PFT otherwise. Note that the estimated regime has the same
form as that of Fisher et al. (1983) and Gail & Simon (1985) but differs a bit in the cutoff
values. The estimated mean outcomes using (1) under the estimated regime is 0.681
(95%CI: 0.646,0.717).

Considering a restricted class of regimes with a form 1 − I(age < η1 and PR < η2), the robust
AIPWE-based method of Zhang et al. (2012a) yields an estimated regime given by 1 − I(age
< 60 and PR < 9), with estimated mean outcomes under the regime 0.686 (0.651,0.722). The
results are virtually identical as in our methods. However, in the method of Zhang et al.
(2012a), the form of regime has to be determined a priori, which can be challenging in
practice.

6. Discussion
We proposed a novel framework within which the optimal treatment regime at a single
decision point can be estimated using off-the-shelf classification methods. This framework
allows the separation of two critical steps. In the first step, estimated contrast functions are
constructed for each subject independently without the need to specify a class of treatment
regimes. Based on the estimated contrasts, a “weight” and a binary “response” are created
for each subject which are then used as input to a classification algorithm to identify the
optimal treatment regime by minimizing a weighted misclassfication error. This separation
creates flexibility and allows the use of existing classification algorithms on this new class
of problems. As in Zhang et al. (2012a), the class of treatment regimes does not have to be
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dictated by a regression model for the outcome and can therefore be more robust and
flexible.

The proposed framework is general enough to include both the work of Zhao et al. (2012),
and Zhang et al. (2012a) as special cases. Nonetheless, there are a number of interesting
directions for future research; we mention two that are of particular interest. The first is the
incorporation of variable selection methods both in the modeling of the contrast function
(say, through the outcome regression model) and the subsequent classification algorithm.
One approach would be to perform model selection separately for the estimation of the
contrast function and the estimation of the optimal treatment regime. However, in high
dimensions, the selected outcome regression model may have a significant impact on the
quality of the estimated optimal treatment regime, and it is preferable that the two model
selection steps be done in concert. A second direction is to extend this framework to include
the multiple decision setting. In this setting, personalized treatment is operationalized as
sequence of treatment regimes, one for each stage of clinical intervention, that adapt to the
patients evolving health status. Zhang et al. (2012b) derive an AIPWE method for estimating
an optimal sequence of treatment regimes but a general framework is lacking.
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