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Relationship between Complex and Simple Spike Activity
in Macaque Caudal Vermis during Three-Dimensional
Vestibular Stimulation

Tatyana Yakusheva,1 Pablo M. Blazquez,2 and Dora E. Angelaki1
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Lobules 10 and 9 in the caudal posterior vermis [also known as nodulus and uvula (NU)] are thought important for spatial orientation and
balance. Here, we characterize complex spike (CS) and simple spike (SS) activity in response to three-dimensional vestibular stimulation.
The strongest modulation was seen during translation (CS: 12.8 � 1.5, SS: 287.0 � 23.2 spikes/s/G, 0.5 Hz). Preferred directions tended to
cluster along the cardinal axes (lateral, fore-aft, vertical) for CSs and along the semicircular canal axes for SSs. Most notably, the preferred
directions for CS/SS pairs arising from the same Purkinje cells were rarely aligned. During 0.5 Hz pitch/roll tilt, only about a third of CSs
had significant modulation. Thus, most CSs correlated best with inertial rather than net linear acceleration. By comparison, all SSs were
selective for translation and ignored changes in spatial orientation relative to gravity. Like SSs, tilt modulation of CSs increased at lower
frequencies. CSs and SSs had similar response dynamics, responding to linear velocity during translation and angular position during tilt.
The most salient finding is that CSs did not always modulate out-of-phase with SSs. The CS/SS phase difference varied broadly among
Purkinje cells, yet for each cell it was precisely matched for the otolith-driven and canal-driven components of the response. These
findings illustrate a spatiotemporal mismatch between CS/SS pairs and provide the first comprehensive description of the macaque NU,
an important step toward understanding how CSs and SSs interact during complex movements and spatial disorientation.

Introduction
The vestibulo-cerebellum (flocculus, ventral paraflocculus, nod-
ulus, and uvula) is phylogenetically old and thus potentially im-
portant in providing insights into its highly conserved, exquisite
circuitry (Eccles et al., 1966; Eccles, 1967; Fox et al., 1967). His-
torically, much attention has focused on the role of the flocculus
and ventral paraflocculus in motor learning (for review, see du
Lac et al., 1995; Raymond et al., 1996; Blazquez et al., 2004;
Boyden et al., 2004), whereas the functions of lobules 10 (nodu-
lus) and 9 (uvula) of the caudal vermis, areas thought to be in-
volved in spatial orientation, are less well characterized.

Vestibular mossy fibers to the primate nodulus/uvula (NU)
arise from primary afferents ipsilaterally (Newlands et al., 2003),
and all but the lateral vestibular nucleus (VN) and the nucleus
prepositus hypoglossi bilaterally (Rubertone and Haines, 1981;
Brodal and Brodal, 1983, 1985; Carleton and Carpenter, 1983;
Belknap and McCrea, 1988). Climbing fibers originate mostly
from the contralateral inferior olive, primarily the caudal sub-
groups c (also known as �-nucleus) and d of the medial accessory
olive and dorsomedial cell column (Brodal and Kawamura,
1980; Brodal and Brodal, 1981, 1982; Whitworth et al., 1983).
Efferents from the primate NU project back to the ipsilateral vestib-

ular and fastigial nuclei (Dow, 1938; Haines, 1977; Carleton and
Carpenter, 1983).

Until very recently, the best stimulus for simple spike (SS) and
complex spike (CS) responses of NU Purkinje cells was thought
to be low-frequency tilt, based on studies in anesthetized rabbits
(Barmack and Shojaku, 1995; Fushiki and Barmack, 1997), mice
(Yakhnitsa and Barmack, 2006), and cats (Marini et al., 1976).
Using for the first time three-dimensional (3D) translation and
rotation stimuli at multiple frequencies, Yakusheva et al. (2007,
2008) have recently shown that the strongest and most likely
functionally relevant SS modulation is observed during transla-
tion. At mid/high frequencies, SSs selectively respond to 3D
translation and ignore changes in spatial orientation relative to
gravity. Thus, their activity reflects a solution to the otolith affer-
ent ambiguity (Angelaki et al., 1999, 2004; Merfeld et al., 1999),
which was shown to arise through convergence of spatially and
temporally matched signals from otoliths and semicircular ca-
nals, such that they cancel each other out during tilt (Yakusheva
et al., 2007). At low frequencies (less than �0.1 Hz), the conver-
gent canal/otolith signals are no longer temporally matched and
thus SSs cease to be selective for translation and respond to tilt as
well (Yakusheva et al., 2008).

Here, we characterize CS activity in response to 3D vestibular
stimulation. Special care was taken to simultaneously record both
CS and SS activity for a direct comparison of their response prop-
erties. We show that CS and SS responses share many similarities,
including a strong modulation during 3D translation and low-
frequency tilt. However, they also show important differences,
including distinct but remarkably consistent spatial and temporal
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misalignment. Preliminary aspects of this work have appeared in
abstract form (Yakusheva et al., 2009).

Materials and Methods
Animals and experimental setup
Three Maccaca mulatta and one Maccaca fascicularis monkeys were
chronically implanted with a circular molded, lightweight Delrin ring
that was anchored to the skull by titanium inverted T bolts, as well as with
scleral search coils to measure eye movements. A Delrin platform with
arrays of holes spaced 0.8 mm apart was attached inside the Delrin ring
using stereotaxic coordinates. This recording platform provided access to
lobules 9 and 10 of the cerebellum bilaterally. In two animals, the record-
ing platform was implanted at a double angle, i.e., it was slanted 10°
mediolaterally and 10° anteroposteriorally relative to the horizontal
plane; this was done to provide better access to the medial parts of the NU
close to the midline. The holes in the Delrin platform allowed insertion of
microelectrodes into the brain via transdural guide tubes. All surgical and
experimental procedures were approved by the Animal Care and Use
Committee at Washington University (St. Louis, MO).

Experimental setup and recording procedures were identical to those
used for the characterization of SS responses (Yakusheva et al., 2007,
2008). During experiments, animals were seated upright in a primate
chair that was secured inside one of two motion systems. One of the
systems consists of a three-axis rotator mounted on top of a 2 m linear
sled and allows rotations around three axes (pitch, roll, and yaw) and
translation along any direction in the horizontal plane (Acutronic). The
second system, which was used only for the characterization of the cells
during 3D translation (lateral, fore-aft, and vertical), consists of a six-
degrees-of-freedom motion platform (series 6DOF2000E, Moog). The
animals and the primate chair were positioned such that all three rota-
tional axes (yaw, pitch, and roll) crossed the center of the head and the
horizontal stereotaxic plane was aligned with the earth-horizontal plane.

Neural recording and experimental protocol
Epoxy-coated tungsten microeletrodes (4 – 6 M� impedance; FHC) were
inserted into 26 gauge guide tubes and advanced into the cerebellar
nodulus-uvula using a hydraulic microdrive. Raw signals from the elec-
trodes were amplified, filtered (0 –10 kHz with notch filter at 60 Hz),
digitized at 35 kHz (model 1401, Cambridge Electronics Design), and
stored on disk for off-line spike sorting (using Spike2 software, Cam-
bridge Electronics Design). The remaining analog signals (linear acceler-
ation, angular velocity, eye coil output) were filtered (200 Hz; 6 pole
Bessel filter) and digitized at a rate of 833.33 Hz (model 1401, 16 bit
resolution, Cambridge Electronics Design).

The nodulus and uvula were localized based on stereotaxic coordi-
nates and anatomical location with respect to the abducens, vestibular,
and fastigial nuclei. CSs and SSs were identified based on their character-
istic waveforms (Fig. 1 A). SSs had action potentials that lasted 1–2 ms
and spontaneous firing rates of �20 – 60 spikes/s. In contrast, CSs had
action potentials lasting 4 – 6 ms and spontaneous firing rates of 1–5
spikes/s. These values are similar to those reported previously (Barmack
and Shojaku, 1995; Yakhnitsa and Barmack, 2006).

SSs and CSs recorded simultaneously were sorted off-line using prin-
cipal component analysis, which clusters spikes by amplitude, duration,
and waveform (Spike2 software, Cambridge Electronics Design). When-
ever both simple and complex spikes were isolated, CS-triggered SS his-
tograms were used off-line to confirm pause (15–25 ms) in SS activity
after occurrence of a CS (Fig. 1 B). For all SS/CS comparisons we used
only the pairs that could be reliably identified as belonging to the same
Purkinje cell based on such CS-triggered SS histograms. In the remainder
of the article, we use the word “CS/SS pairs” to identify those CS/SS
recordings where the two types of spikes were shown to arise from the
same Purkinje cell.

While the electrode was lowered into the cerebellum, a search stimulus
consisting of combinations of 0.5 Hz translations and rotations about the
cardinal axes (lateral and fore-aft for translation; yaw, pitch, and roll for
rotation) was used. For initial experiments with the Acutronic sled sys-
tem, we recorded from a cell only when there was an audible SS modu-
lation during either lateral/fore-aft translation or yaw/pitch/roll rotation.

However, in later experiments (which include all experiments character-
izing 3D motion sensitivity on the motion platform), we recorded from
each well isolated complex spike, regardless of whether a simultaneously
recorded simple spike was modulated or not. Thus, data collected with
the 3D translation protocol represents a relatively unbiased sampling of
CS modulation in the nodulus/uvula.

The experimental protocol used here for the characterization of CS
responses is identical to that used by Yakusheva et al. (2007, 2008) to
characterize SS responses, with only one exception. To ensure adequate
CS characterization, each protocol was delivered for a minimum of 200 s
(typically 300 s). The protocols discussed in the following paragraphs
were delivered in total darkness once a CS was isolated.

Protocol 1. All Purkinje cells were first tested with 0.5 Hz (�20 cm; 0.2
G) sinusoidal translation along the lateral and fore-aft directions. Some
Purkinje cells were also tested during translation at different frequencies:
0.16 Hz (95.6 cm; 0.1 G) and 1 Hz (2.16 cm; 0.2 G). Translational motion
activates exclusively otolith afferents.

Protocol 2. When good cell isolation was maintained after completion
of the translation protocol, Purkinje cells were then tested during roll
and/or pitch tilt, first at 0.5 Hz (�11.3°) and later (if isolation was main-
tained) at other frequencies: 1 Hz (�5°), 0.25 Hz (�22.6°), 0.1 Hz
(�30°), 0.05 Hz (�30°), and 0.02 Hz (�30°). These stimuli change the
animal’s position relative to gravity and thus activate both otolith and
vertical semicircular canal afferents.

Protocol 3. A few Purkinje cells were also tested during yaw rotation at
0.5 Hz (31.4°/s; �10°). Yaw rotation from an upright orientation acti-
vates horizontal semicircular canal afferents.

Protocol 4. Purkinje cells were also characterized during combinations
of translation and tilt stimuli at 0.5 Hz (for details, see Angelaki et al.,
1999, 2004; Shaikh et al., 2005; Meng et al., 2007; Yakusheva et al., 2007).
These stimuli consisted of either pure translation (translation), pure tilt
(tilt), or combined translation and tilt (tilt minus translation and tilt plus
translation). The tilt stimulus was a 0.5 Hz sinusoidal pitch or roll rota-

Figure 1. Identification of complex spikes and simple spikes. A, Typical waveform of a CS
(left) and SS (right). CSs have multipeaked action potentials lasting �4 – 6 ms, while SSs show
a single-peaked and short-lasting action potential. B, CS-triggered histogram of SSs illustrates
that SSs pause for �15 ms following CSs (the record accumulates spikes over 45 trials, each trial
corresponding to one CS).
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tion from upright with a peak amplitude of 11.3 ° (36°/s). Because this
motion reorients the head relative to gravity, otolith afferents are stimu-
lated by a 0.5 Hz linear acceleration component in the horizontal plane
with a peak magnitude of �0.2 G (G � 9.81 m/s 2). The amplitude of the

translation stimulus was adjusted to match that
induced by the head tilt (0.2 G, 20 cm). During
combined tilt and translation stimulation,
inertial and gravitational acceleration compo-
nents combined either additively or subtrac-
tively, depending on the relative directions of
the two stimuli. As a result, the net gravitoin-
ertial acceleration activating the otolith recep-
tors in the horizontal plane either doubled (tilt
plus translation) or was nearly zero (tilt minus
translation), even though the actual translation
of the animal remained the same as that during
translation-only motion. Importantly, whereas
translation activates only otolith (but not ca-
nal) afferents, tilt minus translation activates
only canal (not otolith) afferents. Thus, these
two stimuli are particularly important in iso-
lating the two vestibular afferent contributions
to each response.

These stimuli allowed us to test whether CS
responses correlated best with net linear accel-
eration (i.e., the sum of translational plus grav-
itational acceleration), like otolith afferents
(Angelaki et al., 2004), or with translation, like
SS responses (Yakusheva et al., 2007). Note
that because during combined tilt minus trans-
lation stimuli net linear acceleration is zero,
otolith afferents are not activated. Thus, tilt
minus translation can be used to isolate and
characterize the properties of the vertical semi-
circular canal contribution to Purkinje cell fir-
ing rates (Angelaki et al., 2004; Yakusheva et al.,
2007, 2008). These protocols were delivered ei-
ther during lateral motion and roll tilt and/or
fore-aft motion and pitch tilt, whichever gave
the largest response modulation. Note that the
tilt plus translation protocol was delivered last,
and thus responses were only available for a
small number of cells.

Protocol 5. Finally, a subpopulation of Pur-
kinje cells was tested during 3D motion, us-
ing 0.5 Hz translation (�10 cm, 0.1 G)
delivered along the three cardinal directions:
lateral (left-right), fore-aft, and vertical (up-
down). Note that we recorded from all well
isolated SSs or CSs; thus, the percentage of
translation-responding NU Purkinje cells
could be determined.

Protocols 1– 4 were delivered using the Acu-
tronic three-axis rotator/sled. Protocol 5 was
delivered in the Moog motion platform. Note
that no attempt was made to systematically
characterize spontaneous activity. This is be-
cause most (in not all) NU Purkinje cells are
sensitive to static tilt, so really “spontaneous”
activity is not easily defined.

Histology
For two of the animals (D and F) we pressure
injected 0.2 �l of 2% horseradish peroxidase-
wheat germ agglutinin or 0.3 �l of 10% biotin-
ylated dextran amine into the deep cerebellar
nuclei using a 1.0 �l Hamilton syringe. After a
postinjection survival time of 48 h, the animals
were killed under sodium pentobarbital (50
mg/kg, i.v.) and perfused through the heart

with a buffered saline prewash followed by a solution containing 1.0%
paraformaldehyde and 1.25% glutaraldehyde in 0.1 M phosphate buffer
(PB), pH 7.2. The brain was blocked in the frontal plane and removed. It

Figure 2. Histological reconstruction of Purkinje cells. A–H, Drawings of coronal sections (80 �m thickness, shown every 12
slices) through the cerebellar nodulus (lobule 10, Cb10) and uvula (lobule 9, Cb9) of animal F, laid out from rostral (A) to caudal (H ).
Reconstruction of recordings from all animals were plotted over the coronal sections of animal F. Filled circles: CSs showing
significant vestibular modulation (n � 93); open circles: CSs without vestibular modulation (n � 22; note that because most
neurons were only tested during translation in the horizontal plane, some of the “nonresponsive” cells might in reality be “verti-
cally preferring neurons”). Data have been color coded according to the translation direction (lateral, fore-aft, or vertical) with the
largest response modulation. Red fill: CSs with maximum modulation during lateral motion (n�38); green fill: CSs with maximum
modulation during fore-aft motion (n � 35); cyan fill: CSs with maximum modulation during vertical motion (n � 19, note that
only a subpopulation of cells was tested during vertical translation). Finally, black-filled circles illustrate CSs with significant
modulation only to tilt, not translation (n � 1). Numbers on top of each panel correspond to distance from the abducens nucleus.
Anatomical structures and lobules were identified according to Madigan and Carpenter (1971) and Paxinos et al. (2000). FN,
Fastigial nuclei; IntA, interpositus anterior; IntP, interpositus posterior, Dent, dentate.
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was cryoprotected in 30% sucrose PB before
being frozen and sectioned at a thickness of 80
�m on a sliding microtome. For the recorded
neurons of the animals with histology, each cell
location was reconstructed according to the
relationship between its recorded position
(based on the predrilled recording grid hole
and micromanipulator depth reading) and the
location of the bilateral abducens and deep cer-
ebellar nuclei (which also allowed estimation
of distance from midline). For the remaining
two animals, where histology is not yet avail-
able, we followed the same procedure to place
the recorded cells into the sections drawn from
animal F (Fig. 2).

Data analysis and statistics
CS activity was isolated off-line using spike
sorting (Spike2 software, Cambridge Electron-
ics Design). Subsequently, data were imported
into Matlab (MathWorks) and analyzed simi-
larly as done previously for SSs (Yakusheva et
al., 2007, 2008). First, responses were binned
(40 bins per cycle) and subjected to a permuta-
tion analysis to characterize the statistical sig-
nificance of the response modulation ( p �
0.01) (for details, see Yakusheva et al., 2008).
Briefly, the 40 response bins were shuffled ran-
domly, thus destroying the systematic modula-
tion in the data but maintaining the inherent
variability of the responses. A “Fourier ratio”
(FR) was then defined as the ratio of the fun-
damental over the maximum of the first 20
harmonics as the randomization process was
repeated 1000 times. If the FR for the original
data exceeded that for 99% of the permuted
datasets, the temporal modulation was consid-
ered to be statistically significant ( p � 0.01).

Subsequently, neural activity was converted
into instantaneous firing rate (IFR), computed
as the inverse of interspike interval. We then stacked responses to re-
peated stimulus cycles into a single IFR cycle. Gain and phase were then
calculated by fitting both neural response and stimulus with a sine
function (first and second harmonics and DC offset) using a nonlin-
ear least-squares algorithm (Levenberg–Marquardt methods). Mod-
ulation amplitude was then measured to be half the peak-to-trough
sinusoidal fit. Neuronal gain for translation was computed as the ratio of
response modulation amplitude over the stimulus (in units of spikes/s/G,
where G � 9.81 m/s2); phase was expressed relative to linear acceleration.
For rotation, gain and phase were expressed relative to angular velocity (e.g.,
gain is in units of spikes/s/degree/s). Note that because IFRs from multiple
cycles were stacked, many data points appear on each of these single cycle
IFRs despite low CS firing rates (e.g., Fig. 3A,B, right columns).

The neuronal gain and phase during translation and tilt from two
directions (i.e., lateral and/or fore-aft motion or pitch and roll tilt) were
fitted with a two-dimensional (2D) spatiotemporal model (Angelaki, 1991,
1992), which computes the preferred direction in the horizontal plane
together with the response gain and phase along that direction. For the
subpopulation of cells tested with 3D translation, preferred direction was
defined in spherical coordinates as follows. First, the preferred direction
was computed in the horizontal plane (thus defining the azimuth of
the 3D vector). Subsequently, the vertical gain and phase, along with the
preferred direction in the horizontal plane, were used to calculated the
elevation of the 3D preferred direction (for details, see Yakusheva et al.,
2008; Liu and Angelaki, 2009).

We quantified whether a measured distribution was significantly dif-
ferent from a uniform distribution by performing a resampling analysis
as follows: (1) we calculated the sum-squared error (across bins) between
the measured distribution and an ideal uniform distribution containing

the same number of observations; (2) we also calculated the sum-squared
error between a random distribution that was created by drawing the
same number of data points from a uniform distribution and the ideal
uniform distribution; (3) this second step was repeated 1000 times to
generate a distribution of sum-squared error values that represent ran-
dom deviations from an ideal uniform distribution; (4) if the sum-
squared error for the experimentally measured distribution lay outside
the 95% confidence interval of values from the randomized distribu-
tions, then the measured distribution was considered to be significantly
different from uniform ( p � 0.05). For nonuniform distributions, a
modality test was also performed to further test whether they are unimo-
dal or bimodal (for details, see Takahashi et al., 2007). The test generated
two p values, with the first one ( puni) for the test of unimodality and the
second one ( pbi) for the test of bimodality.

Finally, to determine whether the CS of each Purkinje cell correlated
best with translation or net linear acceleration, linear regression analysis

Figure 3. A, B, Examples of CS and SS responses from three NU Purkinje cells during lateral (A) and fore-aft (B) translation. Data
are shown either as raw spikes (left, bottom traces), isolated CSs (left, top traces), or instantaneous firing rate for SSs (left, middle
traces). Right: Responses were analyzed by stacked instantaneous firing rates from multiple cycles and fitting with a sinusoidal
function (gray lines). Peak modulation amplitudes for CSs were as follows: A, 3.3 spikes/s (cell 1), 0.19 spikes/s (cell 2), and 1.9
spikes/s (cell 3); B, 0.1 spikes/s (cell 1), 1.5 spikes/s (cell 2), and 2.2 spikes/s (cell 3). Note that multiple dots appear on these IFR
plots despite low CS firing rates (see spikes for the unfolded data on the left). CSs modulate during lateral motion for cell 1, during
fore-aft motion for cell 2, and during both motion directions for cell 3. SSs modulate significantly during both lateral and fore-aft
translation in all three Purkinje cells. Hacc is linear acceleration stimulus.

Table 1. Percentage of significant CS modulation encountered for each stimulus
condition

Experimental
protocol

Lateral motion/Roll
tilt rotation

Fore-aft motion/Pitch
tilt rotation

Vertical
motion

Translation
0.5 Hz 52/115 (45%) 55/115 (48%) 21/57 (37%)

Tilt rotation
0.5 Hz 13/39 (33%) 17/50 (34%)
0.05 Hz 10/23 (43%) 14/23 (61%)

Tilt-translation
0.5 Hz 12/36 (33%) 17/40 (42%)
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was used to simultaneously fit the cumulative cycles of cell modulation
during each of the translation, tilt, and combined stimuli with net
acceleration- and translation-coding models (for details, see Angelaki et
al., 2004; Green et al., 2005). Briefly, these models assume that neural
firing rate modulation is due either to the net acceleration or to the
translational acceleration component. How well each of these two mod-
els fitted the data was evaluated using a partial correlation analysis. To
remove the influence of correlations between the predictions themselves,
we calculated partial correlation coefficients, which were subsequently
converted to z-scores using Fisher’s r-to-z transform to facilitate the
interpretation of statistical significance independently of the number of
data points (for further details of this analysis, see Angelaki et al., 2004;
Green et al., 2005; Yakusheva et al., 2007). The advantage of this com-

parison is that when z-scores for one model are
plotted versus the respective z-scores for the
other model, the plot can be easily separated
into regions in which data points can be distin-
guished as being better correlated with one
model as compared with the other at a partic-
ular level of significance. Only CS responses
obtained for all four stimulus combinations
(translation, tilt, tilt minus translation, and tilt
plus translation) were used for this analysis.

Results
We recorded complex spike activity from
115 Purkinje cells in the cerebellar nodu-
lus and uvula (lobules 10 and 9, respec-
tively) of four monkeys (animal V: 63
cells; animal W: 28 cells; animal F: 10 cells;
and animal D: 14 cells). Of these, both SSs
and CSs were recorded from all but three
cells for which only CSs (but not SSs) were
isolated. Among these 112 simultaneously
recorded CS/SSs, 81 pairs were confirmed
to arise from the same Purkinje cell, by
observing a pause of 10 –20 ms in SS activ-
ity following each CS (Fig. 1B) (Granit
and Phillips, 1956); only this group of cells
for which CS-triggered silencing of the si-
multaneously recorded SS could be con-
firmed were used in CS/SS comparisons.
Note that although the SS response prop-
erties of a smaller population of Purkinje
cells have been presented by Yakusheva et
al. (2007, 2008), basic findings are replot-
ted in Figures 4, 5, and 12 whenever rele-
vant for comparisons with CS responses.

Recording tracks were later con-
firmed histologically in animals F and D
(Yakusheva et al. 2007, their supplemental
Figs. 1, 2). Figure 2 plots all recorded CSs
projected onto coronal sections through
the cerebellar nodulus and uvula of ani-
mal F. Note that recordings extended into
lobules 9 and 10, including the ventral (fo-
lia 9d and 9c) and dorsal (folia 9a and 9b)
uvula (Fig. 2). The properties of CSs de-
scribed here were characteristic of both
nodulus and ventral/dorsal uvula, and we
found little difference in vestibular re-
sponses within folia 9a, 9b, 9c, 9d, and 10
(see Discussion). There was no evidence
of topography for either response type or
translation preferred direction within the
nodulus and uvula. We started by com-

paring the properties of CS and SS responses during translation,
which is the stimulus we tested first upon isolation of a complex
spike.

CS responses during translation: 2D spatial properties
Of 115 well isolated CSs tested during 0.5 Hz translation in the
horizontal plane, 52 (45%) and 55 (48%) modulated significantly
during lateral and/or fore-aft motion, respectively (Table 1). Ex-
amples of simultaneously recorded CS and SS responses during
lateral and fore-aft translation are shown for three Purkinje cells
in Figure 3, A and B. Responses from four cycles of 0.5 Hz trans-

Figure 4. Spatial organization of CSs and SSs during translation (0.5 Hz) in the horizontal plane. A, B, Distributions of response
amplitudes [from sinusoidal fit; units are spikes per second (sp/s)] along the maximum response direction for CSs (n � 85) and SSs
(n � 269), respectively. C, Polar plot illustrating preferred direction gain (in units of spikes/s/G) and orientation (see drawing,
upper left). Each data point corresponds to one Purkinje cell (CS) that shows significant modulation ( p � 0.01) during at least one
direction (lateral or fore-aft, n � 85). Note that translation responses are not lateralized in the NU; i.e., there is no obvious
difference in the preferred direction distribution for cells recorded in the right (filled symbols) versus left (open symbols) NU.
D, Stacked bar plot of the distributions of translation preferred directions for both CSs (n � 85, filled bars) and SSs (n � 269,
hatched bars). E, Distribution of preferred direction difference between CSs and SSs, ��(CS-SS), 2D preferred direction� (computed
only for the CS/SS pairs that were confirmed to arise from the same Purkinje cell; n � 61). F, Distribution of CS (filled bars) and SS
(hatched bars) response phase during 0.5 Hz sinusoidal translation along the preferred direction (n � 85).
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lation are illustrated as raw CSs and SSs
(left column, bottom traces), as well as
separately as discriminated CSs (Fig.
3A,B, left columns, top traces marked
“CS”) and instantaneous firing rate for
SSs (Fig. 3A,B, left columns, middle
traces marked “SS”).

Instantaneous firing rates from multi-
ple cycles were overlaid and fitted with a
sinusoidal function (Fig. 3A,B, right col-
umns, top: CSs, bottom: SSs). Please note
that because IFRs from multiple cycles
were stacked, many data points appear on
each of these single-cycle IFRs. As re-
ported previously (Bauswein et al., 1983;
Kano et al., 1991; Barmack and Shojaku,
1995; Yakhnitsa and Barmack, 2006), CSs
had low spontaneous firing rates and were
typically driven to modulation ampli-
tudes of 0.23– 6.7 spikes/s (mean � SEM:
1.85 � 0.15, n � 85) as illustrated in Fig-
ure 4A, which plots the distribution of CS
response amplitudes along the maximum
response direction from sinusoidal fits
such as those shown in Figure 3 (gray
lines). This range is comparable to the
modulation previously reported during
low-frequency tilt in anesthetized rabbits
(Barmack, 2003). The modulation ampli-
tude for SSs was larger (Fig. 4B), ranging
from 10 to 183 spikes/s, with an average of
54.1 � 2.4 (�SEM; n � 269).

In addition to response modulation
amplitude, other differences between CSs
and SSs can already be seen in these repre-
sentative examples. SSs typically modulated
during both lateral and fore-aft transla-
tion; in contrast, most CSs (63/115) re-
sponded only to translation along one of
the two motion directions (e.g., cell 1: lateral motion; cell 2: fore-
aft motion). Only a few (22/115) CSs had significant modulation
during both lateral and fore-aft translation (e.g., cell 3). As shown
later, these representative examples reflect an overall tendency of
CS responses to prefer cardinal (i.e., lateral, fore-aft, or vertical)
movement directions.

For 85 (74%) CSs that modulated significantly along either
lateral or/and fore-aft translation at 0.5 Hz, the preferred direc-
tion in the horizontal plane was computed using a spatiotempo-
ral model (Angelaki, 1991, 1992; Angelaki and Dickman, 2000)
(see Materials and Methods). The resulting polar plot showing
both maximum response gain and preferred direction is shown in
Figure 4C. Here, each dot corresponds to a cell’s CS response,
with the distance to the origin illustrating response gain (in units
of spikes/s/G), and its angular location illustrating the preferred
direction (Fig. 4C, drawing, upper left). Translation response
gains along the horizontal plane (2D) preferred direction aver-
aged 9.8 � 0.8 spikes/s/G (�SE).

The preferred directions of CSs were not lateralized, such that
both leftward and rightward preferred directions were encoun-
tered in the right and left NU (Fig. 4C, filled vs open circles).
There was, however, a tendency for CS preferred directions to
cluster along the cardinal axes. This was quantified in Figure 4D
(filled bars), which plots the histogram of preferred directions in

the range [0°, 180°], where 0°/180° and 90° correspond to for-
ward/backward and lateral motion directions, respectively. The
distribution was not uniform (uniformity test, p � 0.016) and
appeared to have peaks around the cardinal axes, 0°/180° and 90°,
although the distribution was not significantly bimodal (modal-
ity test, puni � 0.09, pbi � 0.95). The distribution of the preferred
directions for CSs contrasts that for SSs (Fig. 4D, hatched bars),
which were clustered along oblique axes (45°/135°) (Yakusheva et
al. 2008).

To further emphasize the difference in preferred transla-
tion direction for CSs and SSs, the histogram of the absolute
direction difference between simultaneously recorded SSs and
CSs (confirmed to be from the same Purkinje cell, as in Fig.
1 B) is illustrated in Figure 4 E. At the level of individual Pur-
kinje cells, the preferred direction difference between CS and
SS responses to translation tend to cluster around 45° and 135°
(n � 61; due to the small sample size, the distribution was not
different from uniform; p � 0.08). For both CSs and SSs, the
distribution of translation response phase (expressed relative
to linear acceleration) was broad (Fig. 4 F) (Yakusheva et al.,
2007, 2008). We will compare other properties of CSs and SSs
(e.g., gain and phase) later in this section. First, we will quan-
tify the relationship between CS and SS preferred directions
during 3D translation.

Figure 5. CS and SS responses during 3D translation. A, Example of CS and SS responses (overlaid cycles with sinusoidal fit) of a
NU Purkinje cell during lateral, fore-aft, and vertical motion (0.5 Hz). CS and SS modulation was larger for vertical than fore-aft and
lateral motion. B, C, Preferred directions for CSs (n � 48) and SSs (n � 96) during 3D translation are shown both as scatter plots
and as marginal distributions. Each circle in the scatter plot corresponds to the [azimuth, elevation] coordinates of the 3D preferred
direction computed for each CS or SS showing significant modulation along at least one axis of translation (lateral, fore-aft,
vertical). Data are plotted in spherical coordinates using the Lambert scale for elevation (Gu et al., 2006) and color-coded as follows:
data with �elevation� �45° are shown in red (CS) or blue (SS); those with �elevation� �45° are shown black. Arrows in the scatter
plot point to the CS and SS response from the Purkinje cell shown in A (note that the SS plot includes more cells than previously
shown by Yakusheva et al., 2008, thus allowing for easier evaluation of the trends in the data).
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CS responses during translation: 3D spatial properties
A subpopulation (57) of well isolated CSs was tested during 3D
translation. CS and SS responses from an example Purkinje cell
that preferred vertical over horizontal translation are shown in
Figure 5A. Twenty-one (37%) CSs had significant modulation
( p � 0.01, permutation test; see Materials and Methods) during
vertical translation (Table 1), and 48 (84%) CSs showed signifi-
cant modulation along at least one of the lateral, fore-aft, or
vertical motion directions. Most (31/48, 65%) responding CSs
modulated during translation along only one of the three cardinal
directions. Importantly, only nine (16%) CSs were unresponsive
to translation when tested in 3D.

From a total of 48 CS/SS pairs (verified to arise from the same
Purkinje cell) (Fig. 1B), 38 (79%) CSs and 46 (96%) SSs modu-
lated significantly for at least one translation direction. For 36
(75%) pairs, there was a significant modulation of both SSs
and CSs, whereas only SS modulation was seen in 10 cells and
only CS modulation was seen in 2 Purkinje cells. Thus, 0.5 Hz
translation stimuli were very effective in eliciting both SS and
CS modulation.

For cells with significant modulation along at least one stim-
ulus direction, the 3D preferred direction gain, phase, and orien-
tation were computed using a spatiotemporal model (Angelaki et
al., 1992; Liu and Angelaki, 2009) (see Materials and Methods).
Translation response gains along the 3D preferred direction (at
0.5 Hz and computed only for responsive cells) averaged 12.8 �
1.5 (�SE) spikes/s/G (CS) and 287.0 � 23.2 spikes/s/G (SS). The
orientation of the 3D preferred direction was defined using
spherical coordinates, i.e., each preferred direction was described
by two angles, azimuth and elevation. These angles are illus-
trated in Figure 5B (CS) and 5C (SS), both as scatter plots
(elevation vs azimuth) and as marginal distributions. Each
data point in the plot corresponds to the preferred direction of
one Purkinje cell, defined by a set of two angles, azimuth and
elevation. For example, when [azimuth, elevation] � [0°,0°],
the preferred direction points forward, [90°,0°] is leftward,
whereas elevation angles of 90° and �90° illustrate upward
and downward preferring directions.

For CS preferred directions, the distribution of elevation an-
gles was not uniform (uniformity test, p � 0.003), with some
Purkinje cells preferring vertical directions and others preferring
horizontal directions (Fig. 5B). A similar but less dramatic orga-
nization also characterized the distribution of elevation angles for
SSs (Fig. 5C) (uniformity test, p � 0.027). For illustrative pur-
poses, cells with �elevation� �45° have been labeled red (CS) or
blue (SS) to distinguish them from horizontally tuned cells (black
dots) in subsequent figures.

For the 36 CS/SS pairs with significant 3D translation re-
sponses of both CSs and SSs, the absolute angular difference in
3D preferred directions (��(CS-SS), 3D preferred direction�) has
been compared with the corresponding preferred direction dif-
ference in 2D (i.e., the horizontal plane, ��(CS-SS), 2D preferred
direction�) in the scatter plot of Figure 6A. For Purkinje cells
whose SS and CS preferred directions both lie within 45° of the
horizontal plane, data points fall along the unity-slope diagonal
(Fig. 6A, black dots). This is not surprising, since for horizontally
tuned cells, ��(CS-SS), 3D preferred direction� 	 ��(CS-SS), 2D
preferred direction�. As illustrated in Figure 6A (black bars), mar-
ginal distributions tended to cluster around 45° and 135° (see also
Fig. 4E).

However, when only one of the preferred directions has �ele-
vation� �45° and the other has �elevation� �45° (i.e., when one
preferred direction is near vertical but the other is near horizon-

tal), the ��(CS-SS), 3D preferred direction� is �90° (Fig. 6A,
right, red and blue marginal histograms), whereas the difference
in the vectors’ projection onto the horizontal plane, ��(CS-SS),
2D preferred direction�, remains clustered around 45° and 135°
(Fig. 6A, top, red and blue marginal histograms). This occurs
because the preferred directions for CSs and SSs appear to cluster
along 3D orthogonal axes, of which the vertical axis is common,
but the horizontal axes are rotated relative to each other by 45°
(Fig. 6B).

Thus, in summary, CSs respond to 3D translation, as do SSs.
However, CS preferred directions tend to be organized in the
cardinal 3D coordinate system (i.e., vertical, lateral, fore-aft) (Fig.
6B, magenta arrows), whereas SS preferred directions use the
semicircular canal coordinate system (i.e., vertical and oblique
directions in the horizontal plane) (Fig. 6B, green arrows). Note
also that preferred directions for CS and SS responses from a
single Purkinje cell are rarely aligned in 3D. For approximately
half of Purkinje cells (19/36), one (either CS or SS) prefers vertical

Figure 6. Preferred direction difference between CS and SS during translation. A, Relation-
ship between the 3D and 2D (horizontal plane) CS-SS preferred direction difference, where the
��(CS-SS) 3D preferred direction� is plotted versus ��(CS-SS) 2D preferred direction�. Each data
point corresponds to a NU Purkinje cell with significant translation responses for both CSs and
SSs (n � 36), color coded according to whether either CS (red) or SS (blue) has 3D preferred
direction with �elevation��45° (as in Fig. 5B) (cells for which both CSs and SSs have �elevation�
�45° are shown in mixed red/blue). Purkinje cells for which both CSs and SSs have �elevation�
�45° are shown as black dots. Arrow marks the cell of Figure 5A. Histograms along the abscissa
and ordinate show marginal distributions plotted separately for cells with either one �elevation�
�45° (red and blue) and both �elevation� �45° (black) or both �elevation� �45° (mixed
red/blue). B, Drawing summarizing the coordinate systems for CS (magenta) and SS (green)
preferred directions.
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translation and the other horizontal
translation (Fig. 6A, red and blue sym-
bols/bars). For another 13/36 cells, both
CSs and SSs have preferred directions
close to the horizontal plane, 45/135°
apart from each other (Fig. 6A, black sym-
bols/bars). Finally, only four Purkinje
cells have �elevation� �45° for both SSs
and CSs (Fig. 6A, mixed red/blue dots and
bars). This spatial misalignment (by either
45° or 90°) of CS/SS pairs is striking (see
Discussion).

CS responses during
translation: dynamics
How CS modulation changes as a func-
tion of frequency is illustrated with an
example cell in Figure 7A. Note that re-
sponses were characterized during either
lateral or fore-aft motion, to whichever
stimulus the cell responded best. For both
CSs and SSs, modulation decreased as fre-
quency was increased (Fig. 7A). CS gain
and phase, plotted as a function of fre-
quency, have been summarized for 13
Purkinje cells in Figure 7, B and C, respec-
tively. CS gains decreased with increasing
frequency (ANCOVA, F(2,35) � 12.4, p �
0.001), but phase was independent of frequency (ANCOVA,
F(2,35) � 1.5, p � 0.18).

To directly compare the dynamics of CSs and SSs during
translation, we first normalized gains to 1 at 0.5 Hz and then
computed averages as a function of frequency (Fig. 7D). Gain
versus frequency slopes were larger for CSs (�1.24, CI � [�1.68,
�0.81]) than for SSs (�0.70, CI � [�0.98, �0.41]) (where CI is
confidence interval), although the difference was not significant
(overlapping 95% confidence intervals). These near-unity slopes
in log-log frequency plots suggest a temporal integration (Ogata,
1970), i.e., responses appear to follow linear velocity rather than
linear acceleration. Indeed, when we recalculated gains rela-
tive to linear velocity, CS gains were independent of frequency
(ANCOVA, F(2,35) � 0.14, p � 0.86) and the slope was not sig-
nificantly different from zero (�0.20, CI � [�0.68, 0.19]). By
comparison, the velocity gains of SSs show a significant increase
with frequency (ANCOVA, F(2,35) � 5.3, p � 0.009), with a slope
of 0.56 (CI � [0.23, 0.78]) (Yakusheva et al., 2008). Thus, al-
though similar, CS/SS response dynamics may not be identical
because CSs follow linear velocity, whereas SSs respond to com-
binations of linear velocity and linear acceleration.

CS responses during pitch/roll rotation (tilt)
After the translation stimuli, and as long as isolation was main-
tained, Purkinje cells were also tested during pitch and/or roll tilt,
first at 0.5 Hz, then at 0.05 Hz, and subsequently at additional
frequencies (see Materials and Methods). Example SS/CS re-
sponses during pitch and roll tilt at 0.5 and 0.05 Hz are illustrated
in Figure 8A. Note that preferred directions are again not aligned.
This particular cell preferred roll with its CS response and pitch
with its SS response. Also note that the modulation magnitude of
both SSs and CSs increased at 0.05 Hz as compared with 0.5 Hz.

About a third of CSs modulated significantly during 0.5 Hz
tilt, and this percentage nearly doubled at 0.05 Hz (Table 1); of 23
CSs tested with 0.05 Hz roll/pitch rotations, 17 (74%) modulated

significantly for either pitch and/or roll. The increase in gain with
decreasing frequency was a consistent finding for all Purkinje
cells, as illustrated in Figure 8B, which summarize CS gain as a
function of frequency. The dependence of gain on frequency was
significant (ANCOVA, F(4,89) � 8.7, p � 0.001), whereas, as evident
in Figure 8C, phase was independent of frequency (ANCOVA, F(4,89) �
0.4, p � 0.8).

Average CS and SS dynamics during tilt were similar (Fig.
8D), with slopes of �1.09 (CI � [�1.30, �0.87]) and �0.82
(CI � [�0.94, �0.70]) for CSs and SSs, respectively. For a given
peak velocity, the monkey moved much more during 0.05 Hz tilt
than during 0.5 Hz tilt. Thus, when expressed relative to tilt po-
sition, gains became independent of frequency (CS: ANCOVA,
F(4,100) � 0.21, p � 0.88 and SS: F(4,132) � 0.45, p � 0.76; data not
shown) (but see Yakusheva et al., 2008). Thus, both CS and SS
responses follow head position during tilt.

CS preferred directions during 0.5 Hz, 0.05 Hz, and 0.02 Hz
tilt (computed using the spatiotemporal model; see Materials and
Methods) are shown as polar plots in Figure 9A and as histogram
distributions in Figure 9, B (0.5 Hz) and C (0.05 and 0.02 Hz).
Although the data sample of tilt-responding cells is too small for
statistical comparisons, there is some trend for 0.5 Hz preferred
directions to cluster around roll (90°/270°) and low frequency
(0.05 and 0.02 Hz) preferred directions to cluster around pitch
(0°/180°). Such potential change in tilt preferred direction needs
to be scrutinized in future studies.

CS responses during combinations of tilt and translation
Using combinations of 0.5 Hz tilt and translation stimuli, we have
previously shown that SS responses correlate best with transla-
tion rather than with net linear acceleration (i.e., the sum of
tilt-related gravitational and translational accelerations, which is
the stimulus activating otolith afferents) (Yakusheva et al., 2007,
2008). To test whether CS responses also selectively correlate with
translation and ignore changes in the orientation of the head

Figure 7. CS response dynamics during translation. A, Examples of CS and SS responses during lateral translation at 0.16, 0.5,
and 1 Hz. B, C, Neuronal gain (B) and phase (C) (expressed relative to linear acceleration) are plotted as a function of frequency for
individual CS responses (n � 13). D, Normalized average gains are shown for both CSs (black solid line) and SSs (gray dashed line).
Gains have been normalized by dividing each gain value by the cell’s 0.5 Hz gain before the calculation of the average.
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relative to gravity during tilt, we recorded CS responses during
tilt, translation, and combined tilt/translation at 0.5 Hz (tilt mi-
nus translation and tilt plus translation; see Materials and Meth-
ods) (Angelaki et al., 2004), as shown with the schematics of

Figure 10 (top). Because peak tilt ampli-
tude is such that the horizontal linear ac-
celeration due to gravity is the same as that
during translation, when both translation
and tilt are presented together, the net
horizontal acceleration is either zeroed
(tilt minus translation) or doubled (0.4 G,
tilt plus translation, see Materials and
Methods).

Representative examples of simulta-
neously recorded SS and CS responses are
shown in Figure 10 for two Purkinje cells.
Although net acceleration was the same
during translation and tilt, both CS and SS
responses of Purkinje cell 1 modulated
more strongly during translation than
during tilt (compare peak-to-trough si-
nusoidal modulation of firing rate). When
translation and tilt were presented simul-

taneously, such that net horizontal linear acceleration was either
zero (tilt minus translation) or double (tilt plus translation),
CS/SS responses for cell 1 appeared similar to those during trans-

Figure 8. CS response dynamics during tilt. A, Examples of CS and SS responses from the same Purkinje cells during pitch (top) and roll (bottom) at 0.5 (left) and 0.05 Hz (right). Data are shown
as raw spikes, discriminated CSs, or instantaneous firing rate (see Fig. 3 legend). B and C, CS gain (B) and phase (C) (expressed relative to angular velocity) are plotted as a function of frequency (n �
19). D, Normalized gains are shown for both CSs (black solid line) and SSs (gray dashed line). Gains have been normalized by dividing each gain value by the cell’s 0.5 Hz gain before the calculation
of the average.

Figure 9. Spatial properties of CS responses during tilt. A, Polar plot illustrating preferred direction gain (in units of spikes/s/
degree/s) and orientation (see drawings). Each data point corresponds to one Purkinje cell (CS) that shows significant modulation
( p � 0.01) during at least one direction (pitch or roll) at 0.5 Hz (black-filled circles), 0.05 Hz (gray-filled circles), and 0.02 Hz (open
circles). B, C, Distribution of tilt preferred directions at 0.5 Hz (black filled bars in B, n � 22), as well as 0.05 Hz (gray bars in C, n �
17) and 0.02 Hz (hatched bars in C, n � 7).
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lation. Thus, cell 1, typical of all SS responses in the NU (Yakusheva
et al., 2007), had both CS and SS responses following translation
rather than net linear acceleration. Results differed for the CS
responses of cell 2. Unlike the SS modulation, which was selective
for translation, the CS responses of cell 2 followed net accelera-
tion; i.e., responses were similar (although small) for translation
and tilt, negligible during tilt minus translation and twice as big
during tilt plus translation.

Results are summarized in Figure 11, where CS response am-
plitude and phase during tilt, tilt minus translation, and tilt plus
translation have been plotted versus the respective responses dur-
ing translation. If responses follow net acceleration, data should
fall along the gray dashed lines. In contrast, if responses follow
translation, data should fall along the solid black lines. Data are
mixed, with a few CSs falling along the gray dashed lines (indi-
cating net acceleration-like responses) and others along the solid
black lines (indicating translation-coding responses). Impor-
tantly, most CS responses modulated during tilt minus transla-
tion, although primary otolith afferents do not respond to this
stimulus (because the net horizontal plane linear acceleration is
zero). Across the population, CS responses to both tilt and tilt

minus translation were significantly smaller compared with those
during translation [Wilcoxon rank test: p � 0.001 (Fig. 11A), p �
0.002 (Fig. 11B)] but similar during tilt plus translation and
translation [Wilcoxon rank test, p � 0.53 (Fig. 11C)]. Similarly
for the response phase, some data points fell along the predictions
of net acceleration (gray dashed lines), but others fell along the
predictions of translation coding (Fig. 11D–F, solid black lines).

To quantify these observations, multiple linear regression
analysis was used in n � 15 cells that were tested under all four
stimulus conditions to compute partial correlation coefficients of
how well each CS response to translation, tilt, tilt minus transla-
tion, and tilt plus translation could be predicted by net accelera-
tion or translation-coding models, e.g., how well the modulation
of the cells in Figure 10 could be described by the pattern of
modulation of Hacc (head translational acceleration), illustrating
the translation model, and Net Acc, illustrating the net accelera-
tion model (for details, see Green et al., 2005; Yakusheva et al.,
2007). To simplify plotting and visual interpretation, the vari-
ances of these partial correlation coefficients were normalized using
Fisher’s r-to-z transform (Angelaki et al., 2004). Figure 12 shows
the resulting scatter plot, where dashed lines mark the 0.01 level

Figure 10. Examples of CS and SS responses from two NU Purkinje cells during translation, tilt, tilt minus translation, and tilt plus translation. For cell 1, both SS and CS responses correlate best
with translation (same modulation during translation, tilt minus translation, and tilt plus translation and no response during tilt). For cell 2, CS responses correlate best with net linear acceleration, whereas SS
responses are selective for translation. Bottom traces illustrate stimuli: Hvel, tilt angular velocity; Hacc, head translational acceleration; and Net acc, net linear (gravitoinertial) acceleration.
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of significance (which is a straight line because of the z-transform).
Data points that fall above the top dashed line illustrate Purkinje cells
whose responses fit better with the translation model, whereas data
points below the lower dashed line illustrate responses that fit better
with the net acceleration model (data points between the two dashed
lines correspond to responses for which a best-fit model could not be
distinguished at a significance level of p � 0.01.

In addition to CS data (black circles), Fig. 12 also plots SS data
from Yakusheva et al. (2007) for comparison (gray circles). The

majority (11/15, 2 cells in the nodulus, 6
cells in the ventral uvula, and 3 cells in the
dorsal uvula) fall in the upper-left quad-
rant, illustrating that their firing rates
were better correlated with translation;
the remaining 4/15 CS responses (2 in the
ventral uvula and 2 in the dorsal uvula)
were better correlated with net acceler-
ation (Fig. 12, lower-right quadrant).
Thus, the distribution of CS responses is
similar to that of SS responses in that most
correlate best with translation than with
net linear acceleration. Still, CS responses
are distinct from SS responses in that
about a quarter of them correlate best
with net linear acceleration. In contrast,
none of the SS responses we encoun-
tered correlated best with net linear ac-
celeration. Importantly, even for those
four CS responses that correlated best
with net linear acceleration, responses
were generally weak and modulation to
tilt was not significant (permutation test,
see Materials and Methods). Because the
correlation analysis uses the responses to
all four stimuli simultaneously, the high-
est correlation with net linear acceleration
came about because of the following: (1)
smaller responses during tilt minus trans-
lation than translation; and (2) larger re-

sponses during tilt plus translation than tilt and translation (as
with the example cell 2 in Fig. 10).

CS responses during yaw rotation
Yaw responsiveness (0.5 Hz) was also tested in a subpopulation
(n � 15) of cells, as illustrated with an example in Figure 13A.
None of the SSs showed a significant modulation during yaw
rotation (see also Yakusheva et al., 2007, 2008). In contrast to SSs,
CS yaw modulation was significant in 4/15 (27%) Purkinje cells,
as illustrated with the example of Figure 13A, and with the sum-
mary data of Figure 13B. One of those yaw-responding cells was
located in the ventral uvula, whereas the remaining three cells
with significant yaw responses were encountered in the dorsal
uvula. The yaw-responding cell in the ventral uvula was one of
the cells in Figure 12 correlating better with translation than
with net linear acceleration. Among the yaw-responding cells
in the dorsal uvula, one responded to neither tilt nor transla-
tion, another responded to translation but not tilt, and the
third responded to tilt and vertical (but not horizontal plane)
translation.

Gain and phase relationship between SSs and CSs during
vestibular stimulation
We now return to the relationship between response properties
of CS and SS, identified as simultaneously recorded pairs (as in
Fig. 1). How response gains for simultaneously recorded CS/SS
pairs relate to each other has been illustrated in Figure 14, A
(translation) and B (tilt). This analysis only included CS/SS pairs
for which data were collected for both lateral/fore-aft (transla-
tion) and roll/pitch (tilt) stimuli and were applied to the gain of
the preferred direction (horizontal plane) of both CSs and SSs.
This is important, because preferred directions for CS/SS re-
sponses did not match; thus, any attempt to correlate CS/SS
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Figure 11. Summary of CS response amplitude and phase during tilt (n � 28) (A, D), tilt minus translation (n � 30) (B, E), and
tilt plus translation (n�15) (C, F ) plotted versus the corresponding responses during translation. Solid black and gray dashed lines
show predictions for translation-coding and net acceleration models, respectively. Black dotted line in E shows the unity-slope line.
Note that no phase predictions are illustrated when amplitude predictions are zero (translation coding in D and net acceleration
coding in E). Arrows indicate example cells 1 and 2 from Figure 10.

Figure 12. Distribution of z-scored partial correlation coefficients for fits of each re-
sponse with translation-coding and net acceleration-like models. Dashed lines divide
plots into two quadrants: an upper left quadrant corresponding to cell responses that were
significantly ( p � 0.01) better fitted by the translation-coding model, and a lower right
quadrant corresponding to cells that were better fitted by the net acceleration model. The
area in between the two quadrants indicates cells not significantly fitted by either model.
CS responses correlate better with either translation-like or net acceleration models (black
circles, n � 15), in contrast to SS responses (gray circles, n � 87; data replotted from
Yakusheva et al., 2007). Arrows indicate example cells 1 and 2 from Figure 10.
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translation or tilt modulation gain along a single axis could be
misleading. There was a significant correlation between the
CS/SS gain during tilt (Fig. 14B) (Spearman rank correlation, p �
0.001), but not during translation (Fig. 14A) (Spearman rank
correlation. p � 0.63). Note, however, that these comparisons
were based on 0.5 Hz data for translation and mainly lower fre-
quency data for tilt. Thus, they could reflect either translation/tilt
or high-/low-frequency differences; for example, it is possible
that a better CS/SS gain correlation might also exist for low-
frequency translation. At present, these data do not allow a firm
conclusion.

Perhaps the most conspicuous observation is that the CS
modulation during vestibular stimulation was not always out of
phase with the SS modulation, a finding that contrasts with what
was previously reported in rabbits (Fushiki and Barmack,1997).
This observation is readily seen in the raw waveforms and dis-
criminated spikes in Figures 3, 5, 7, 8, and 10. On a cell-by-cell
basis (note that this comparison was only
done for identified SS/CS pairs) (Fig. 1),
the (SS-CS) phase difference was similar
for lateral/fore-aft translation (Fig. 14C)
(Wilcoxon rank test, p � 0.51) or pitch/
roll tilt (Fig. 14D) (Wilcoxon rank test,
p � 0.027), but varied broadly from cell
to cell. The (SS-CS) phase difference
distributions were uniform (uniformity
test, p � 0.05; marginal distributions)
(Fig. 14C,D).

Remarkably, for individual Purkinje
cells the (SS-CS) phase difference during
translation was identical to that during tilt
minus translation (Wilcoxon rank test,
p � 0.16) (Fig. 15A) and tilt plus transla-
tion (Wilcoxon rank test, p � 0.9) (Fig.
15B), with slopes that were not signifi-
cantly different from unity: 95% confi-
dence interval, [0.7, 1.2] and [0.92, 1.62],
p �� 0.001. There was also no difference
with the (SS-CS) phase difference during
translation and tilt (Wilcoxon rank test,
p � 0.9).

Thus, in summary, CSs did not always
modulate out of phase with SSs. Yet, al-
though the phase difference between the
modulation of CSs and SSs was broadly
distributed across the population of Pur-
kinje cells, that difference was matched on
a cell-by-cell basis such that it was exactly
the same for translation, tilt minus trans-
lation, tilt plus translation, and tilt. Such
matching of the (SS-CS) phase difference
is of particular relevance for translation
versus tilt minus translation. Recall that translation activates oto-
lith afferents only, and thus translation responses reflect the otolith-
driven component of Purkinje cell responses. In addition, during the
tilt minus translation stimulus otolith afferents do not respond at all
(because the net horizontal plane linear acceleration is zero)
(Angelaki et al., 2004); thus, tilt minus translation responses reflect
the contribution of semicircular canal activation to Purkinje cell
responses (Shaikh et al., 2005; Yakusheva et al., 2007). Thus, the
findings of Figure 15 show that the (SS-CS) phase difference is pre-
cisely matched for the otolith-driven and canal-driven components
of the Purkinje cell response (see Discussion).

Discussion
We have quantified the properties of the complex spike responses
of NU Purkinje cells during 3D vestibular stimulation and have
compared them with the properties of SS responses (Yakusheva
et al., 2007, 2008). Our main findings are discussed below.

First, the strongest SS/CS modulation was seen during trans-
lation. CS preferred directions tended to cluster along the three
cardinal (vertical, lateral, and fore-aft) axes, whereas SS preferred
directions clustered along the semicircular canal axes (vertical
and the two 45° oblique horizontal axes) (Fig. 6B) (Yakusheva et

Figure 13. CS responses during yaw rotation. A, Example of CS and SS responses from a
Purkinje cell with significant CS modulation (0.5 Hz). Hvel, Head angular velocity. B,
Distribution of CS gains during 0.5 Hz yaw rotation. Dark-filled bars indicate significant
modulation ( p � 0.01, n � 4). Hatched bars illustrate CS without significant modulation
(n � 11). Note that none of the Purkinje cells had significant SS responses during yaw
rotation (Yakusheva et al. 2008).

Figure 14. Relationship between CS/SS gain and phase. A, B, Response gain during translation and tilt (computed along the
preferred direction in the horizontal plane). C, Relationship between the (SS-CS) phase difference during 0.5 Hz lateral and fore-aft
translation, along with marginal distributions (lateral motion, n � 47; fore-aft motion, n � 49). D, Relationship between the
(SS-CS) phase difference during roll and pitch tilt, along with marginal distributions. Black filled circles/bars, 0.5 Hz (n � 17); gray
circles/bars, 0.05 Hz (n � 17); open circles/hatched bars, 0.02 Hz (n � 6). Note that only Purkinje cells with significant CS and SS
responses during both motion directions have been included in the scatter plots (C, n � 14; D, n � 7).
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al., 2008). Most notably, the preferred directions for CS/SS pairs
arising from the same Purkinje cells were rarely aligned.

Second, both CSs and SSs modulated little during 0.5 Hz
pitch/roll tilt, but gains increased with decreasing frequency.
However, unlike SS responses, none of which followed net
linear acceleration at 0.5 Hz (Yakusheva et al, 2007, 2008), CS
responses were mixed, most correlating best with translation
(while ignoring changes in spatial orientation relative to grav-
ity) and about a third correlating best with net linear
acceleration.

Third, CSs and SSs had similar response dynamics. During tilt,
both CSs and SSs responded to angular position. During transla-
tion, CSs followed linear velocity, whereas SSs encoded combina-
tions of linear velocity and linear acceleration (Yakusheva et al.,
2008).

Fourth, a small percent of CSs in the uvula were modulated
during 0.5 yaw rotation. This finding contrasts with SSs, which
never modulated during earth-vertical axis rotations (e.g., yaw
from an upright orientation) (Yakusheva et al., 2007, 2008).

Fifth, CSs did not always modulate out of phase with SSs.
Simple and complex spikes could respond to vestibular stimula-
tion either in phase or out of phase and the distribution of CS/SS
phase difference was broad and uniform. For each individual
Purkinje cell, however, the CS/SS phase difference was precisely
matched for the otolith-driven and canal-driven components of
the response.

CS and SS modulation during vestibular stimulation
Clustering of preferred directions has been reported previously
for visually driven CSs in the vestibulo-cerebellum. For example,
optokinetic preferred directions for CS/SSs in the rabbit flocculus
were clustered along the semicircular canal axes (i.e., along two
oblique 45° directions in the horizontal plane and the vertical
axis) (Graf et al., 1988). In birds, preferred directions of NU CS
responses to translational optic flow were also organized along
the semicircular canal axes (Wylie and Frost, 1999). To our
knowledge, vestibular responses in the NU were previously tested
only during static and dynamic tilt (Marini et al., 1976; Barmack
and Shojaku, 1995; Fushiki and Barmack, 1997; Yakhnitsa and
Barmack, 2006), thus providing an incomplete picture of their
properties. All vestibularly responsive CSs were sensitive to static
tilt in mice (Yakhnitsa and Barmack, 2006), but only about half
were static tilt sensitive in rabbits (Fushiki and Barmack, 1997).
Although we have not tested macaque Purkinje cells with static

tilts, the increased gain at low frequencies
(Fig. 8) suggests that most if not all SS/CSs
are also sensitive to static tilt in macaques.

Unlike a tendency for clustering of
NU CS/SS preferred directions during
translation (Fig. 4), there was no clear
clustering of tilt preferred directions in
macaques (Fig. 9). Although additional
data during low-frequency tilt would be
needed to further verify this observa-
tion, a similar lack of tilt preferred di-
rection clustering was also reported in
mice and static tilt-sensitive rabbit Pur-
kinje cells (Fushiki and Barmack, 1997;
Yakhnitsa and Barmack, 2006). Another
Purkinje cell type insensitive to static tilt
with preferred directions clustering around
semicircular canal axes during dynamic
tilt, classified as “canal only” by Fushiki

and Barmack (1997), has been found in neither mice (Yakh-
nitsa and Barmack, 2006) nor macaques (present study).

Neither we (Yakusheva et al, 2007, 2008) nor others (Barmack
and Shojaku, 1995; Yakhnitsa and Barmack, 2006) observed SS
modulation during yaw rotation despite strong horizontal canal
afferent inputs to the NU (Kevetter and Perachio, 1986; Purcell
and Perachio, 2001; Maklad and Fritzsch, 2003; Kevetter et al.,
2004). In fact, �27% of mossy fibers in the rabbit NU responded
to yaw rotation (Barmack and Shojaku, 1995). We (Green et al.,
2005; Green and Angelaki, 2007; Yakusheva et al., 2007) have
proposed that horizontal canal inputs are gated by a signal reflect-
ing orientation relative to gravity. According to this framework,
NU Purkinje cells would respond to yaw rotations that change
orientation relative to gravity (e.g., yaw while laying on our
side or back) (Green and Angelaki, 2004, 2007). In support of
this hypothesis, rotations about pitch/roll axes activate SSs
when they reflect tilt relative to gravity (i.e., delivered while
upright) but are ineffective when they do not change orienta-
tion relative to gravity (i.e., in ear-down or prone/supine po-
sitions) (Yakusheva et al., 2007).

Unlike SSs, a few CSs, one in the ventral uvula and three in the
dorsal uvula, modulated significantly during yaw from an up-
right orientation (Fig. 13). CS modulation during yaw was also
reported in cats (Precht et al., 1976; Robinson et al., 1988), but
not in rabbits and mice (Barmack and Shojaku, 1995; Yakhnitsa
and Barmack, 2006).

Nodulus versus uvula: neuroanatomical versus
physiological findings
We found few differences in the vestibular properties of CS/SSs
based on their location within the nodulus, ventral uvula, and
dorsal uvula. This might be surprising given the different behav-
ioral effects observed with electrical stimulation (Heinen et al.,
1992; Solomon and Cohen, 1994) or lesions (Angelaki and Hess,
1995; Heinen and Keller, 1996; Wearne et al., 1998), as well as the
known differences in afferent and efferent projections. For exam-
ple, vestibular primary afferents reach the nodulus and ventral
(but not dorsal) uvula (Newlands et al., 2003). In addition, VN
mossy fiber inputs become progressively fewer from nodulus
to ventral uvula to dorsal uvula (Rubertone and Haines, 1981;
Sato et al., 1989; Thunnissen et al., 1989). The dorsal uvula
instead receives major mossy fiber inputs from the pontine
nuclei (Sato et al., 1989; see also review by Voogd et al., 1996).
However, such differences might not exist for CSs; the termi-
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nation of vestibular-responding climbing fibers is organized
into longitudinal zones extending throughout the nodulus
and dorsal and ventral uvula (Whitworth et al., 1983; Kanda et
al., 1989; Voogd et al., 1996).

Unlike mossy fiber projections from both vestibular affer-
ents and VNs that terminate diffusely and not in sagittal zones,
there is a strict topology and modular organization in the
climbing fiber, cerebellar output, and nucleo-olivary projec-
tions (Akaogi et al., 1994; Voogd et al., 1996; Wearne et al.,
1998; Wylie et al., 2003; for review, see Voogd et al., 1996).
Such zonal organization has been observed physiologically in
the preferred directions of canal and visual CS activity in the
vestibulo-cerebellum (Fushiki and Barmack, 1997; Graf et al.,
1988; Wylie and Frost, 1999). We did not observe such an
organization based on the CS preferred directions to transla-
tion (Fig. 2). Thus, in agreement with the lack of any obvious
sagittal plane organization of CS preferred directions during
static tilt (Fushiki and Barmack, 1997; Yakhnitsa and Bar-
mack, 2006), it is likely that otolith-driven climbing fiber in-
puts to the NU might not adhere to the zonal organization
followed by canal-driven and visually driven signals.

CS and SS interactions
The most salient finding is that NU CSs/SSs are misaligned, both
spatially and temporally. Spatially, because CS/SS translation
preferred directions differ by 45° (horizontal plane) or 90° (in
3D). Temporally, because CSs do not always modulate out of
phase with SSs. The CS/SS phase difference varied broadly among
Purkinje cells, yet for each cell it was precisely matched for the
otolith-driven and canal-driven components of the response
(Fig. 15). We have shown previously that spatially and temporally
matched otolith-driven and canal-driven SS response compo-
nents represent a hallmark signature of their ability to compute
translation. It is likely that the two findings are related, i.e., the
precise spatiotemporal CS/SS mismatch across NU Purkinje cells
(while maintaining a precise CS/SS matching for otolith/canal
responses on a cell-by-cell basis) might be functionally linked to
the reported precise canal/otolith spatiotemporal matching on a
cell-by-cell basis while maintaining an across-Purkinje cell mis-
match on preferred direction and phase (Green and Angelaki,
2004).

In-phase SS and CS modulation has also been recently de-
scribed in the flocculus of awake rabbits during rotation in
darkness (Simpson et al., 2002), a finding that contrasts the
reciprocal relationship between SSs and CSs during visual
stimulation (Graf et al., 1988; Stone and Lisberger, 1990;
Kobayashi et al., 1998; Kitama et al., 1999). In the NU, Fushiki
and Barmack (1997) reported out-of-phase CS/SS modulation
during tilt in darkness. At present, the reasons for these differ-
ences remain unclear.

It is important to emphasize that even Purkinje cells with
in-phase CS/SS modulation exhibited the characterizing SS pause
following a CS (Fig. 1). These two properties operate in different
time scales (tens of milliseconds versus several seconds for 0.1–1
Hz stimuli) and are not necessarily related, as suggested previ-
ously (Fushiki and Barmack, 1997). In addition, unlike Barmack
and Shojaku (1995), we found either SS/CS relationship: SS mod-
ulation in the absence of CS modulation, or CS modulation in the
absence of SS modulation. Yet, in agreement with Fushiki and
Barmack (1997), we also found a significant correlation between
CS/SS gain during low-frequency tilt (Fig. 14B). However, there
was no CS/SS gain correlation for mid-/high-frequency transla-
tion (Fig. 14A).

Despite years of debate, there is little consensus about the role
of SSs and CSs in cerebellar function (Lou and Bloedel, 1992;
Welsh and Llinas, 1997; Gibson et al., 2004; Manzoni, 2005;
Bengtsson and Hesslow, 2006; Jacobson et al., 2008; D’Angelo et
al., 2009). The exquisitely elegant circuitry of the cerebellar cortex
has been described often as ideal for precise spatial and temporal
computations (Yarom and Cohen, 2002; Ohyama et al., 2003; Ito,
2006; Jacobson et al., 2008). In the macaque NU, we have started
gaining some basic understanding of CS/SS responses under
simple vestibular stimulation. Future studies examining how
NU Purkinje cells change their activity under conditions of
sensory conflict and spatial disorientation might provide fun-
damental insight into their function. Equally important is the
understanding of how visual cues drive and/or modify SS/CS
activity. Characterization of the role of the caudal vermis in
these spatiotemporal multisensory computations might pro-
vide new functional insights into the role of the cerebellar
cortex and its circuitry.
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