
Joint CT/CBCT deformable registration and CBCT enhancement
for cancer radiotherapy

Yifei Loua,*, Tianye Niub, Xun Jiac, Patricio A. Velaa, Lei Zhub, and Allen R. Tannenbaumd

aSchools of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
30332, United States
bNuclear & Radiological Engineering and Medical Physics Programs, The George W. Woodruff
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United
States
cCenter for Advanced Radiotherapy Technologies and Department of Radiation Oncology,
University of California San Diego, La Jolla, CA 92037, United States
dDepartments of Electrical & Computer and Biomedical Engineering, Boston University, Boston,
MA 02215, United States

Abstract
This paper details an algorithm to simultaneously perform registration of computed tomography
(CT) and cone-beam computed (CBCT) images, and image enhancement of CBCT. The algorithm
employs a viscous fluid model which naturally incorporates two components: a similarity measure
for registration and an intensity correction term for image enhancement. Incorporating an intensity
correction term improves the registration results. Furthermore, applying the image enhancement
term to CBCT imagery leads to an intensity corrected CBCT with better image quality. To achieve
minimal processing time, the algorithm is implemented on a graphic processing unit (GPU)
platform. The advantage of the simultaneous optimization strategy is quantitatively validated and
discussed using a synthetic example. The effectiveness of the proposed algorithm is then
illustrated using six patient datasets, three head-and-neck datasets and three prostate datasets.
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1. Introduction
Cancer radiotherapy aims to deliver a prescribed radiation dose to a cancerous target region
while sparing surrounding critical structures and normal tissues. Conventional cancer
radiation therapy designs a treatment plan based on a snapshot of the patient’s anatomy,
such as the snapshot obtained from CT, and uses the treatment plan for the entire treatment
course minimal to no replanning. However, a patient’s body is a dynamically evolving
system. The inter-fractional variation of a patient’s geometry during a long treatment course
may seriously compromise the plan’s quality. To overcome this disadvantage, adaptive
radiation therapy (ART) has been proposed (Yan et al., 1997; Wu et al., 2002; Birkner et al.,
2003). ART seeks to redesign the treatment plan based on a patient’s evolving anatomy,
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acquired through daily in-room imaging modalities (e.g., CBCT), and hence maintain
optimality of the updated plan. In such a process, manual delineation of cancerous target and
organs at risk on a daily CBCT replanning regimen is impractical because of its labor
intensive nature. Automatic structure delineation utilizing deformable image registration
(DIR) has been proposed as a feasible auto-segmentation approach given the initial organ
segmentations available from the planning CT (Chao et al., 2008; Samant et al., 2008; Xie et
al., 2008; Godley et al., 2009; Paquin et al., 2009). Treatment plans can conveniently
transfer the organ contours from the planing CT to CBCT by establishing voxel
correspondences between the initial planning CT image and newly acquired CBCT imagery.

Current clinical practice mainly utilizes CBCT for the purpose of treatment setup, i.e. to
position the patient in the same way that the CT was taken. There are more demanding
applications, such as tumor contouring, electron density conversion and dose calculation
(Hatton et al., 2009), that require high-quality CBCT images with accurate CT numbers.
However the shading artifacts in CBCT images, as a result of scattered radiation and beam
hardening effects, produce errors in CT numbers and lead to object contrast loss (Niu and
Zhu, 2011). Many shading or scatter correction algorithms for CBCT have been proposed.
Among the literature (Colijn and Beekman, 2004; Zhu et al., 2006; Star-Lack et al., 2009;
Niu and Zhu, 2010), a relative simple idea is to warp CT to match the anatomical features in
CBCT by DIR. Then the intensity of CBCT images can be corrected either in image space
(Marchant et al., 2008) or in the projection space (Niu et al., 2010). However these
approaches turn the CT-to-CBCT DIR and image enhancement of CBCT into a “chicken-
and-egg” type of problem.

This paper proposes an algorithm that simultaneously performs the registration and CBCT
enhancement. The registration algorithm relies on a viscous fluid model by D’Agostino et al.
(2002), which offers the freedom to naturally incorporate an intensity correction term into
the registration framework. We assume that the intensity difference between CT and CBCT
after alignment is spatially smooth and thus regularize it with the H1 semi-norm. An
iterative procedure alternates between updating the deformation fields to align CT and
CBCT geometrically, and performing intensity fitting to photometrically match CBCT to
CT. The additional intensity fitting term improves the registration results. The proposed
algorithm is implemented on a graphics processing unit (GPU) to accelerate this
computationally heavy task.

The remainder of this paper is organized as follows. The overview of image registration
methods is present in Section 2. Section 3 is devoted to the joint registration and image
enhancement model and its iterative equations. Section 4 presents the results of our
algorithm on one synthetic example in order to demonstrate the presumed benefits of the
joint optimization. Furthermore, six representative CT/CBCT datasets of head-and-neck data
and prostate data are registered and enhanced. Conclusions and discussions are provided in
the final section.

2. Image registration
Deformable image registration between CT and CBCT is a challenging problem. One may
consider it as an image registration problem between mono-modal images (Horn and
Schunck, 1981; Thirion, 1998; Vercauteren et al., 2009; Gu et al., 2010). However, the
conventional strategy of using sum-of-squared-differences (SSD) of intensity values
between two images as a similarity measure performs poorly, or may even fail, since
corresponding points in CT and CBCT do not necessarily attain the same intensity value.
One way to circumvent this intensity inconsistency issue is to include an intensity
calibration step. For example, Hou et al. (2011) utilize histogram matching to unify the CT
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and CBCT intensities, followed by application of the Demons algorithm (Thirion, 1998)
which is designed for mono-modal registration. A more sophisticated intensity correction
method present by Guimond et al. (2001) considers a polynomial relationship of the
intensity correspondences between CT and CBCT images. A modification of polynomial
intensity correction is made in (Ou and Chefd’Hotel, 2009). The work of Nithiananthan et
al. (2011) integrates a tissue-specific intensity correction technique into the registration
process, with subsequent application of the Demons algorithm. In a similar topic of aligning
an atlas to the image space of magnetic resonance images (Pohl et al., 2005), a set of
structure-dependent registration parameters are estimated simultaneously with classification
and intensity correction in a statistical framework. However, the relationship between CT
and CBCT is neither intensity-dependent nor material-dependent. In Fig. 1, the ring-shaped
shadows of two CBCT images in axial view indicate that the intensity difference between
CT and CBCT largely depends on the pixel location, which makes the aforementioned
approaches sub-optimal.

An alternative perspective regards CT–CBCT registration as a special case of multimodal
registration. In a multimodal scenario, some similarity measures are available, such as
correlation ratio (Roche et al., 1998), cross-correlation (Gonzales and Woods, 2002) and
rank-correlation (Figl et al., 2010). In particular for CT–CBCT registration, there is a
sizeable number of work using normalized cross-correlation (NCC), such as (Schreibmann
et al., 2006; Yang et al., 2007; Greene et al., 2008, 2009; Lu et al., 2010, 2011). The
underlying rationale of these methods is that the intensities of CT and CBCT are related by a
linear transformation. However, in the contexts where severe artifacts presents in CBCT,
e.g. those shown in Fig. 1, such relationship does not hold and hence NCC may not give
satisfactory results. In more general multimodal registration scenario, mutual information
(MI) is widely used. It relies on the intensity distributions of two images instead of their
intensity values directly. Since the seminal work of Viola and Wells (1997) and
independently of Maes et al. (1997), many approaches are based on MI-inspired similarity
measures. Please refer to the survey paper by Pluim et al. (2003) and more recent works
(Razlighi et al., 2009; Yi and Soatto, 2009; Loeckx et al., 2010; Chappelow et al., 2011).
One drawback of MI is the tendency to disregard local consistency in order to match the two
intensity distributions globally.

On the assumption that one source of intensity differences between CT and CBCT is a result
of slow, or smooth, spatial variation, we propose a similarity measure that is a linear
combination of both MI and SSD. The latter similarity score is to account for local
information and will also be augmented to perform intensity correction. Furthermore, to
enforce the spatial smoothness, the intensity correcting SSD score will be regularized with
the H1 semi-norm. We apply the intensity correction term to the CBCT, in essence matching
the CBCT to the deformed CT photometrically. A similar approach of intensity correction is
examined by Myronenko and Song (2010). There, the registration is formulated in the
mono-modality setting. We find that including both MI and SSD is helpful to register CT
and CBCT, with the intensity correction of CBCT strengthening the registration results.

3. Our method

We denote a given CT image by  and the corresponding CBCT image by . The
goal of deformable image registration, defined here, is to compute a geometric

transformation  mapping the points  in I2 onto the corresponding set of points

 in I1. The choice of applying the transformation to the CT imagery arises from
the fact that CT has better image quality than CBCT. Therefore, deforming CT to match
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CBCT should cause less interpolation errors than the other way around. The deformed, or

registered, CT image will be denoted by .

The goal of image enhancement is to estimate an intensity correction term  such that

 and  are as close as possible. The intensity corrected image, denoted by

, should have better image quality than . Note that the shadow

areas in Fig. 1 make discrimination difficult. It is reasonable to assume that  is globally
smooth, as the CBCT contaminations caused by scatter and bowtie-filter are spatially
smooth. Thus, given the input pair of images (I1; I2), the goal of our algorithm is to output

another pair of images, which are the geometrically aligned image  and the intensity

corrected image . The typical approach to computing the transformation and intensity
correction relies on establishing a similarity measure to quantify how close the two input

image volumes are to each other. Next, the transformations  and  that maximize
the similarity are computed through an optimization process. The remainder of this section
details our joint algorithm.

3.1. Similarity measure
Mutual information (MI), when used as a similarity measure, is computed from the joint
histogram of two images. Under such a similarity model, the less dispersed the joint
histogram is, the better the two images are aligned (Pluim et al., 2003). The definition of the
MI between I1 and I2, given the transformation , is:

(1)

where  is the joint histogram of the deformed image  and the target

image . The joint histogram is computable using a 2D Parzen window

 to approximate the δ function in the overlap region V,

(2)

The marginal distributions  and p(i2) in (1) are the probability density distributions

of  and , respectively. The arguments i1 and i2 range over the image
intensity values.

MI measures the similarity between two images using global statistical properties from the
entire image domain. Accordingly, MI tends to disregard strong neighborhood information
in an attempt to increase the overall image similarity, thus producing significant local errors
in the estimated transformation. Considering that the image modalities between CT and

CBCT are not drastically different, we include the L2 distance between  and I2 + a in the
similarity measure. The purpose of this inclusion is to incorporate information regarding
local intensity matching to guide the registration process. Incorporation of the two objectives
is performed through a convex combination of their associated similarity scores plus a
regularizing term, arriving at the objective function to be minimized,
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(3)

where 0 ≤ λ ≤ 1. Notice that the parameter λ should be chosen carefully to control the
relative weights between the first two terms, as SSD and MI are usually at different orders of
magnitude.

Ignoring the contributions of the intensity correction term a, the model reduces to the
intensity-based model for mono-modality registration with λ = 1, while it becomes the MI-

based multimodal DIR model at λ = 0.  is a regularization term with respect to the
intensity correction a. Without the regularization, i.e., μ = 0, there would be too much
freedom for a and the registration results would be unreliable due to overfitting of the

intensity values. The regularization term is chosen as the H1 semi-norm 
to ensure global smoothness of a. The smoothness of the vector field  is not explicitly
modeled in the objective function, but is inherently modeled in a viscous fluid model.

3.2. A viscous fluid model for optimizing 
We adopt a viscous fluid model (D’Agostino et al., 2002) to compute the optimal
deformation. The model assumes that the deformation is governed by the Navier–Stokes
equation of viscous fluid motion. Mathematically, it is expressed as

(4)

The deformation velocity  is related to  by

where  is the Jacobian of  with respect to the coordinates

. The vector function  is a force field that drives the deformation in
the appropriate direction.

This viscous fluid approach can easily take into account the intensity correction through the
force field. In fact, the objective function and the force term are related. Taking the variation

of E with respect to  gives the expression for the force term , that is,

(5)

where  is the variation of (1) with respect to ,

(6)
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To numerically solve the Navier–Stokes equation (4), successive over-relaxation (SOR) is
typically applied as in Christensen et al. (1996), which is computationally expensive. A
filter-based method is derived by Bro-Nielsen and Gramkow (1996) on account of the
Greens function as a fundamental solution to the fluid equation. In particular, the velocity

field  is obtained by a convolution filter applied to each component of the force field ,

i.e., , where Φs is the 3D Gaussian kernel with width s (in voxels)

3.3. Algorithm
Implementation of the optimization algorithm requires for the associated PDEs to be
discretized. With regards to , at each iteration k, the deformation field is updated by

(7)

(8)

(9)

where  and the time step δt is chosen adaptively for each iteration through

(10)

with δu equal to the maximal voxel displacement allowed in one iteration.

To preserve the topology of the deformed template, re-gridding is performed whenever there
exists  such that the Jacobian of  reaches below a positive threshold (e.g., 0.5). As
long as the determinant of Jacobian is larger than this pre-determined value, the deformation
field is guaranteed to be invertible, and thus the topology is preserved. Re-gridding is
performed in a way that the current deformed image is set to be a new template and the
incremental deformation field to be zero. The total deformation is the composition of the
incremental deformation fields associated with each propagated template.

To simultaneously optimize the intensity correction, we adopt a gradient-descent method
with regards to optimization of a. In particular, computing the gradient flow to minimize the
energy (3) with respect to a leads to the following PDE,

(11)

The fitting term a and the deformation field  are coupled in an alternating manner. For
each k, we use ak as initial value and evolve this PDE for several iterations to get ak+1. A
semi-implicit discretization scheme is used to make the algorithm stable. The update on a
improves the L2 distance, e.g., the intensity matching, between the two images as part of the
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similarity measure. The improved intensity matching smoothly aligns the support of the two

image distributions  and p(i2), thus aiding the registration process.

Furthermore, we employ a multi-resolution scheme to increase speed and robustness.
Specifically, we construct an image pyramid by down-sampling the images by a factor of
two in each dimension. We then perform registration at the level of a low-resolution grid.
The deformation field obtained at the low resolution level is then interpolated to become the
initial conditions for the higher-resolution computation.

Lastly, we have implemented our algorithm on the GPU. Registration of volumetric data in
medical image processing is a computationally intensive task. Computational time is a
critical factor that limits the adoption and applications of registration in clinical practice. As
the structure of image registration algorithms is compatible with GPU compute architecture,
a range of DIR algorithms have been developed on the GPU (Sharp et al., 2007; ur Rehman
et al., 2007; Samant et al., 2008; Muyan-Ozcelik et al., 2008; Gu et al., 2010). The papers
(Shams et al., 2010; Fluck et al., 2010) survey GPU implementations of DIR.

In summary, a flow chart in Fig. 2 illustrates our joint registration and intensity correction
algorithm.

4. Experiments
We provide experiments to demonstrate (1) the linear combination of two similarity
measures outperforms any individual, (2) efficiency and robustness of the proposed method
for both multimodal deformable registration and intensity correction on one synthetic
example and six real patient datasets and (3) the influence of parameters. For image
registration, we compare the linear combination of SSD and MI with SSD only, MI only,
cross-correlation (CC) and residual complexity (RC) as in the recent work of Myronenko
and Song (2010). For intensity correction, we compare with the state-of-the-art scatter
removal method (Niu et al., 2012) in CBCT imaging.

4.1. Synthetic dataset
We synthesize a CT image by imposing smooth deformation flows with maximal
displacement d on the Shepp-Logan phantom, while the CBCT image is created by adding a
round-shape shadow and Gaussian white noise with standard deviation s to the phantom.
The simulated CT and CBCT images are illustrated in Fig. 3a and b. Our proposed method,
the combination of SSD and MI, is compared with the methods using SSD only, MI only,
CC and RC. CC assumes a linear relationship between two image modalities, while RC is
formulated in a mono-modal setting. Therefore, CC and RC perform similar to SSD in this
case. MI, as a similarity measure for multi-modal registration, has two noticeable
deficiencies in registration: the boundaries are not as sharp nor as uniform as they should be
(such as for the white outer region), and the small center element has lost some of its area to
the larger circle near it. This is because these regions are indeed mono-modal in nature. On
the other hand, MI performs better than SSD, CC and RC on the region of left black oval,
where the intensities of two images are significant different and not related by a linear
function. The combination of SSD and MI has the benefits of both methods while mitigating
the drawbacks of using single of them.

To quantitatively compare the accuracy of these registration methods, percentage of false
positives (PFP),
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is evaluated, where A denotes the ground truth, B is the deformed region and |·| computes
the cardinality of each set. Table 1 lists the PFP of three particular regions, as illustrated in
Fig. 4. The deformed regions are computed using various similarity measures, i.e., SSD +
MI, SSD, MI, CC and RC, under different maximal displacement d and noise level s. SSD,
CC and RC are all better than MI if PFP is computed on the white region, where these
similarity measures provide a stronger force than MI to deform one image towards the other.
On the gray or black regions, the MI registered image is a stronger performer than those are
registered by the other similarity measures. As indicated by Table 1, the combined SSD +
MI approach is not the best in each case, but it has a better overall performance.

4.2. Patient datasets
Our algorithm is applied to- and validated on- six patient cases (three head-and-neck
datasets and three prostate datasets). Table 2 lists dimension and voxel resolution of each
dataset along with the computational time using GPU. For head-and-neck (A) and (B),
prostate (A), the patients were first scanned in a 4-slice GE Light-Speed RT scanner (GE
Healthcare, Milwaukee, WI) for treatment plan purposes and then in the on-board imager
system on a Varian Trilogy linear accelerator (Varian Medical System, Palo Alto, CA)
before each treatment. For head-and-neck (C), prostate (B) and (C), the planning CT scans
were taken on a 16-slice Philips Brilliance Big Bore CT simulator (Philips Healthcare
Systems, Andover, MA) with the helix scan mode. The CBCT scans were performed on the
patients at treatment time using the on-board imager system installed on the Varian Clinac
23IX radiation therapy machine (Varian Medical System, Palo Alto, CA). We first perform
a rigid registration so that CT and CBCT have same orientation and voxel size. With the
high computing power of a GPU and the carefully designed algorithmic structure tailored for
this platform, it only takes 48 s to register a pair of images with size 512 × 512 × 150. The
time is reduced to 25 s if no intensity correction is included. Incorporation of intensity
correction nearly doubles the computational time. This phenomenon is expected since the
degrees of freedom (DOF) of the function a is on the order of the number of voxels in the
images. The large DOF consumes more memory and increases the computational cost of the
algorithm.

In order to quantitatively evaluate registration performance, we asked a physicist to
manually delineate some organs in both CT and CBCT images. In particular, the left parotid
from the head- and-neck (C) and the bladder from the prostate (A) are examined. In CT–
CBCT registration, one wants to deform CT to match CBCT geometrically. Therefore, the
label map of an organ in CBCT image can be regarded as ground-truth. After applying
deformation field to the label map of the same organ in CT image, PFP of two label maps is
computed. Table 3 demonstrates that the linear combination of SSD and MI is better than
using SSD or MI only. Notice that in Table 3 PFP of prostate (A) is much smaller than the
one of head- and-neck (C) since the bladder has smaller motion than parotid.

As exact ground-truth is not always available in real data, we compare registration
algorithms using edge maps. Let B, C be two 3D volumetric images. We first apply a Canny
edge detection algorithm on every 2D axial slice of B and C. Let K be the third dimension of
the volumetric data. This implies Canny edge detection is applied K times, each producing
Bk, Ck for k = 1, … , K. We define an error percentage (EP) of two images B and C as
follows,
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EP measures the percentage of the number of mismatched pixels between the edge maps of
CBCT and the warped CT by certain registration algorithm. A smaller EP implies a better
result of this registration algorithm. We compare SSD + MI with similarity measures, MI
only, CC and RC, in terms of EP in Table 4. The achieved smallest value in each case in our
method indicated the improved registration accuracy from the aspect of EP. As shown in
Fig. 5, Canny edge detection has some defects, such as not getting consistent yet correct
edge maps among corresponding slices. The error percentage based on edge maps results in
a heuristic comparison between two images.

Visually a checkerboard display technique serves to demonstrate the performance of the
joint registration and intensity correction algorithm. In this technique, two images to be
compared are merged together in a checkerboard pattern, where black regions are filled by
the first image and the white regions are filled the second. This display method highlights
the mismatch between anatomical structures in the two images at the transition zone. Ideally,
when two images are fully aligned, there is little to no difference at the boundaries between
checkerboard squares. Misalignment and miscorrection of intensity will result in
discontinuities along edges and enhance perception of the checkerboard pattern,
respectively. We use the notation C(I1, I2) for the checker-board fusion of images I1 and I2.

Figs. 6-11 show the sagittal, axial and coronal views of all patient datasets before and after
our algorithm is applied. Our algorithm takes the input images I1 (CT) and I2 (CBCT) and

outputs the deformed CT image  and intensity corrected CBCT image . The middle
column in Figs. 6-9 is to compare the deformed CT to the original CBCT, which validates
that our algorithm works in the geometrical alignment of features between two images, and
not simply to match intensity. In Fig. 10 and 11, we also plot deformation fields overlaid on
deformed CT images.

As for three head-and-neck datasets, the anatomical features, such as jaw and spine, align.
Notice that we resize the results in superior-interior direction corresponding to the physical
space, which results in interpolation errors in sagittal and coronal views, especially in the
region of spines as in Fig. 7. Furthermore, the CBCT has the same contrast as CT given the
lack of intensity differences in the checkerboard display. There is a small region in the
sagittal view of Fig. 6 where CT and CBCT do not match. The patient opens mouth during
the CT scan, and closes during the CBCT scan. Consequently, CT and CBCT may have
different topological characteristics around the mouth. The assumption of diffeomorphic
deformation flow is invalid in the region where topology changes. It is difficult to design
registration algorithms that can handle topological changes. This is the future direction we
would like to pursue.

4.3. Intensity correction/scatter removal
We demonstrate the intensity correction or scatter removal part of our algorithm. For two
head-and-neck datasets (B) and (C) in Figs. 12 and 13, the intensity of shoulder regions is
recovered after correction. Two prostate datasets (A) and (B), shown in Figs. 14 and 15, are
more challenging for intensity correction, as their CBCT images contain a large amount of
noise. The corrected CBCT is the sum of the original CBCT and an intensity correction term

. If  is smooth, then the noise in the original CBCT image will cause the output CBCT to
be noisy. On the other hand, we can tune parameter μ so that the correction term is less
smooth. But this approach will lead to intensity overfitting in the sense that the corrected
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CBCT images are heavily biased towards the CT images. Please refer to the discussion on
parameter μ in Section 4.4 for more details. Our algorithm enables the corrected CBCT
image to have the similar contrast to the CT image, while also removing the shadow. Notice
that noise still prevails in the corrected CBCT images. Denoising is beyond the scope of this
paper and will be explored in the future.

In Fig. 15, we also compare our method with the state-of–theart scatter removal method
(Niu et al., 2012). This approach registers the CT to the CBCT image, and hence primary
signals in CBCT scan can be estimated via forward projection on the CT image. The shadow
in the axial view, caused by the scatter signals, can be removed using the low-pass filter on
the difference between the estimated and the raw CBCT projections. However, the residual
scatter and increased noise after scatter correction result in streaking artifacts as shown in
the middle column of Fig. 15. Also the truncation errors in the projection yield the sacrum
corrupted and incomplete in the coronal view of their reconstruction.

4.4. Discussion on parameters
We have two parameters in the algorithm. λ is a weighting factor in the linear combination
of SSD and MI, while μ balances between the similarity measure and the intensity fitting.
This section is devoted to discussion on the influence of these two parameters on our
algorithm.

We first compare our algorithm for different values of parameter λ in (3) without
incorporation of the intensity correction term (and its associated smoothing cost). The case
λ = 0 corresponds to a MI-based multimodal DIR model and the case λ = 1 corresponds to
an intensity-based algorithm for mono-modality registration. The value of λ is indicated in

the superscript of the output registered image  in Fig. 16. The combination of SSD and MI
outperforms using them individually. Ideally the optimal λ is chosen according to the
difference of histograms of CT and CBCT images. In practice, we find our algorithm is not
sensitive for λ ∈ (0, 1) when we rescale the image intensities of CT and CBCT to be [0, 1]
so that SSD and MI to have the same magnitude.

In order for the L2 distance in the energy (3) to provide sensible output, it is better to update
the intensity correction function a iteratively in (11). To demonstrate the role of a and its
optimization, we consider three cases as follows. In Fig. 17a, the correction is fixed a = 0
and not updated. In Fig. 17b, the correction is updated but not applied in the checkerboard
test. Lastly, in Fig. 17c the correction is updated and applied in the checkerboard test.
Comparing the left two columns, we find that iterative correction of a assists with the
registration. Edge continuity is improved for the intensity corrected iterations (top part of
zoomed in center region). The bright region of the upper image (in the top row) also has
sharper edges for the intensity corrected version. Both of these observations validate that our
algorithm works to align the geometrical features between two images, and not simply to
match intensity. Moving to the right-most column, which applies the intensity correction, it
is clear that the two images have been properly transformed to match. Edges are continuous
and intensity variation is smooth over uniform regions. These improvements demonstrate
that intensity correction is important for both CBCT image enhancement and deformable
CT–CBCT registration.

In Fig. 18 we show the influence of the parameter μ in (3) on the performance of the
intensity correction portion of our algorithm. Larger values of μ correspond to a stronger
assumption of smooth-ness of the fitting term a. Smaller values of μ lead to intensity
overfitting, in the sense that the corrected CBCT images are heavily biased towards the CT
images. For example, in Fig. 18, there is a black hole in the center of the corrected CBCT
image which inherits from the CT image, while the hole in the bottom left is completely
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removed from the original CBCT image. On the other hand, small μ yields better image
quality of the reconstructed CBCT in consonance with CT. Therefore, there is a trade-off
regarding how to choose the parameter μ. For all of our experiments, we use μ = 100.

5. Conclusions and discussion
In this paper, we have presented an algorithm to simultaneously register CT to CBCT and
enhance CBCT image quality. In particular, we combine the similarity measure for
registration and the L2 distance for intensity correction into a viscous fluid model so that our
algorithm can jointly achieve two goals. As for the registration cost functions, SSD is better
in mono-modality, while MI is better in multi-modality. We use a linear combination of the
two cost functions for the proposed similarity measure, which is better than using single one
of them to register CT and CBCT. In order to make SSD a reasonable metric, CBCT
intensity is updated according to the deformed CT image, which in turn helps to improve the
registration results. Our algorithm is implemented on the GPU, which only takes 45 s to
register a pair of 512 × 512 × 150 images.

Before the end of this paper, we would like to provide discussions on a set of relevant issues
that could be of interest to readers.

First of all, our work aims at solving the registration problem between a CT image and a
CBCT image contaminated by severe artifacts caused by e.g. scatter and bowtie filter. While
improved registration results are obtained over other competing methods, the significance of
our method depends on the severity of these artifacts in clinical practice. In fact, with the
rapid advances in CBCT technologies over the past few years, artifacts of these kinds have
been mitigated to a large extent. We also believe that the ultimate solution to the CT–CBCT
registration problem should be the improvement of CBCT image quality, so that the
intensity inconsistency problem between these two modalities are negligible and
conventional registration algorithms can robustly deliver accurate results. Nonetheless, at
the current stage, there are a large number of old generations of CBCT machines used in
current clinical practice, on which artifacts of our focus still exist to a certain level. The
severity also varies depending on the CBCT technology on those machines and the
satisfactory level of machine calibration and maintenance. The image artifacts from those
machines largely hinder the use of CBCT for advanced clinical applications, e.g. adaptive
radiotherapy. Before those old CBCT machines are replaced, our method offers a practical
solution to conduct CT-CBCT registration and facilitate clinical tasks.

Second, it is also of interest to discuss the potential benefit of having the intensity modified
CBCT image. Actually, the benefits rely on the accuracy of registration. Under ideal
situation with perfect registration results, the deformed CT image will have correct
anatomical structures as well as accurate CT numbers. Hence, current clinical practice in
radiation therapy that relies on CT numbers, e.g., dose calculation on CBCT, can be
conducted using the deformed CT image instead. In this regard, the intensity modified
CBCT image does not provide much clinical benefit over the deformed CT image. However,
the registration accuracy is not always satisfactory in practice. For instance, there could be
mismatch of structures between the deformed CT and CBCT due to insufficient number of
iterations or local minima of registration algorithms. The intensity corrected CBCT image
will offer benefits in dose calculations than the uncorrected one, as the systematic CT
number inaccuracy are eliminated to a certain extent. Yet, since it is required to convert the
HU values to electron density before dose calculation in radiotherapy via a calibrated
conversion curve, another possible approach without correcting CBCT HU values is to use a
HU to electron density conversion curve that is calibrated against the original CBCT image
with incorrect HU values. However the effectiveness of such a method depends on the type
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and the amount of artifacts. In some situations, e.g. when the ring artifact due to bow-tie
appears, voxels with the same HU number in CT at the center or at the periphery of the
image would attain different HU numbers in CBCT. The electron density cannot be
correctly interpreted by a single conversion curve. Our method will attain its advantage over
the approach of using a new conversion curve. However, given the fact that MeV beam dose
calculation is not quite sensitive to small inaccuracy of electron density, whether or not a
single electron density conversion curve can deliver sufficiently accurate dose calculation
results in the presence of this ring artifact is subject to further investigation, especially when
the ring artifacts are mild.

Last, but not least, we would like to point out that, although improved results have been
observed over some competing methods, these improvements in this preliminary study are
not conclusive and are subject to future investigations. Regarding the CBCT intensity
correction, more quantitative studies are needed. Our model may also be adjusted to yield
more accurate results. In fact, one key assumption of our method is the smoothness of the
correction term a. Yet, in the high contrast regions, the correction term varies largely. Hence
a single smoothness term regardless spatial locations may lead to oversmoothed correction
term and make the correction insufficient. On the other hand, the improved registration
accuracy is only demonstrated indirectly from a few measures, such as PFP. To rigorously
demonstrate the accuracy, more investigations, e.g. comparing with manual landmarks, are
needed.

There are also a few issues to be studied in future. First, SSD and MI are usually at different
orders of magnitudes. This may cause difficulties when tuning the parameter λ. In this
paper, we consider to normalize image intensity to [0,1] and we find empirically our
algorithm is not sensitive to λ. An alternative is to use normalized similarity measures. For
example, it is worth trying the combination of normalized cross-correlation and normalized
mutual information in the future. Second, other forms of similarity metrics may be included
in our model depending on the contexts. For instance, the aforementioned NCC could be
used to replace the SSD term in our model, when a linear relationship between CT and
CBCT intensities holds. Third, it is also desirable to design a parametric formula for the
intensity correction term a. For example, inspired on the ring-shape shadow, a maybe a
function of radius to the center. The parametric form of a could largely reduce its degree of
freedom, and thus a higher computational efficiency can be achieved. The validation of the
parametric description of a, however, requires further investigations.
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Fig. 1.
Examples of CT (top) and CBCT (bottom) images in axial view.
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Fig. 2.
The flow chart of our joint registration and intensity correction algorithm. The details of step
6 in the blue box are provided on the right.
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Fig. 3.
Synthetic example of a pair of CT and CBCT images. Our method, SSD + MI, is compared
with methods with SSD only, MI only, CC and RC (Myronenko and Song, 2010). The last
row is the zoom-in part of the corresponding results on the second row.
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Fig. 4.
Regions of interest: black, gray and white, on which PFP is computed.
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Fig. 5.
Canny edge detection of CT, deformed CT and CBCT images.
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Fig. 6.
Performance on head-and-neck (A) in the checkerboard display. From top to bottom is the
sagittal, axial and coronal view respectively. The results are resized in superior–interior
direction corresponding to the physical space. The anatomical features such as jaw and spine
aligned and the CBCT is similar in appearance to the CT.
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Fig. 7.
Performance on head-and-neck (B) in the checkerboard display. From top to bottom is the
sagittal, axial and coronal view respectively. The results are resized in superior-interior
direction corresponding to the physical space. Interpolation errors exists in the sagittal and
coronal view, especially in the region of spine.
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Fig. 8.
Performance on prostate (A) in the checkerboard display. From top to bottom is the sagittal,
axial and coronal view respectively.
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Fig. 9.
Performance on prostate (B) dataset in the checkerboard display. From top to bottom is the
sagittal, axial and coronal view respectively.
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Fig. 10.
Performance on head-and-neck (C) in the checkerboard display. The last column plots the
deformation field overlaid on the deformed CT image. From top to bottom is the sagittal,
axial and coronal view respectively. The results are resized in superior-interior direction
corresponding to the physical space.
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Fig. 11.
Performance on prostate (C) in the checkerboard display. The last column plots the
deformation field overlaid on the deformed CT image. From top to bottom is the sagittal,
axial and coronal view respectively.
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Fig. 12.
Intensity correction performance on head-and-neck dataset (B). From top to bottom is the
sagittal, axial and coronal view respectively.
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Fig. 13.
Intensity correction performance on head-and-neck dataset (C). From top to bottom is the
sagittal, axial and coronal view respectively. The intensity of the shoulder region is
recovered after correction.
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Fig. 14.
Intensity correction performance on prostate (A) dataset. From top to bottom is the sagittal,
axial and coronal view respectively. Display contrast: [ −400 500] Hounsfield unit (HU).
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Fig. 15.
The comparison of scatter removal on prostate (B) dataset between our method and the
recent work of Niu et al., 2012. From top to bottom is the sagittal, axial and coronal view
respectively. Display contrast: [−400 500] HU. Niu’s method gives a high-contrast image,
but it contains streaking artifacts and the sacrum in the coronal view is corrupted and
incomplete due to the truncation errors in the forward projection.
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Fig. 16.
Influence of the parameter λ in (3) on registration performance. Its value is indicated in the

superscript of the output registered image , in which (d) and (f) correspond to a MI-based
multimodal DIR model (λ = 0) and an intensity-based registration method (λ = 1)
respectively. Our joint algorithm with λ = 0.5 in (e) outperforms both other cases, especially
in terms of completing the triangle region as zoomed-in below.
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Fig. 17.
The iterative correction of function a is essential for CBCT image enhancement as in (c), but
also helps with registration as in (b), when compared to the SSD + MI approach with no
intensity correction (a). See text for further details.
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Fig. 18.
The influence of μ on the performance of the intensity correction portion of our algorithm.
The results of CBCT with different μ are shown on the top with the corresponding fitting
function a shown on the bottom. The small value of μ results in a lot of image features
appeared in the fitting function, and thus it would bring the features of CT to CBCT.
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Table 3

PFP (%) of the label map of an organ delineated by a physicist in CBCT image and the deformed label map of
the same organ in CT image by applying deformation field produced by various similarity measures: none
(meaning original CT image), SSD, MI and SSD + MI. Notice that PFP of prostate (A) is much smaller than
the one of head-and-neck (C) since the bladder has smaller motion than parotid. Numbers in bold are the best
values in each case.

Datasets None SSD MI SSD + MI

Head-and-neck (C) 44.1417 36.9210 34.4687 34.1144

Prostate (A) 9.3537 9.3402 9.3452 9.2919
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