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Abstract
Purpose of the review—Isocitrate dehydrogenases, IDH1 and IDH2, decarboxylate isocitrate
to α-ketoglutarate (α-KG), and reduce NADP to NADPH. Point mutations of IDH1 and IDH2
have been discovered in gliomas. IDH mutations cause loss of native enzymatic activities and
confer novel activity of converting α-KG to 2-hydroxyglutarate (2-HG). The mechanisms of IDH
mutations in gliomagenesis, their value as diagnostic, prognostic marker and therapeutic target
have been extensively studied. This review is to summarize the findings of these studies.

Recent findings—Crystal structural studies revealed conformation changes in mutant IDHs,
which may explain the gain of function by mutant IDHs. The product of mutant IDHs, 2-HG, is an
inhibitor of α-KG-dependent dioxygenases, which may cause genome-wide epigenetic changes in
human gliomas. IDH mutations are a favorable prognostic factor for human glioma and can be
used as biomarker for differential diagnosis and subclassification rather than predictor of response
to treatment. Preliminary data suggested that inhibiting production of the substrate of mutant IDH
enzymes caused slow-down of glioma cell growth.

Summary—As valuable diagnostic and prognostic markers of human gliomas, there is still a lack
of knowledge on biological functions of mutant IDHs, making targeting IDHs in glioma both
difficult and unsecured.
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Introduction
IDH1 and IDH2 are NADP+-dependent isocitrate dehydrogenases, which catalyze the
oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) and reduce NADP to
NADPH. IDH1 and IDH2 are homodimeric enzymes with different subcellular localizations.
IDH1 localizes in cytoplasm and peroxisome, whereas IDH2 resides in the mitochondria.
IDH1 mutations were found in the majority of human low grade astrocytoma,
oligodendroglioma and secondary glioblastomas. IDH2 mutations occurred less frequently
in gliomas and were mutually exclusive of IDH1 mutations. Mutations in IDH1 are
proposed as an early event during glioma tumorigenesis, occurring preferentially in younger
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patients and correlating with a favorable outcome [1•-3•]. Following these initial discoveries,
somatic mutations in IDH1 and IDH2 have been reported in acute myeloid leukemia (AML),
though at a lower frequency [4-6]. Other tumor entities in which IDH1/2 mutations have
been identified include colorectal cancer, prostate cancer, thyroid carcinoma and melanoma
[7-11] . Enormous effort has been put forth to elucidate the mechanisms of these mutations
in the development of these cancers and to determine their value as a diagnostic or
prognostic marker, as well as a therapeutic target.

Oncogenic functions of IDH mutations
The majority of mutations identified were amino acid substitution at R132 of IDH1 and its
analog, R172 of IDH2. These residues are highly conserved and involved in forming the
active site of the enzymes. The enzymatic activity of mutant IDHs is significantly reduced[3,
12]. Dominant negative effects of the mutant IDHs was observed by Zhao et al [13••]. They
found that mutant IDH1 dominantly inhibited wild-type IDH1 activity through the formation
of heterodimers and thus inhibited degradation of hypoxia-inducible factor 1α (HIF-1α) by
α-KG-dependent prolylhydroxylases. HIF-1α is an important transcription factor involved
in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose
metabolism and invasion. The induction of the HIF-1α by IDH1 mutations was proposed as
one of the mechanisms of the oncogenic effects of IDH mutation[14••]. Nevertheless,
inconsistent findings have been reported concerning the dominant negative effect of mutant
IDHs as well as the association of IDH mutations with HIF-1α expression in human
samples[15•-17•].

The finding that IDH mutations are found exclusively in a heterozygous state indicates that
these are gain of function mutations. IDH1 R132 and IDH2 R172 mutations confer a
neomorphic enzymatic activity by reducing α-KG to 2-hydroxyglutarate (2-HG) while
converting NADPH to NADP+[18•, 19]. Both gliomas and AML cells harboring IDH
mutations show elevated levels of 2-HG. How the IDH1 R132 and IDH2 R172 mutations
confer new enzymatic activity was revealed by crystal structure analysis. Dang et al
suggested that IDH1 R132H substitution caused change of open conformation to closed
conformation, as well as reorganization of the active site of the enzyme[18•]. These changes
favor the binding of NADPH as well as NADPH-dependent reduction of α-KG to
R(2)-2=HG. Conversely, another structure study suggested closed pre-transition
conformation was required for isocitrate binding and that the mutant IDH1 was less capable
of forming the closed conformation [20•]. It was recently found that converting α-KG to 2-
HG was not actually a novel activity of the mutant IDH1, as wild-type IDH1 also catalyzes
this conversion, albeit less efficiently[21]. In wild type IDH1, R132 interacts with C-3
carboxylate of isocitrate, making isocitrate a potent inhibitor of α-KG binding to wild-type
IDH1. Mutation of R132 to other amino acids significantly reduces the isocitrate binding
while making α-KG binding more favorable. Regardless of the controversy about the
mechanism of the neomorphic enzymatic activity, converting α-KG to 2-HG is a shared
feature between mutant IDH1 and IDH2. The significant change in the enzymatic profile
indicates that gain of function may be more important than loss of function in the oncogenic
effects of IDH mutations.

Clues of how this neomorphic enzymatic activity promotes gliomagenesis emerged from
several recent studies. A genome-wide DNA methylation profiling of gliomas identified a
subgroup of gliomas with high specific DNA methylation status termed glioma-CpG island
methylator phenotype (G-CIMP). Interestingly, G-CIMP correlates significantly with IDH1
and IDH2 mutations[22•]. The correlation of IDH1 and IDH2 mutations with
hypermethylation phenotype of gliomas was further confirmed by another 2 studies[23, 24].
The hypermethylation phenotype of gliomas was found to be associated with longer survival
and younger age, consistent with the findings of IDH1 and IDH2 mutations. Similarly, in
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AML, 2-HG-producing IDH mutants induced global DNA hypermethylation[25]. Study in
AML suggested that hypermethylation might be caused by inhibition of tet oncogene family
member 2 (TET2), an α-KG-dependent dioxygenase enzyme, which functions to catalyze
the formation of 5-hydroxymethylcytosine, likely leading to subsequent demethylation of
DNA[26•]. The inhibition of TET2 by mutant IDH may be attributed to decreased α-KG
production as well as direct inhibition of TET2 by 2-HG. Direct evidence of 2-HG in
inducing epigenetic changes was provided by Xu et al who found that 2-HG is a competitive
inhibitor of α-KG-dependent dioxygenases including histone dimethylases and TET 5-
methlycytosine (5mC) hydroxylase[14••]. Other investigators also confirmed that 2-HG
competitively inhibits α-KG-dependent histone lysine demethylases such as JMJD2A[27•].
Taken together, reduced production of α-KG and increased production of 2-HG by mutant
IDHs may coordinate to induce histone and DNA hypermethylation, leading to genome-
wide epigenetic changes and predisposing the cells for malignant transformation.

In spite of these tremendous strides in our knowledge regarding mutant IDH1 and mutant
IDH2, the effects of IDH mutations in glioma tumorigenesis have yet to be fully revealed.
Other mechanisms may include oxidative stress damage[28], aberrant glucose sensing[29]
and aberrant apoptosis pathways[30-32]. Moreover, IDH mutations were found to be
associated with alternative lengthening telomere (ALT) in human glioblastoma[33], and
glioma stem cells with ALT were isolated from a human glioblastoma. Given that glioma
and AML cells are relatively undifferentiated and that IDH mutations impair the
hematopoietic differentiation[25], it will be interesting to investigate whether IDH mutations
play a role in glioma stem cells.

IDH mutations as biomarkers of glioma
IDH1 and IDH2 mutations are present in the majority of low-grade diffuse (WHO grade II)
and anaplastic (WHO grade III) astrocytic, oligodendroglial, and mixed oligodendroglial
neoplasm, as well as secondary glioblastomas. In contrast, IDH mutations are rarely
observed in primary glioblastomas and other primary brain tumors. It is speculated that IDH
mutations can serve as diagnostic and prognostic markers.

Several studies have investigated the utility of IDH mutations as diagnostic marker.
Combination of BRAF and IDH1 genetic status can serve as specific marker to differentiate
between pilocytic astrocytoma from diffuse astrocytoma, since the majority of pilocytic
astrocytomas have BRAF fusion but neither IDH1 nor IDH2 mutations, while majority of
astrocytomas exhibited IDH1 mutations but not BRAF fusions[34]. Another study suggested
that examination of chromosome 7 gain, p53-mutant and IDH1 mutations could distinguish
diffuse astrocytoma from reactive astrocytosis[35]. By examining the status of IDH
mutations in samples originally diagnosed as gangliogliomas, Horbinski et al found that IDH
mutations in the samples correlated with early recurrence, malignant transformation and
death, suggesting these tumors might be infiltrative gliomas that had been misclassified [36].
IDH status was also found to be useful for subclassification of gliomatosis cerebri (GC)[37,
38]. IDH1 mutations were identified in GC in which there was a discernible, solid tumor
mass, but not in classical GC without a solid tumor mass. Not surprisingly, IDH mutations
are only found in adult GC patients and these patients tend to have longer survival.

The pioneering study of IDH mutations in glioblastomas identified a significant association
between IDH mutations and a longer survival and younger age of onset [1]. In adult
glioblastoma patients, IDH mutations predict prolonged progression-free survival as well as
increased overall survival[39, 40]. The prognostic value of IDH mutations in predicting
clinical outcomes is not limited to glioblastomas, but rather has been confirmed in the whole
spectrum of human gliomas [23, 41-43]. However, IDH mutations are rare in pediatric
gliomas, and occur at primarily older age (>=14 years old); when present, IDH mutations
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predict longer survival for these pediatric patients[44, 45]. IDH mutations are also
associated with longer survival in other, less common gliomas such as gliomatosis cerebri, a
rare primary brain tumor[37, 38, 46]. With regard to response to treatment, though some
studies suggested a correlation between the presence of IDH mutations and response to
chemotherapy [47], it is generally believed that IDH status is not a marker for response to
chemotherapy or radiotherapy [48-50]. It is worthwhile to note that for AML, in which IDH
mutations are less frequent than glioma, IDH1 and IDH2 mutations are associated with
significantly worse clinical outcomes. More studies in mechanisms of the oncogenic effects
of mutant IDH1 and mutant IDH2 will elucidate how the presence of IDH mutations affect
outcomes in different tumor types.

Several methods can be used to detect IDH mutations in tumor tissues including sequencing,
immunohistochemical staining, PCR-restriction fragment length polymorphism (PCR-
RFLP) and high resolution melting curve analysis[40, 51-56]. 2-HG, the product of the
mutant IDH1 and IDH2, was found to be elevated in the cancer cells, and detection of this
oncometabolite correlated with the presence of IDH mutations [18, 19]. In AML, elevated 2-
HG can be detected in the serum of the patients with IDH mutations[57•]. It was recently
reported that 2-HG could also be detected by gas-chromatography/mass-spectrometry in
formalin-fixed paraffin-embedded glioma specimens [58•]. More recently, a pilot study used
proton magnetic resonance spectroscopy (MRS) to examine 2-HG in glioma patients in vivo
and found that MRS findings were consistent with the results of detecting 2-HG in resected
tumors by liquid chromatography mass spectrometry [59••]. It will be of great interest to
investigate if 2-HG can be detected in the cerebrospinal liquid and by non-invasive MRS
imaging.

IDH as a therapeutic target
Given that IDH mutations are highly prevalent and specific in human malignant gliomas,
they may serve as potential therapeutic targets. However, due to the largely unknown
mechanisms underlying the oncogenic effects of IDH mutations and association of IDH
mutations with better prognosis of gliomas, it currently remains both difficult and
controversial to utilize these mutations for therapeutic purposes. One study exploited the
gain of function activity of mutant IDH1 enzymes that use α-KG as substrate to produce 2-
HG. Using siRNA and small molecule inhibitor bis-2-(5-phenylacetamido-1,2,4-
thiadiazol-2-yl)ethyl sulfide (BPTES), against glutaminase, an important enzyme in α-KG
production, Seltzer et al. was able to inhibit the production of α-KG and observe a slowed
growth rate of glioma cells harboring IDH1 mutations [60••]. Although glutamine has been
suggested to be the major source of α-KG in myeloid cells, it may not be the case for glioma
in vivo. Additionally, cancer cells with IDH mutations demonstrate decreased α-KG and
elevated 2-HG, which may be deleterious for multiple α-KG-dependent enzymes [13, 14,
26]. Moreover, the 2-HG in glioma cells was not changed by inhibition of α-KG production
in this study. Both biochemical and biological studies indicate that converting α-KG to 2-
HG is an important neomorphic feature of the mutant IDHs. Targeting the production of the
2-HG will be more favorable for inhibiting the oncogenic effects of IDH mutations. To
achieve this, more basic functional and biological studies will be warranted.

Conclusions
It is now recognized that IDH1/2 mutations cause both loss of function and gain of function
of the enzyme. The mutant IDH1 and IDH2 share the capability of converting α-KG to 2-
HG. Findings from recent studies suggested IDH mutations may exert their effect by
affecting α-KG-dependent enzymes, and may be involved in epigenetic events. However,
limited data are available on the biological functions of IDH mutants. Therefore, the
mechanisms of mutant IDH1 and mutant IDH2 in glioma genesis remain largely unknown.
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As a prevalent and specific biomarker, IDH mutations correlate with better clinical
outcomes in the whole spectrum of gliomas, and can serve as an important diagnostic and
prognostic factor. So far, no association of IDH mutations with response to treatment of any
kind has been validated. Targeting mutant IDH for treatment of gliomas is still in its infancy,
and will be hardly practical until more fundamental knowledge is acquired about the biology
of mutant IDHs.
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Key Points

• Mutations in IDH1 and IDH2 confer both a loss and gain of function, with a
decreased affinity for its substrate, isocitrate, as well as neomorphic enzymatic
activity reducing α-KG to 2-HG.

• Reduced production of α-KG and increased production of 2-HG by mutant
IDHs may coordinate to induce histone and DNA hypermethylation, leading to
genome-wide epigenetic changes and predisposing the cells to malignant
transformation.

• IDH mutations hold great diagnostic and prognostic value, however there is
little evidence in its predictive factor for response to treatment.

• Despite the prevalence of IDH mutations in WHO Grade II, III, and secondary
glioblastomas, the oncogenic mechanisms of the mutations remains unknown,
making their utility as therapeutic targets challenging.
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