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AutoDrug is software based upon the scientific workflow

paradigm that integrates the Stanford Synchrotron Radiation

Lightsource macromolecular crystallography beamlines and

third-party processing software to automate the crystallo-

graphy steps of the fragment-based drug-discovery process.

AutoDrug screens a cassette of fragment-soaked crystals,

selects crystals for data collection based on screening results

and user-specified criteria and determines optimal data-

collection strategies. It then collects and processes diffraction

data, performs molecular replacement using provided models

and detects electron density that is likely to arise from bound

fragments. All processes are fully automated, i.e. are

performed without user interaction or supervision. Samples

can be screened in groups corresponding to particular

proteins, crystal forms and/or soaking conditions. A single

AutoDrug run is only limited by the capacity of the sample-

storage dewar at the beamline: currently 288 samples.

AutoDrug was developed in conjunction with RestFlow, a

new scientific workflow-automation framework. RestFlow

simplifies the design of AutoDrug by managing the flow of

data and the organization of results and by orchestrating the

execution of computational pipeline steps. It also simplifies

the execution and interaction of third-party programs and the

beamline-control system. Modeling AutoDrug as a scientific

workflow enables multiple variants that meet the require-

ments of different user groups to be developed and supported.

A workflow tailored to mimic the crystallography stages

comprising the drug-discovery pipeline of CoCrystal

Discovery Inc. has been deployed and successfully demon-

strated. This workflow was run once on the same 96 samples

that the group had examined manually and the workflow

cycled successfully through all of the samples, collected data

from the same samples that were selected manually and

located the same peaks of unmodeled density in the resulting

difference Fourier maps.
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1. Introduction

A key step in drug design is the discovery of drug leads, which

are low-molecular-weight compounds with some affinity for a

protein drug target from which higher affinity compounds

can be derived. Fragment-based design is an approach

that employs macromolecular crystallography to detect

compounds that bind to target proteins, often with affinities

lower than those detected by conventional assays. Potential

drug fragments are soaked into crystals of the target protein,

usually in cocktail mixtures of five to ten compounds (Rees et

al., 2004; Sharff & Jhoti, 2003; Nienaber et al., 2000). With the

development of high-throughput crystallographic methods, it

is feasible to screen large numbers of cocktail mixtures and to
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identify bound compounds that may lead to new drug leads in

a systematic and efficient manner. Although the crystallo-

graphic steps in the process of identifying these potential drug

leads are straightforward and are traditionally performed

manually at a synchrotron-radiation beamline, the procedures

are time-consuming and labor-intensive, even when robotic

sample-handling systems and predefined data-processing

scripts are employed. The need to organize and evaluate the

large number of diffraction images, reduced data sets and

structure-solution results for drug screening further compli-

cates the effort. Consequently, the number of fragment

screens attempted may be limited by the overall workload.

End-to-end automation of these workflows thus promises to

yield significant value to researchers and organizations

developing new drugs.

Complete automation of fragment-based drug-design

experiments faces a number of technical challenges that

complicate any effort to achieve automation that spans the

experimental and computational operations at a macro-

molecular crystallography beamline. Firstly, the sample-

handling hardware system must be sufficiently robust and of

high enough capacity to support hundreds of samples without

failure or manual intervention. AutoDrug employs the Stan-

ford Automated Mounting (SAM) system (Cohen et al., 2002),

a robotic system for transferring frozen samples between

cryogenically cooled cassettes and the goniometer. SAM

systems are deployed at all Stanford Synchrotron Radiation

Lightsource (SSRL) macromolecular crystallography beam-

lines and have mounted over a half million crystal samples to

date.

A second challenge is posed by diverse programming

interfaces. The interfaces to beamline-control systems and

data-collection software packages, which are typically

network-based, differ significantly from the interfaces to data-

processing and structure-determination software packages,

which are frequently command-line based. These differences

in software architecture can complicate the implementation of

a single application that controls both types of software. At

SSRL, the Blu-Ice/DCS beamline-control software is the

interface between the user and the instrumentation for sample

screening and data collection (McPhillips et al., 2002). We have

previously automated numerous sample-oriented processes

within this system, including automatic loop and sample

centering, fluorescence-energy scans and multi-wavelength

diffraction data collection. Web-Ice and Crystal Analysis

Server systems assist users performing auto-indexing and

strategy analysis (González et al., 2008), but do not provide

automatic feedback to ongoing experimental operations at the

beamline. Similarly, the Xsolve system developed by the Joint

Center for Structural Genomics takes as input complete

diffraction data sets, yields MAD-phased electron-density

maps and automatically builds molecular models, but does not

interact with the beamline instrumentation (van den Bedem

et al., 2011). To facilitate the integration of the experimental

and analysis stages of crystallographic experiments, we have

developed a scientific workflow-automation framework,

RestFlow (http://www.restflow.org/). A scientific workflow

defines a series of computational tasks necessary to carry out

a scientific process, such as data collection or data analysis

(Taylor et al., 2007). Brockhauser et al. (2012) recently applied

the scientific workflow concept to automate several individual

macromolecular crystallography tasks (namely, sample char-

acterization, strategy determination and sample grid scan-

ning). Because RestFlow supports workflow steps that employ

diverse programming languages, which in turn support a broad

range of programming interfaces, AutoDrug workflows can

readily include all beamline-control and data-analysis tasks

typically associated with macromolecular crystallography

experiments.

A third challenge of end-to-end automation at a crystallo-

graphy beamline is the large number of data and result files

that must be stored, organized and passed between steps in the

workflow. AutoDrug addresses this problem by employing

features in RestFlow for organizing the data produced by a

workflow in a directory structure similar to those that scien-

tists use when performing experiments and processing data

manually. RestFlow also facilitates the generation of flexible

reports from ongoing and completed experiments for debug-

ging, auditing and summarizing experimental results.

AutoDrug thus expands the capabilities of the existing

automation technology at SSRL (Soltis et al., 2008) to meet the

demanding requirements of high-throughput drug discovery.

AutoDrug automatically carries out the tedious and some-

times difficult process of screening many hundreds to perhaps

thousands of samples and analyzing numerous electron-

density maps. Unlike other automated systems such as Xsolve

(van den Bedem et al., 2011), the SPACE and PERON systems

(Sugahara et al., 2008) and the library-screening system

reported by Mooij et al. (2006), AutoDrug runs unassisted and

unsupervised at the beamline.

2. AutoDrug workflows

Fragment-based drug discovery generally begins with soaking

crystals of the target protein in solutions that contain small

chemical compounds representing potential drug fragments

and freezing them in liquid nitrogen. The compounds that bind

to the protein are detected by collecting X-ray diffraction data

and applying molecular replacement to determine the mole-

cular structure of the protein. Excess electron density in

difference maps between the native protein and the protein

soaked with chemicals often indicates the presence of a bound

compound.

AutoDrug runs beamline-control software and third-party

data-processing programs to screen, collect X-ray data,

process data and to determine the structure and any excess

electron density that may be present. AutoDrug workflows are

initiated from the command line and require the following

input files: (i) a standard SSRL Excel spreadsheet that

contains information about the samples mounted in cassettes

or uni-pucks installed at the beamline, (ii) an AutoDrug-

specific input file describing the experimental parameters

for screening, data collection, processing etc. and sample-

acceptance criteria for determining which samples should be
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used for data collection and (iii) a Protein Data Bank file of

the target protein structure for molecular replacement. All

files created during a particular run are stored in a single

directory tree and organized according to path templates

defined in the workflow. AutoDrug provides customizable

reports providing real-time and post-run feedback on

outcomes and statistics. Post-run reports can also be used to

facilitate comparisons across multiple AutoDrug runs.

Fig. 1 illustrates a simplified AutoDrug workflow for the

steps of X-ray diffraction screening, data collection, data

processing, structure solution and electron-density analysis.

2.1. Screen sample

AutoDrug uses procedures previously implemented in the

SSRL Blu-Ice/DCS control system (McPhillips et al., 2002) and

Web-Ice (González et al., 2008) to screen samples and to

collect data. AutoDrug uses the SAM robot (Cohen et al.,

2002) to individually mount cooled crystal samples onto the

beamline diffractometer and then uses a loop-centering

algorithm (Miller et al., 2004) to align the crystal sample with

the X-ray beam. Next, AutoDrug collects two diffraction

images 90� apart and analyzes them. AutoDrug runs

LABELIT (Sauter et al., 2004) to determine the unit-cell,

diffraction-limit and spot-mosaicity parameters. AutoDrug

uses these parameters to check against user-specified thresh-

olds and other criteria to decide which samples should be

queued for data collection.

2.2. Collect data

For each sample that passes the specified criteria, AutoDrug

collects a complete X-ray diffraction data set using data-

collection parameters that are based on strategy programs

such as ipmosflm (Leslie & Powell, 2007) or BEST (Bour-

enkov & Popov, 2006). AutoDrug will override these para-

meters if the user specifies them in the input file.

2.3. Process data

Once a complete data set has been collected, AutoDrug

uses XDS (Kabsch, 2010) to integrate the Bragg reflections,

POINTLESS (Winn et al., 2011) for analysis and sorting and

SCALA (Evans, 2006) to scale and merge the reflections.

AutoDrug uses TRUNCATE to calculate amplitudes and

RFREE to select a free reflection set for refinement validation

(Winn et al., 2011).

2.4. Solve structure

Current AutoDrug workflows require that a suitable struc-

ture model already exists and that structure solution by

molecular replacement is straightforward. Although the

existing model could be directly refined against new data

in many cases, molecular replacement is used to cope with

pronounced non-isomorphism or conflicting indexing

schemes. AutoDrug carries out molecular replacement using

MOLREP (Vagin & Teplyakov, 2010) and structure refine-

ment using REFMAC (Murshudov et al., 2011).
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Figure 1
A simplified generic AutoDrug workflow. The entire workflow is
completely automated at the SSRL beamlines and runs without user
interaction or supervision.



2.5. Analyze density

Once the structure has been

solved and refined, AutoDrug

calculates an electron-density

difference Fourier map and then

identifies and tabulates areas of

excess electron density using FFT

(Eyck, 1973). Although current

versions of AutoDrug do not

attempt to model the excess

density with the compounds that

were used in the soak, this step

could be implemented using

programs such as X-LIGAND

(Oldfield, 2001) or LigandFit

(Terwilliger et al., 2007).

3. AutoDrug customization

While all versions of AutoDrug

have the basic steps described

above, the steps can be expanded,

interleaved or carried out in a

different order depending on the

requirements of the users. In one

version, for example, AutoDrug

runs data collection and the

subsequent data-processing steps

concurrently when possible,

thereby maximizing the efficiency

of the workflow. Other variations

include screening samples in

groups rather than individually.

In this case, crystals soaked in the

same cocktail mixtures can be

compared against each other to

determine the best diffracting

sample among the group for data

collection. In another workflow,

AutoDrug screens for space-

group symmetry when the

samples crystallize in more than

one space group.

AutoDrug workflows have also

been designed to improve scien-

tific experiments. In a fragment-

based drug-discovery study

involving HIV protease

(Perryman et al., 2010) as the

target protein, diffraction-based

rastering (Song et al., 2007) was

implemented in the AutoDrug

workflow to automatically align

samples to the X-ray beam where the highest quality diffrac-

tion could be obtained. Replacing automated loop alignment

with diffraction-based rastering increased the number of

samples that met the data-collection criteria when the sample

and loop size were mismatched. Once a workflow has been

written, it is straightforward to test new sample criteria and
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Figure 2
Diagram of an AutoDrug workflow for data processing. The workflow reflects the exact steps that a
crystallographer takes when executing programs for data processing. The subworkflows RunXds,
RunPointless, RunScala, RunTruncate and RunFreeR run the programs XDS, POINTLESS, SCALA,
TRUNCATE and FREERFLAG for data processing. The subworkflow RunXtriage runs xtriage, a program
that analyzes the data. The diagram is understood by both software programmers and scientists, and
simplifies communication during workflow development. The diagram was generated by RestFlow based on
the workflow specification and was rendered using GraphViz (http://www.graphviz.org).



modify routines that could potentially improve the efficiency

and productivity of the workflow.

4. AutoDrug criteria

AutoDrug software developers work closely with experi-

menters to accurately model their decision-making process.

In practice, user groups may use soft thresholds and/or sliding

limits. Because AutoDrug requires the specification of fixed

criteria, it yields very consistent results. Examples of criteria

that are used in current AutoDrug workflows include a

comparison of the unit-cell parameters and crystal quality

parameters that are determined during the screening process.

In one case, the unit-cell lengths are required to be within 1%

of the standard values. In another case, the diffraction reso-

lution and crystal mosaicity have to be within a given range.

Versions of AutoDrug also compare an overall score as

calculated in Web-Ice (González et al., 2008), which incorpo-

rates into a single value the diffraction resolution, mosaicity

and the r.m.s.d. of the observed and predicted Bragg spots.

5. Demonstration of AutoDrug

A customized AutoDrug workflow was commissioned in

collaboration with CoCrystal Discovery (CoCD) Inc. The

workflow closely mimicked the steps that CoCD researchers

had been carrying out on SSRL beamlines as part of their

drug-discovery pipeline. The workflow was tested on 96 crys-

tals containing samples that had previously been manually

screened and analyzed for bound fragments by CoCD

researchers. Samples with the same cocktail soaks were

grouped together, with approximately three per group. The

groups were identified in a column in the SSRL Excel

spreadsheet. Since this workflow was designed for crystals

with little variation in shape and size, the data-collection

parameters such as the resolution at the edge of the detector,

the oscillation per image and the exposure time were specified

in the AutoDrug-specific input file for each sample rather than

calculated. Once the cassette containing the samples had been

loaded into the robot dewar and the spreadsheet had been

uploaded, a script invoking AutoDrug was run from the

command line with the location of the sample spreadsheet and

user input file as arguments. Each sample in a group was

mounted by the robot, centered in the beam using loop

centering, exposed to X-rays 90� apart and returned to the

cassette. The resulting diffraction images were analyzed and a

WebIce-based score was calculated. When all of the crystals in

a group had been screened, the scores were compared for

those samples meeting the basic criteria specified in the input

file (unit-cell parameters within 1%, mosaicity less than 1� and

a maximum diffraction resolution better than 2 Å). The crystal

with the highest score in a group was remounted, re-centered

and re-indexed and a full data set was then collected. If no

sample in the group met the minimum criteria no data

collection was carried out and the next group of samples was

examined. When data collection was finished for each sample,

the data were processed and scaled and the structure was

solved based on the PDB structure. After a few rounds of

refinement, a weighted electron-density difference Fourier

map was calculated and peaks in the map greater than 5� were

listed.

AutoDrug successfully screened all 96 samples and selected

the same 16 crystals that the CoCD researchers had selected

for data collection. Seven data sets yielded density above 5� in

the target regions of the structure, fully matching the results

of the prior experiments carried out by CoCD researchers.

However, AutoDrug managed the entire process in a single

run without interruption or manual intervention.
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Figure 3
Conceptual view of a simple workflow implemented with RestFlow. A
workflow comprises one or more nodes connected by data inflows and
outflows. Each node encapsulates either an actor or another workflow.
Each data flow is associated with a universal resource identifier (URI)
template that specifies where data passing across the data flow are
persisted (i.e. saved as a file).



6. Specifying workflows with RestFlow

AutoDrug is implemented using RestFlow, a new application-

development framework for creating automated scientific

workflows (http://www.restflow.org/). RestFlow emphasizes the

flow of data between tasks, while leaving the implementation

details of each task open to the developer. A functional

RestFlow application is architecturally similar to the scientist’s

understanding of the process under development (Fig. 2). This

similarity has empowered scientists in our group to write

workflows for end users using RestFlow and to easily verify the

work of software developers.

This dataflow-oriented approach to modeling and executing

scientific workflows in RestFlow is similar to the approaches

taken by Kepler (Ludäscher et al., 2006), DAWB (Brockhauser

et al., 2012), Taverna (Oinn et al., 2006), Triana (Taylor et al.,

2007), VisTrails (Bavoil et al., 2005) and other general-purpose

scientific workflow systems. RestFlow is fundamentally

distinguished from these systems by its use of uniform

resource identifier (URI) template expressions (described in

detail below) to declare the paths of data flow, to describe how

the data produced by a run of a workflow should be organized

and retained, and to uniquely name resulting directories and

output files using metadata.

The design of a RestFlow application involves splitting the

scientific workflow into computational and experimental steps

to be carried out by software components termed actors.

These components are analogous to the actors of Kepler and

DAWB and of the Ptolemy II system (Eker et al., 2003), on

which both Kepler and DAWB are based. However, in Rest-

Flow each actor is encapsulated by a generic component,

called a workflow node, which manages the flow of data into

and out of the actor. A node invokes the actor it manages

when data required by the actor are received on the inflow(s)

of the node; the node subsequently publishes the data

produced by the actor on the node’s outflow(s). A workflow

comprises one or more nodes with interconnected inflows and

outflows (Fig. 3). Nodes can also encapsulate and invoke

entire subworkflows. A multi-step workflow such as that

required for fragment-based drug discovery will typically

consist of many nodes.

In RestFlow, all outflows are named uniquely and provide

locations for results to be stored. The unique name takes

the form of a URI template (http://code.google.com/p/

uri-templates/), which has the familiar appearance of a

directory path with integrated variable names (Fig. 4a). Vari-

ables in the URI template are expanded at runtime using the

latest values of data passing through the inflows or outflows

(Fig. 4b), such that each data item produced on an outflow is

also named uniquely. In this way, RestFlow dynamically

creates directory paths and filenames based on metadata from

the experiment, such as sample name, X-ray energy used,

LABELIT output etc.

RestFlow actors currently can be implemented in Python,

Perl, Bash, Tcl, Groovy and Java. Support for multiple

languages allows the developer to select the most appropriate

language for a particular task. For example, procedures

written in Tcl can control the beamline using the Blu-Ice

event-driven API, while procedures written in Groovy can

expand text templates to yield input files for third-party

crystallographic applications. The node transfers inflow data

to variables of the selected language before execution and
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Figure 4
The role of URI templates in the management of data in a simplified
RestFlow program for crystallographic data collection. Rounded boxes
represent nodes carrying out tasks at the beamline and the expressions in
the square boxes are URI templates that specify routes of data flow. (a)
Variables are specified in the URI templates (shown in bold curly braces:
{variable}). (b) The variables are expanded at run time using current
values of data and metadata passing through the node to yield unique
identifiers and destinations on the file system.



exports output variable values back to the outflows at the end

of the task (see Fig. 3). This allows data values and references

to data files to easily flow from actor to actor even when the

actors are implemented in different programming languages.

For actors that require access to a file system, the node

automatically creates unique scratch directories in which to

run external programs. RestFlow copies necessary data files

into these scratch directories and copies generated files from

the scratch directory to the destinations indicated by the

node’s outflows.

At runtime, RestFlow directs each node to execute its actor

(or sub-workflow) repeatedly until inflow data are no longer

available. This data-driven behavior is similar to that of many

dataflow systems, but is distinct from the behavior of task-

dependency-based workflow systems that execute each task

node just once per workflow run1. The data-driven approach is

compatible with multiple scheduling schemes, and RestFlow,

like Kepler and Ptolemy II, delegates the scheduling of actor

invocations to an explicit component, the director, associated

with each workflow, so that the scheduling of actor invocations

can be chosen separately for each workflow and subworkflow.

RestFlow currently provides two data-driven directors

supporting single-threaded execution of workflows in which

only one actor is invoked at a time and one that implements

a multi-threaded scheduling scheme that invokes actors

concurrently where possible. The latter can yield the maximum

parallelism compatible with the topology of the workflow and

the availability of data. Each subworkflow is assigned its own

director component independently of the choice of director

for the containing workflow. Directors in RestFlow also are

responsible for determining how data flowing between nodes

is buffered; the data-driven directors currently provided by

RestFlow implement unbounded first-in-first-out (FIFO)

buffers on all node inflows so that slower downstream nodes

do not block the further execution of faster upstream nodes.

All of the data-driven directors in RestFlow support workflow

cycles (e.g. for/while loops and feedback loops), conditional

control flow constructs (e.g. if/then) and exception handling.

The latter allows a workflow to shut down and/or change the

flow of the data through the workflow following an unexpected

error.

RestFlow applications are specified using plain-text Spring

(Spring Framework; http://static.springsource.org/spring/docs/

3.0.x/spring-framework-reference/html/) configuration files

written in readable YAML (YAML Ain’t Markup Language.

http://www.yaml.org/) format. At runtime, Spring loads the

files and assembles an object-oriented Java application. As

such, RestFlow applications may mix workflow technology,

such as actors, nodes, inflows and outflows, with traditional

object-oriented techniques and pre-existing libraries. This

combination of programming paradigms provides a powerful

and flexible framework for implementing complex automated

scientific workflows.

RestFlow is one of the first scientific workflow-automation

systems that implements a very simple actor interface that

shields actor developers from the details of dataflow

programming through a separate node entity. RestFlow nodes

thus resemble the frames introduced in Bowers et al. (2006)

and Ngu et al. (2008) to separate dataflow and control-flow

concerns. In RestFlow, this division of labor between general-

purpose workflow nodes responsible for managing the flow of

data into and out of actors on the one hand and task-specific

actors on the other enables a number of innovations that

further simplify workflow development. The simplicity of the

actor API not only makes it extremely easy to develop new

actors as needed, but also makes it relatively easy to add to

RestFlow support for additional actor programming languages.

Scientists consequently can use the scripting languages that

they are already familiar with. Because nodes can be config-

ured to persist outflowing data to files automatically, work-

flows need not include explicit file-reading and file-writing

actors, and the organization of data produced by a workflow

is immediately apparent to (and easily changed by) a scientist

reading the workflow specification. Finally, the use of URI

template expressions in the routing, naming and storing of

data enables RestFlow to effectively organize data associated

with numerous subprojects, samples and experiments during

and following workflow runs.

7. Summary

AutoDrug is an automated scientific workflow for fragment-

based drug discovery. The workflow specified by CoCrystal

Discovery, from sample screening and selection through

electron-density map analysis, was successfully automated and

carried out by AutoDrug. This demonstrates the potential of

AutoDrug to perform experiments involving large numbers of

crystals unassisted and unattended, thus expanding the search

space and expediting the discovery of drug leads. We plan to

automate other workflows at our beamlines using the under-

lying application framework RestFlow, including data-

reduction tasks carried out by users and alignment procedures

carried out by staff. Future workflows will automate experi-

ments that require complex sample-screening and data-

collection strategies, such as projects that require large

numbers of crystals in order to collect a complete data set

(e.g. radiation-sensitive microcrystals). RestFlow and several

generic AutoDrug workflows (http://smb.slac.stanford.edu/

autodrug) are licensed as free and open-source software and

are available to the general community upon request.

The project described was supported by Grant Nos. P41

RR001209 and P01 GM083658-01 from the National Institutes

of Health (NIH). Its contents are solely the responsibility of

the authors and do not necessarily represent the official view

of NCRR or NIH. Portions of this research were carried out at

the Stanford Synchrotron Radiation Lightsource, a national
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1 The data-driven approach of RestFlow also is distinct from event-driven
models of computation such as that implemented in Evans and Sutherland
function networks (Yamaguchi et al., 1985). In the latter, data used by the
functions in a network are never consumed but are only replaced by newly
arriving data; each function re-computes its outputs each time data arrive on
any one of its inputs. This contrasts with the behavior of RestFlow, in which all
inputs to an actor are consumed each time an actor is invoked; new data must
be received on all inflows before a node will invoke its actor again.
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B. Ludäscher & N. Mamoulis, pp. 566–572. Berlin: Springer.

Nienaber, V. L., Richardson, P. L., Klighofer, V., Bouska, J. J.,
Giranda, V. L. & Greer, J. (2000). Nature Biotechnol. 18, 1105–
1108.

Oinn, T. M. et al. (2006). Concurrency Comput. Pract. Exper. 18,
1067–1100.

Oldfield, T. J. (2001). Acta Cryst. D57, 696–705.
Perryman, A. L., Zhang, Q., Soutter, H. H., Rosenfeld, R., McRee,

D. E., Olson, A. J., Elder, J. E. & Stout, C. D. (2010). Chem. Biol.
Drug Des. 75, 257–268.

Rees, D. C., Congreve, M., Murray, C. W. & Carr, R. (2004). Nature
Rev. Drug Discov. 3, 660–672.

Sauter, N. K., Grosse-Kunstleve, R. W. & Adams, P. D. (2004). J. Appl.
Cryst. 37, 399–409.

Sharff, A. & Jhoti, H. (2003). Curr. Opin. Chem. Biol. 7, 340–345.
Soltis, S. M. et al. (2008). Acta Cryst. D64, 1210–1221.
Song, J., Mathew, D., Jacob, S. A., Corbett, L., Moorhead, P. & Soltis,

S. M. (2007). J. Synchrotron Rad. 14, 191–195.
Sugahara, M. et al. (2008). J. Struct. Funct. Genomics, 9, 21–28.
Taylor, I. J., Deelman, E., Gannon, D. B. & Shields, M. (2007). Editors.

Workflows for e-Science. New York: Springer.
Ten Eyck, L. F. (1973). Acta Cryst. A29, 183–191.
Terwilliger, T. C., Adams, P. D., Moriarty, N. W. & Cohn, J. D. (2007).

Acta Cryst. D63, 101–107.
Vagin, A. & Teplyakov, A. (2010). Acta Cryst. D66, 22–25.
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242.
Yamaguchi, K., Inamoto, N. & Kunii, T. L. (1985). IEEE Comput.

Graph. Appl. 5(3), 48–60.

research papers

Acta Cryst. (2013). D69, 796–803 Tsai et al. � AutoDrug 803

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=en5533&bbid=BB34

