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Abstract

An objective measurement technique to quantify 3D femoral head shape was developed and
applied to normal subjects and patients with cam-type femoroacetabular impingement (FAI). 3D
reconstructions were made from high-resolution CT images of 15 cam and 15 control femurs.
Femoral heads were fit to ideal geometries consisting of rotational conchoids and spheres.
Geometric similarity between native femoral heads and ideal shapes was quantified. The
maximum distance native femoral heads protruded above ideal shapes and the protrusion area
were measured. Conchoids provided a significantly better fit to native femoral head geometry than
spheres for both groups. Cam-type FAI femurs had significantly greater maximum deviations
(4.99£0.39 mm and 4.08+0.37 mm) than controls (2.41+0.31 mm and 1.75+0.30 mm) when fit to
spheres or conchoids, respectively. The area of native femoral heads protruding above ideal shapes
was significantly larger in controls when a lower threshold of 0.1 mm (for spheres) and 0.01 mm
(for conchoids) was used to define a protrusion. The 3D measurement technique described herein
could supplement measurements of radiographs in the diagnosis of cam-type FAI. Deviations up
to 2.5 mm from ideal shapes can be expected in normal femurs while deviations of 4 to 5 mm are
characteristic of cam-type FAI.
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Introduction

Femoroacetabular impingement is a recently described disease of the hip that involves
reduced clearance between the femoral head and acetabulum due to morphologic
abnormalities of the femur (termed cam FALl), acetabulum (termed pincer FAI), or both
(termed mixed FAI).21 Cam-type FAI is marked by bony deformities of the femoral head
epiphysis and/or reduction of head-neck offset.23:43 Cam deformities appear most often in
the anterosuperior or anterolateral region of the femoral head and may cause shearing of
hyaline cartilage, labral tears and early onset osteoarthritis (OA) in young adults.21:22:30

Radiographs and physical examinations are the first tools to diagnose cam-type FAI.13:37.46
Physical examinations, involving passive flexion, adduction, and internal rotation of the hip,
can often replicate pain and demonstrate loss of range of motion in patients with cam-type
FAI, but cannot localize intra-articular bony abnormalities.3” Standard radiographic
measurements, such as the alpha angle, provide an estimate of how femoral head shape in
hips with suspected cam-type FAI deviates from a perfect circle.13:3546 However, there is
disagreement in the literature regarding the optimal radiographic projection to view cam
deformities.18:25:33 |n addition, the reliability of two-dimensional (2D) radiographic
measurements has been debated.8-11.14

Computed tomography (CT) and magnetic resonance (MR) imaging improve the
visualization of cam deformities as well as provide a qualitative assessment of the biological
response of adjacent tissue.917:36 Unfortunately, published CT/MR based techniques for
measuring cam-type FAI, such as radial MRI or acetabular sector angles, still yield only a
2D characterization of femoral head deformities, since measurements are made on a single
image slice or limited series of slices.2:17:1840 Tg this end, patient-specific 3D
reconstructions of femoral head geometry, generated from segmentation of volumetric CT or
MR images, have been described to quantify femoral head shape. Most often, 3D
reconstructions are fit to spheres.1-64% However, there is evidence that even healthy femurs
are aspherical and that the articulating surfaces of the whole hip joint may be more
accurately described by rotational ellipsoids or conchoids.12:31.41

Currently, there lacks methodology to objectively isolate the femoral head from the neck
and identify the 3D location and size of cam-type deformities. Furthermore, quantitative
descriptions of how 3D femoral head shapes deviate with respect to ideal shapes are not
available. Finally, anatomical deviations from ideal shapes that can be expected in femoral
heads with suspected cam-type FAI compared to normal femurs have not been reported.
Thus, the purpose of this study was to develop an objective measurement technique to
quantify and compare 3D femoral head shape between normal subjects and cam-type FAI
patients.

Patients and methods

Subject selection

Institutional Review Board (IRB) approval (#10983) was obtained to prospectively acquire
high-resolution multi-detector CT scans of the pelvis and proximal femur in 15 patients (14
males, 1 female) with cam-type FAI. At the time of this study, all patients had hip and groin
pain during activity, a positive impingement test, and radiographic evidence of cam-type
FAI. In addition, all patients received or were scheduled for femoral osteochondroplasty and
treatment of corresponding chondrolabral injury. Three patients were also treated for mixed
FAI with correction to the acetabulum, but still had clear radiographic evidence of cam-type
FAL
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CT scans were acquired using a Siemens SOMATOM 128 Definition CT Scanner (120 kVp
tube voltage, 512 x 512 acquisition matrix, 1.0 mm slice thickness, 0.9 to 1.0 pitch). The
baseline tube current was 250 mAs (CareDose used to minimize radiation exposure) and the
estimated dose equivalent was 0.969 rem. The field of view covered the lateral border of
both hips and varied between 300-400 mm across patients.

Control femurs were retrospectively selected from a collection of dissected and CT scanned
cadavers (IRB #11755). Specimens had been screened to exclude those with signs of
osteoarthritis and gross bony abnormalities. A cadaveric femur was chosen to match each
patient by sex, age, weight, height, and body mass index (BMI). Femurs were aligned
anatomically and imaged in a GE High Speed CTI Single Slice Helical CT scanner (100
kVp tube voltage, 512 x 512 acquisition matrix, 1.0 mm slice thickness, 1.0 pitch, 100 mAs
tube current, 160 mm field of view).42

Digitally reconstructed radiographs (DRR) were generated from the CT images to measure
the alpha angle and head-neck offset of both patients and controls using the standing frog-
leg lateral view of the femur.32 First, CT image data of only the femur were isolated from
the complete CT image stack using segmentation masks and a Boolean operation within
Amira software (v5.3, Visage Imaging, San Diego, CA). The femur images were then
rotated into the standing frog-leg position (femur flexed approximately 35° and externally
rotated approximately 60°) and a DRR was generated to simulate plain film x-rays (Fig. 1).
Alpha angle and head-neck offset were measured as described by Notzli et al. and Eijer et
al., respectively, and adapted for the frog-leg lateral view by Clohisy et al.1519:35 (Fig. 1).

3D reconstruction

Bone surfaces were semi-automatically segmented from CT image data using Amira and
validated threshold settings.*° To improve resolution of the segmentation mask, CT images
were up-sampled to 1536x1536, 0.3 mm thickness for patients and 1024x1024, 0.5 mm for
controls. A sensitivity study found that further up-sampling of either control or patient
images did not appreciably alter the shape of resulting 3D reconstructions. Reconstructed
surfaces were triangulated and segmentation artifacts were removed by slightly smoothing
surfaces using tools available in Amira.

The femoral head-neck junction was delineated using a custom Matlab script (r2010a;
MathWorks, Natick, MA). First, a contour map of principal curvatures was created for the
entire femoral surface and points of inflection (curvature = 0) were connected
circumferentially around the head to define the transition between the head and neck (Fig
2a). Next, a flexible 3D cutting surface was fit to the inflection points (Fig. 2b). The femoral
head was identified as the section of the femur proximal to the cutting surface (Fig. 2c).

Comparison to ideal geometries

Femoral head reconstructions were fit to two ideal geometries: spheres and rotational
conchoids.3 First, the sphere that best fit the nodal coordinates of the femoral head was
determined. Next, a spherical surface was created by projecting nodes from the native
femoral head onto the best-fit sphere. Likewise, a best-fit conchoid was determined and fit
for each femoral head according to:

r=a+bcosf, [1]
where ris a curve with length measured from the geometric center of the conchoid, &is the

angle between rand the polar axis, and gand b are radii extending from the center (Fig. 3).
The center of the conchoid was defined as the center of the best-fit sphere.
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A custom C++ script measured the distance between nodes on the native femoral head and
the best-fit geometries; the maximum distance was identified as “maximum deviation”, with
units of mm. Fitting errors between the native femoral head and the best-fit geometry were
calculated as the root-mean-squared distance between nodes on the native head and the best-
fit geometry. Lower fitting errors indicated a better fit. The fovea of the femoral head was
visually identified and excluded during sphere/conchoid fitting and calculation of maximum
deviation.

Regionalization of the femoral head and characterization of the protrusion

Regional analysis was completed by dividing each femoral head into four regions:
anterolateral (AL), anteromedial (AM), posterolateral (PL), and posteromedial (PM). First, a
plane was created based on three points: (1) the geometric center of the head when fit to a
sphere, (2) the center of the narrowest cross-section of the neck (i.e. the average Cartesian
coordinates of the surface nodes at the narrowest section of the neck), and (3) the
circumferential center of the femoral shaft at the superior aspect of the lesser trochanter (i.e.
the average Cartesian coordinates of surface nodes at a cross section of the superior aspect
of the lesser trochanter). The first plane was approximately equivalent to a coronal slice as it
divided the anterior and posterior halves of the femoral head. Using direction cosine values
from the first plane and the center of the best-fit sphere, a second plane was created
perpendicular to the first to divide the medial and lateral halves of the head. These bisecting
planes defined the four regions of the femoral head (Fig. 2d), which were used for all
subsequent analyses at the regional level (i.e. same planes used for conchoid and sphere
analysis).

The region containing the maximum deviation from ideal geometry was identified as the
location of the protrusion. Protrusion area was measured as the deviation threshold (i.e. the
lower bound defining a protrusion) was increased logarithmically from 0 mm to 1.0 mm,
with an additional deviation threshold at 0.5 mm. Protrusion areas were reported as
absolutes (mm?) and as a percentage of total area of the region in which they were located.

Statistical analysis

Results

Variables of interest were assessed for normality using the Shapiro-Wilk test. A paired t- test
detected statistically significant differences between normally distributed variables. A
nonparametric Mann-Whitney U test was used for data that were not normally distributed.
Significance was set at p < 0.05.

Alpha angles and head-neck offsets measured on the frog-leg lateral view were compared
using paired t-tests. Fitting errors and maximum and mean deviations from a sphere and
conchoid were compared between patients and controls. Fitting errors were also compared
between sphere and conchoid fits within each subject group (e.g. sphere vs. conchoid for
controls). Regionalized maximum and mean deviations from a sphere and conchoid were
compared between patients and controls. Finally, differences in protrusion areas between
controls and patients were tested at each deviation threshold for both spheres and conchoids.
Data were reported as mean = standard error of the mean unless otherwise noted.

The average and standard deviation of the age, weight, height and BMI of the patients and
(controls) was 26 + 7 (27 + 8) years, 84 + 10 (83 £ 10) kg, 181 £ 8 (182 + 7) cm, and 25.3 +
3.4 (24.9 + 3.2) kg/m?, respectively. Alpha angles for control subjects were 45.9 + 7.8° and
fell within a range previously reported for asymptomatic subjects.1539 Alpha angles for
patients (68.5 + 13.5°) were significantly greater than those of controls (p < 0.001). The
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femoral head-neck offset in patients (4.9 + 1.9 mm) was significantly less when compared to
controls (7.1 = 2.2 mm) (p=0.01).

Compared to a sphere, the rotational conchoid provided a better fit to both patients (p =
0.001) and controls (p < 0.001) (Fig. 4). In addition, control femurs fit the ideal geometry
better than patient femurs for both the sphere (p < 0.001) and the conchoid (p < 0.001).
Patients had greater maximum deviations from both the sphere and conchoid when
compared to controls (p< 0.001). Maximum deviations, maximum deviation 95% confidence
intervals (Cl), and average fitting errors are shown in Table 1.

Maximum deviations from a sphere were less for control femurs than for patients in all
regions. Differences were significant in the AL (p<0.001), AM (p = 0.023), and PL (p =
0.016) regions. Mean deviations for the control femurs were less than for patients, but were
only statistically significant in the PL region (p = 0.011) (Fig. 5).

Maximum deviations from a conchoid were significantly smaller for control femurs than for
patients in all regions (Fig. 5) As with the sphere, mean deviations from a conchoid for the
control femurs were less than for patients, but were only statistically significant in the PL
region (p = 0.045) (Fig. 5).

The maximum deviation from ideal geometries occurred most often in the AL region. This
trend was true for all patients when fit to both spheres and conchoids. For the control femurs
fit to spheres, 14 of 15 showed a maximum deviation in the AL region, with 1 being in the
PM region. For controls fit to conchoids, there were 4 femurs with maximum deviation in
the PM region, with the remaining 11 being in the AL region.

When fit to spheres and with a 0 mm deviation threshold, protrusion areas were 827.1 + 42.2
mm? (68.9 + 3.7% of region) and 675.8 + 39.3 mm? (53.0 + 3.1%) for controls and patients,
respectively (Fig. 6). Using conchoids and a 0 mm deviation threshold, protrusion areas for
controls and patients were 685.8 + 56.3 mm? (54.0 + 3.5%) and 518.4 + 41.3 mm? (40.8 +
3.4%), respectively (Fig. 6).

Protrusion areas for the control group were significantly larger than that of the patients at
lower deviation thresholds (Fig. 6). For the sphere, area differences between controls and
patients were significant at deviation thresholds of 0 mm, 0.01 mm, and 0.1 mm (all p
<0.016). For the conchoid, area differences were significant at thresholds of 0 mm and 0.01
mm (both p < 0.021). At a deviation threshold of 1.0 mm for the sphere and 0.5 mm for the
conchoid, the relationship between control and patient protrusion areas was inverted; above
these thresholds the areas of patient protrusions were larger (Fig. 6).

Discussion

The purpose of this study was to develop an objective technique to isolate, quantify, and
compare 3D femoral head shape between normal subjects and cam-type FAI patients. We
determined that patients with cam-type FAI had femoral heads that deviated significantly
more from ideal shapes than controls. While this result is to be expected, until now a
quantified description of 3D deviations from ideal shapes in cam-type femurs relative to
their normal counterparts has not been presented. In addition, to our knowledge, the
characteristic features of bony protrusions beyond ideal geometries in normal subjects and
patients with cam-type FAI had not been reported. Here, we found the counter-intuitive
result that protrusion areas on the control femurs were significantly greater than protrusions
on the cam-type FAI femurs. Nonetheless, protrusions on the cam-type FAI femurs were
associated with significantly higher maximum deviations, which may be a greater

Ann Biomed Eng. Author manuscript; available in PMC 2014 June 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Harris et al.

Page 6

contributor to joint damage and pain than the broad, yet low-lying, protrusions found on the
control femurs.

The femurs analyzed in this study deviated from both spheres and rotational conchoids but
were more similar to conchoids. This relationship was true for both control and patient
femurs as indicated by conchoid fitting errors that were significantly lower than those from
sphere-fitting. The better fit to rotational conchoids supports the theoretical findings of
another study.3! Thus, when analyzing femoral head shape for surgical planning purposes,
the conchoid is likely to give a more accurate indication of deviation from normal than a
perfect sphere.

Maximum deviations were significantly smaller for control femurs than for patients. Still,
maximum deviations for the control subjects averaged 2.41 mm (sphere-fit) and 1.75 mm
(conchoid-fit), suggesting that some level of deviation from any ideal geometry can be
expected among normal femurs. This amount of deviation is similar to the 2.8 mm of
asphericity found in a prior study of subjects with no evidence of FAI.18 Patient femurs had
maximum deviations that were roughly 2.5 times greater than control subjects. Control
femurs were also a significantly better fit to both the sphere and the conchoid than were the
patients. Hence, when comparing deviations from ideal shapes using either the sphere or the
conchoid, measuring maximum deviation and fitting error facilitates a quantifiable
distinction between normal and cam-type femurs that may be relevant when determining
debridement surgery to treat cam-type FAL.

In this study, the largest deviations from ideal geometries were most often in the
anterolateral region. This was an expected result for the patient femurs, as the anterolateral
and anterosuperior sections of the femoral head have been identified as the primary locations
for cam lesions.23:44 Considering this region also contained the maximum deviation for most
control subjects reinforces the conjecture that this area is sensitive to developmental
deformities that could result in impingement. Outside the anterolateral region, controls had
maximum and mean regional deviations that were generally less, yet not always
significantly so, than patients. So, while deviations in the anterolateral region were the most
prominent in our study, a cam-type FAI femur may have lesions or deformities throughout
the surface of the femoral head.

An interesting phenomenon was observed with respect to the maximum deviation and
protrusion area. Although patients had larger maximum deviations than controls, protrusion
areas on control subjects were actually greater than that of patients. However, this trend was
inverted when deviation thresholds defining a protrusion were raised above 0.5 mm and 1.0
mm for conchoids and spheres, respectively. These results suggest that broad, but smooth/
flat, protrusions may be present in normal femurs. In subjects with cam-type FAI,
protrusions were more localized with higher maximum deviations. The difference in the
shape of the protrusion between control and patient femurs may support the suspected high-
pressure, high-shear mechanism of damage that is thought to occur in cam-type FAI hips.21

There were limitations to this study that should be considered when interpreting the
findings. First, controls in this study did not have a documented patient history, which
limited the clinical characterization of joint health to that of gross observation.
Categorization as a control femur relied upon qualifications, including cartilage/subchondral
appearance. However, alpha angle and head-neck offset values for the control subjects fell
within acceptable ranges for normal femurs.19:39

An additional limitation was that patients were included only if they had radiographic
evidence of cam impingement and associated symptoms consistent with FAI. Asymptomatic
subjects who may have radiographic cam signs were not included, possibly excluding a sub-
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section of the FAI population. It has been previously shown that deviation from ideal
geometry does not guarantee that a femur will become symptomatic or lead to OA.7:24:34
However, this exclusion provided clarity and distinction when quantifying anatomical
differences between cam-type FAI patients and controls.

Another limitation was that the acetabulum and articular cartilage topology were not
included in the analysis. While acetabular anatomy may contribute to impingement, this
study intentionally focused on patients with deformities primarily on the femoral head.
Certainly, when planning surgery to reduce impingement, acetabular orientation and shape
should be considered. Articular cartilage may develop in such a way to form a congruent
articulating surface between the femur and acetabulum, thereby compensating for minor
asphericity of the bone. As such, cartilage topology should be considered, especially intra-
operatively, when determining the severity of geometric deviations. However, altered bone
geometry is the focus when diagnosing cam-type FAI from CT images and radiographs, not
cartilage topology as it is often not available. Thus, for the current study, which serves as a
3D supplement to conventional diagnostic tools, only bony anatomy of the femur was
considered. Another limitation is that, because CT image data were segmented semi-
automatically, there may be some observer-dependence in the resulting segmentations.
However, the accuracy of the segmentation and reconstruction protocols has already been
evaluated and found to produce errors minor compared to the degree in which protrusions
statistically differed between subject groups in the current study.*>

A final limitation is that CT arthrography was used on the patients to obtain high- resolution
CT images. This procedure is invasive with respect to ionizing radiation. The Food and
Drug Administration (FDA) Guidelines for Research Subjects sets an estimated dose
equivalent (EDE) limit of 3 rem for a single session and no more than 5 rem annually, equal
to that stipulated for employees who utilize radiation as part of their employment. The EDE
for our CT arthrogram procedure is 0.969 rem. Therefore, subjects obtained roughly 20% of
the annual exposure stipulated by the FDA. In the future, non-invasive methods could be
utilized to create 3D reconstructions, such as high-resolution MR imaging.

Surgical correction of cam-type FAI seeks to re-contour the femoral head to improve range
of motion and correct deleterious joint contact mechanics.10:16:20.27 Under-correction has
been reported to cause persistent pain while over-correction can weaken the femoral head
and neck and disrupt vasculature.26:28:38 A-priori knowledge regarding the size and location
of cam deformities, such as that provided in Figure 4, may assist surgeons when making pre-
or intra- operative decisions. In fact, the methodology presented in this study could provide
a basis to develop intra-operative hardware and software to determine, precisely, the
location of cam-type deformities that require surgical correction.

While best-fit circles and 2D measures (e.g. alpha angle, head-neck offset) are the reference
standard for diagnosing cam-type FAl, they provide a limited view of deformities that occur
outside the radiographic projection plane. As such, we recommend the use of 3D
reconstructions of the femoral head and subsequent objective quantification of
pathoanatomy to characterize the severity of cam-type FAI, especially for those patients
having hip pain, but presenting with unimpressive radiographs.2® The 3D methods proposed
in this study can be used as a supplement to radiographic diagnostics by clinics that have the
ability to make 3D femoral surface reconstructions from CT or MR images. The results of
this study suggest that anatomical deviations of up to 2.5 mm from ideal geometries can be
expected in normal femurs while deviations of 4 to 5 mm are characteristic of femoral heads
that present symptomatic cam-type FAL.
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Figure 1.

Alpha angle and head-neck offset measured on DRRs of the standing frog-leg lateral view.
Left - A circle was fit to the femoral head and a line was drawn across the narrow section of
the femoral neck. Alpha angle (a) was measured between a line from the center of the
femoral neck to the center of the head and a second line from the center of the head to the
point where the femur deviated from the best-fit circle. Right - Head-neck offset was
measured by drawing line 1 along the axis of the femoral neck, line 2 parallel to line 1
tangent to the anterolateral neck and line 3 parallel to line 1 tangent to the anterolateral
femoral head. Offset was measured as distance (d) between lines 2 and 3.
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Figure 2.

Three-dimensional reconstructions of the femur showing the process of identifying the head
neck junction and regionalization of the femoral head. (a) First, a contour map of principal
curvature was calculated for the entire proximal femur with inflection points identified by
the dark line around the neck. (b) Next, a 3D cutting surface was fit to the inflection points.
(c) The femoral head (blue) was identified as the section above the cutting surface. (d)
Finally, the femoral head was regionalized into 4 regions.
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Figure 3.

— _ axis
origin

Geometric description of rotational conchoid according to equation r=a+b*cos(6). A
conchoid was calculated for each femoral head by determining aand & radii values which
resulted in a rotational vector, 7, that best fit the native femur. Adapted from Anderson et al.3

Ann Biomed Eng. Author manuscript; available in PMC 2014 June 01.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Harris et al. Page 14

Control Cam Patient
i

Sphere Fit

/ ¥
. Conchoid
o ( Fit

omm I ) | M 3 mm

Figure4.

Deviations from ideal sphere and rotational conchoid shapes in representative control and
patient femurs. Positive fringe plot values indicate areas where the native femur protruded
above the ideal geometry.
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Maximum protrusion and mean deviation by region. Conchoids provided a better fit.
Compared to patients, controls had significantly smaller maximum protrusions in almost
every region. However, mean deviations between groups were only significant in the
posterolateral region. Error bars indicate standard error. P-values indicate significant

differences between groups.
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Protrusion areas determined in the region of maximum deviation from spheres (top) and

conchoids (bottom). Error bars indicate standard error. At lower deviation thresholds,

protrusions for the control group had larger areas than those of the patients. However, at

higher thresholds protrusions for the patients outsized those of the controls. Asterisks

indicate thresholds at which areas were significantly different between control and cam-type

FAI femurs.
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