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Abstract

Fingolimod is the first oral disease-modifying therapy approved for relapsing forms of multiple
sclerosis (MS). Following phosphorylation /n vivo, the active agent, fingolimod phosphate
(fingolimod-P), acts as a sphingosine 1-phosphate (S1P) receptor modulator, binding with high
affinity to four of the five known S1P receptors (S1P;, S1P3, S1P4 and S1Ps). The mechanism of
action of fingolimod in MS has primarily been considered as immunomodulatory, whereby
fingolimod-P modulates S1P; on lymphocytes, selectively retaining autoreactive lymphocytes in
lymph nodes to reduce damaging infiltration into the central nervous system (CNS). However,
emerging evidence indicates that fingolimod has direct effects in the CNS in MS. For example, in
the MS animal model of experimental autoimmune encephalomyelitis (EAE), fingolimod is highly
efficacious in both a prophylactic and therapeutic setting, yet becomes ineffective in animals
selectively deficient for S1Pq on astrocytes, despite maintained normal immunologic receptor
expression and functions, and S1P-mediated immune activities. Here, we review S1P signalling
effects relevant to MS in neural cell types expressing S1P receptors, including astrocytes,
oligodendrocytes, neurons, microglia and dendritic cells. The direct effects of fingolimod on these
CNS cells observed in preclinical studies are discussed in view of the functional consequences of
reducing neurodegenerative processes and promoting myelin preservation and repair. The
therapeutic implications of S1P modulation in the CNS are considered in terms of the clinical
outcomes of MS, such as reducing MS-related brain atrophy, and other CNS disorders.
Additionally, we briefly outline other existing and investigational MS therapies that may also have
effects in the CNS.
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Introduction

Sphingosine 1-phosphate (S1P), a naturally occurring lipid mediator and part of the larger
family of lysophospholipids, can act as a regulator of diverse physiological and
pathophysiological processes, including those involved in the pathogenesis of multiple
sclerosis (MS) [1-3]. S1P is produced from sphingolipids present in the cell membrane,
which are in part defined by the constituent presence of the amino alcohol sphingosine. A
prominent sphingolipid is sphingomyelin, from which sphingosine is liberated through a
series of reactions catalyzed by metabolic enzymes, including sphingomyelinase and
ceramidase [4, 5]. Sphingosine can then be phosphorylated to produce S1P by sphingosine
kinase 1 (SphK1) or 2 (SphK2). Both of these enzymes have fairly broad tissue distribution,
with SphK1 predominating in the lungs and spleen, and SphK2 predominating in the heart,
brain and liver [6, 7]. Extracellular S1P acts in both autocrine and paracrine fashions by
binding to five cell-surface S1P receptor subtypes hamed S1P4, S1P,, S1P3, S1P,4, and S1Pg
[8], which belong to the G protein-coupled receptor (GPCR) super family [3, 9]. S1P4, S1P,
and S1P3 show broad tissue gene expression, while S1P,4 shows gene expression primarily in
immune system cells, and S1Ps is primarily expressed in the spleen (on natural killer cells
and other lymphocytes) and central nervous system (CNS; mainly on oligodendrocytes) [3].
These receptors can, therefore, function in multiple organ systems, such as the immune,
cardiovascular, and respiratory systems, as well as in the CNS. Precedence for CNS
functions of S1P receptors can be seen through their relationships to known activities of the
closely related lysophospholipid receptors for lysophosphatidic acid (LPA). The first
lysophospholipid receptor, now known as LPA1, was identified through studies of the CNS
[10]. This led to the deorphanization of homologous putative receptors in genomic databases
resulting in the discovery of new receptors for LPA and S1P that shared homology despite
recognizing distinct ligands [11-13]. Indeed, early studies identified the S1P receptor known
as S1Pq, which plays a key role in the actions of fingolimod, as a receptor for LPA [14, 15].
The neurobiological effects of LPA receptors have a remarkable range of activities that
affect most CNS cell types at some time during their developmental history, covering the
gamut of processes from neurogenesis and differentiation to survival and cell death [10, 16—
36]. Neurological disorders may also be impacted by LPA receptor signaling, as reported for
neuropathic pain [30, 37], hypoxic insults [38] and hydrocephalus [39]. Evidence has further
highlighted S1P receptors as a potential target for the treatment of pain [40] and stroke via
neuroprotection [41]. Furthermore, S1P receptor modulation has been shown to decrease
vascular permeability and astrocyte accumulation in spinal cord injury [42].

These examples underscore the likelihood that S1P signaling, as part of the larger field of
lysophospholipid signaling, will have functions through direct CNS activities as is known to
occur for the signalling activities of LPA.

Figure 1 provides a composite picture of S1P receptor gene expression reported in the
literature for neurons and glia [8, 43, 44]. Binding of S1P to each of the S1P receptor
subtypes activates a range of different intracellular signalling pathways mediated by distinct
heterotrimeric G proteins [3, 45-49]. Fingolimod (FTY720; GILENYA™, Novartis Pharma
AG, Basel, Switzerland) is a modulator of S1P receptors and is the first oral disease-
modifying therapy to be approved for relapsing forms of MS. Fingolimod is phosphorylated
in vivo by sphingosine kinase, particularly SphK2, to produce the active metabolite
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fingolimod phosphate (fingolimod-P). Fingolimod and fingolimod-P are structural analogs
of sphingosine and S1P, respectively. Being a structural analog of S1P enables fingolimod-P
to bind to and activate four of the five S1P receptor subtypes. Receptor studies have shown
that fingolimod-P activates S1P1, S1P4, S1P5 (half maximal effective concentration [ECsq]
values of ~0.3-0.6 nM) and S1P3 (ECsgq values of ~3 nM), but has shown essentially no
activity at S1P, (ECsgq values of >10 uM) [50, 51].

Modulation of S1Pq on lymphocytes by fingolimod is thought to retain circulating
pathogenic lymphocytes in the lymph nodes, thereby preventing their infiltration into the
CNS where they would promote pathological damage [52-54]. Fingolimod-P initially acts
as an S1P4 agonist [50, 51]; however, chronic exposure to fingolimod-P leads to irreversible
receptor internalization resulting in “functional antagonism’ of S1P;-mediated S1P
signalling [55-57]. Circulating T cells express S1P1 and lower levels of S1P, and S1P3 [56,
58], and the interaction of extracellular S1P with S1P, is thought to initiate lymphocyte
egress from lymph nodes by overcoming retention signals mediated by chemokine (C-C
motif) receptor 7 (CCR7) expressed on B cells and naive and central memory T cells. In the
presence of fingolimod-P, functional antagonism of S1Pq prevents the egress of CCR7-
positive naive and central memory T cells from lymph nodes [52, 59], consistent with
experimental data produced using S1P receptor knockout mice to study lymphocyte
circulation [55, 60]. Importantly, fingolimod does not significantly affect activation and
proliferation of redistributed naive and central memory T cells, and does not block the
egress from lymph nodes of effector memory T cells that are CCR7-negative, a distinct
subpopulation of T cells that are important for immunosurveillance [59]. Thus, fingolimod
has a targeted mechanism of action, selectively affecting lymphocyte subsets.

In addition to these immunologic actions, and in view of the general actions of
lysophospholipid receptors in the CNS and a growing literature that has identified S1P
signalling effects on neural cells, fingolimod would be expected to have direct effects on
CNS cells that express S1P receptors. Indeed, fingolimod, which is lipophilic, is able to
cross the blood—brain barrier into the CNS and, following oral administration of fingolimod,
fingolimod-P has been detected in the cerebrospinal fluid at subnanomolar levels [61],
which are sufficient for modulating human CNS cell properties in vitro [62, 63]. In addition,
recent data utilizing conditional knockout of S1P; from neural lineages have identified key
roles for astrocytes in reducing the severity of pathological changes in an animal model of
MS, experimental autoimmune encephalomyelitis (EAE). Moreover, the astrocytic loss of
S1P; also prevents the efficacy of fingolimod in this model [64]. Here, we discuss the
emerging evidence for direct CNS effects of fingolimod through alteration of S1P signalling
and the implications for MS therapies.

S1P signalling in MS

In the CNS, S1P receptors have been reported to be expressed on oligodendrocytes,
astrocytes, neurons, and microglia in a range of experimental and growth conditions that
encompass cellular expression of S1P receptors rather than actual expression under defined
conditions. This issue is particularly important in determining S1P signalling alterations that
may exist at different stages of MS. Findings from some studies suggest that S1P signalling
is disrupted in MS. Compared with control individuals, patients with MS have been reported
to have a lower content of sphingomyelin (from which endogenous sphingosine and S1P are
derived) in their white matter [65] but an increased level of S1P in their cerebrospinal fluid
[66]. S1P levels have been found to be lower and sphingosine levels higher in the white
matter and lesions of patients with MS compared with white matter from control individuals
[67]. In active and chronic inactive MS lesions, reactive astrocytes have been reported to
show high expression of S1P1 and S1P3 [68]. In addition, under proinflammatory
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conditions, S1P3 and SphK1 have been shown to be upregulated on astrocytes [69]. These
combined reports suggest that S1P signalling in the CNS is altered in patients with MS. This
conclusion has received recent support in experimental models of MS, whereby removal of
S1P, from astrocytes produced a reduction of the elevated S1P levels occurring in animals
challenged by EAE [64].

S1P signalling in CNS cells and effects of fingolimod

Astrocytes

Astrocytes are the most abundant cells in the human CNS and have an extremely diverse and
important range of roles that are relevant to normal brain activity and its alteration in disease
states [70-78]. In MS, evidence suggests that astrocytes have a dual, paradoxical role. At
sites of demyelination in MS lesions, reactive astrocytes form a glial scar that impairs
remyelination [79, 80]. However, astrocytes have also been shown to act as cellular
mediators of CNS myelination by promoting oligodendrocyte progenitor migration,
proliferation, and differentiation [80]. Indeed, astrogliosis appears to be an early CNS
response to MS-related insults [81]. Astrocytes preferentially express S1P3 and S1P4 and
can express S1P, at a low level; S1P5 expression is not detectable under basal conditions,
but can be upregulated by astrocytes grown in culture [29, 31, 82, 83]. Injection of S1P into
the striatum of mice induced astrogliosis [84]. A mouse model of Sandhoff disease, another
neurodegenerative disease associated with astrogliosis, was attenuated by genetic deletion of
either SphK1 or S1P3 [85]. Critically, selective removal of S1P; from astrocytes attenuated
EAE severity and reduced histological sequelae of EAE challenge in the CNS [64].

Fingolimod-P treatment of cultured human astrocytes has been shown to inhibit production
of inflammatory cytokines [68]. In cultured rat astrocytes, fingolimod-P stimulated
extracellular signal-regulated kinase (ERK) phosphorylation and cell migration; these effects
were also seen with selective S1P4 agonists, suggesting that fingolimod-P acted as a
functional agonist of S1P, in these /n vitro experiments [86, 87]. In contrast, results from an
in vivo study performed using a mouse EAE model supported functional antagonism of
astrocyte S1P rather than forms of agonism as the predominant receptor mechanism (with
regard to CNS cells) for fingolimod efficacy [64]. In this study, inflammatory cytokine
levels, as well as disease-associated increases in S1P levels, were reduced in animals lacking
S1P, on astrocytes. All conditional null mutants lacking S1Pq in CNS cell lineages
displayed wild-type lymphocyte trafficking that responded normally to fingolimod
treatment. EAE severity was attenuated in mutants lacking S1Pq on glial fibrillary acidic
protein-expressing astrocytes, compared with unrecombined littermate controls [64].
Reductions in EAE severity were accompanied by reductions in demyelination, axonal loss,
and astrogliosis. If lymphocyte depletion was solely responsible for fingolimod efficacy,
then EAE severity in S1P; null mutants should have been further reduced with fingolimod
treatment. However, this was not observed and clinical scores were refractory to fingolimod
treatment, despite the maintained immunologic effects on peripheral blood lymphocyte
depletion. Mutants lacking S1P4 on neurons but not on astrocytes showed the same response
to fingolimod treatment as littermate controls. These /n7 vivo results were supported by
experiments in astrocyte cultures, in which fingolimod treatment was found to induce rapid
internalization of S1Pq that was not followed by recycling of S1P; to the cell surface [64].
Overall, these findings identified functional antagonism of S1P4 on astrocytes as a non-
immunologic direct CNS effect of fingolimod necessary for its efficacy [64].

Oligodendrocytes

Oligodendrocytes are myelinating cells of the CNS. Demyelination and failure of
remyelination by oligodendrocytes contribute to the progression of disease in MS.
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Therefore, targeting the oligodendrocyte is a potentially important therapeutic strategy [88].
Remyelination requires oligodendrocyte precursor cell (OPC) proliferation, migration to
sites of demyelination and differentiation into mature myelin-forming oligodendrocytes.
Mature oligodendrocytes preferentially express S1Ps and may express S1Pq, S1P, and S1P3
at lower levels, while OPCs show high levels of S1P; gene expression and lower levels of
S1Ps and S1P3 expression [49, 62, 89-94]. The effects of S1P on oligodendrocyte lineages
include differentiation, migration and survival, depending on the developmental stage [91,
92]. However, in non-pathological conditions, mice deficient in S1P5 do not show impaired
myelination [91, 92], suggesting at least some functional redundancy among S1P receptor
subtypes in OPCs and oligodendrocytes.

Results from /n vitro studies have shown that the effects of fingolimod-P on cultured
oligodendrocyte lineage cells are diverse and are affected by developmental stage, treatment
dose, and duration [49, 62, 91-95]. Fingolimod has been shown to protect cultured rodent
OPCs from apoptosis induced by inflammatory cytokines and microglial activation (both of
which have been implicated in the pathogenesis of MS), via apparent activation of ERK 1/2
and Akt signalling [95]. Additionally, activation of S1Pg by fingolimod impeded
spontaneous migration of cultured neonatal rat OPCs [49], but fingolimod did not inhibit
OPC migration when platelet-derived growth factor was used as a chemoattractant [92]. The
differentiation of OPCs was stimulated by fingolimod at low nanomolar doses [92], but was
inhibited at higher concentrations [92, 94, 95]. Similarly, the effects of fingolimod on
process dynamics in mature oligodendrocytes depended on both dose and treatment duration
[62].

Neural progenitor cells can express S1P1, S1P,, S1P3, and S1Ps [27, 96], while neurons
predominantly express S1P3 and S1Pq [96, 97]. Genetic deletion of S1P; or deletion of both
SphK1 and SphK2 in mice caused severe defects of neurogenesis [98]. S1P, knockout mice
showed defects in the inner ear that are associated with neurodegeneration and can result in
loss of hearing and balance [34, 99, 100]. In addition, while phenotypes of S1P, deletion
mutants appeared relatively normal [99, 101], some background strains promoted increased
excitability [99] and seizure activity [102].

In primary cultures of neural progenitor cells, S1P produced many similar effects to those
reported for LPA, including induced proliferation, morphologic changes, and enhanced
survival [96, 103, 104]. S1P modulated neurite extension in cultured PC12 cells and dorsal
root ganglion neurons [104], and enhanced nerve growth factor-induced excitability of adult
sensory neurons [105]. In primary hippocampal neurons, S1P acted both as a secretagogue,
triggering glutamate secretion, and as an enhancer, potentiating depolarization-evoked
glutamate secretion [97]. In cultured cortical neurons, fingolimod and S1P have been shown
to protect against excitotoxic death [106]. These cell culture phenomena require further
examination /n vivo.

As described above, in the study by Choi et a/. [64], neuronal S1P1 mutants responded to
fingolimod treatment in the same way as littermate controls, indicating that S1P; on
astrocytes, but not on neurons, is a major locus for direct CNS effects of fingolimod [64]. In
a rat model of optic neuritis, fingolimod treatment reduced inflammation, demyelination and
axonal damage, but did not prevent apoptosis of retinal ganglion cells, the neurons that form
the axons of the optic nerve [107]. Rossi et al. used electrophysiological recordings to
investigate whether fingolimod could ameliorate synaptic defects in EAE mice and found
that oral fingolimod prevented and reversed the presynaptic and postsynaptic alterations of
glutamate transmission [108]. These effects were associated with reduced clinical
deterioration. In addition, prophylactic fingolimod treatment significantly reduced the
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dendritic spine loss observed during the acute phase of EAE. In model systems, fingolimod
did not alter the spontaneous excitatory postsynaptic currents in neurons from healthy
control mice, indicating that fingolimod does not interfere with physiological synaptic
transmission [108].

Microglia are involved in both innate and adaptive immunity in the CNS. Microglial
activation seems to be critical for MS pathogenesis [109] and inhibition of activation
suppressed relapsing paralysis in EAE [110]. Activated microglia have been shown to
differentiate into M1 and M2 microglia that contribute to both protective and detrimental
aspects of the inflammatory process through antigen presentation, cytokine release and
phagocytosis [109]. S1P receptor expression on microglia varies according to the activation
state of these cells [43]. Microglia in an inactive state isolated acutely from rat brain showed
gene expression for S1P, and S1P3 that was higher than S1P,, and much higher than S1Pg
[43]. In vitro, S1P increased the release of proinflammatory cytokines from activated
microglia [111]. Fingolimod-P has been reported to have no effect on cytokine production
by cultured human microglia [112]. Non-phosphorylated fingolimod, but not fingolimod-P,
induced apoptosis of a human microglia cell line by activating sterol regulatory element-
binding protein-2 [113]. In rats, fingolimod treatment attenuated infiltration of reactive
macrophages/microglia into lesions produced by traumatic brain injury [114]. Fingolimod
also reduced microglial activation in cerebral ischemic lesions in mice [115].

Jackson et al. examined the effects of fingolimod on remyelination in rat telencephalic
neurospheres [116]. The absence of blood-borne immune cells in this model allowed the
direct CNS effects of fingolimod to be assessed. Following lysophosphotidyl choline-
induced demyelination, fingolimod treatment significantly augmented expression of myelin
basic protein, a marker of remyelination; in addition, fingolimod downregulated ferritin, a
marker of microglial activation. Fingolimod also downregulated tumor necrosis factor-a and
interleukin (IL)-1b; these cytokines are produced by activated microglia and astrocytes
[116]. The S1P1/S1Pg-selective receptor modulator BAF312 (siponimod), but not the S1P4-
selective receptor modulator AUY954, also increased levels of myelin basic protein in this
model, indicating that S1Ps is, in some way, involved in promoting remyelination /n vitro.
Overall, these results indicate that fingolimod can modulate microglial activation and
actively promote remyelination via direct interaction with microglia, oligodendrocytes, and/
or astrocytes [116].

Dendritic cells

Dendritic cells are a class of antigen-presenting cell that are able to prime naive T cells and
regulate adaptive immune responses [117, 118]. At least four subtypes of dendritic cell exist:
plasmacytoid, migratory myeloid, secondary lymphoid tissue resident myeloid and
inflammatory, each having different functional properties [117]. The role of dendritic cells
in MS may be dependent on the subtype of the cell. For example, peripheral myeloid cells
can contribute to autoimmune CNS inflammation in EAE [117]. In contrast, plasmacytoid
cells have been shown to have anti-inflammatory properties in EAE and limit the severity of
the condition [119]. Patients with MS have been found to have higher levels of myeloid
dendritic cells that secrete higher levels of proinflammatory cytokines than healthy
individuals [117] and have functionally abnormal plasmacytoid cells[120]. Therefore,
depending on the cell subtype, dendritic cells may contribute to, and also prevent CNS
autoimmune inflammation. All five S1PR subtypes are expressed on dendritic cells in
animals [121], however, the effect of fingolimod on dendritic cells in humans or individuals
with MS has not been investigated. In mice, fingolimod enhanced retention of plasmacytoid
cells in the lymph nodes, possibly via S1P4 [122], although in another study fingolimod
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increased dendritic cell levels in the blood [121]. It has been recently reported that the
efficacy of S1Pq treatment in reducing CNS inflammation in EAE correlates with the
presence of plasmacytoid cells in the CNS [119]. These studies suggest that dendritic cells
play diverse roles in MS pathology and CNS inflammation, although their exact roles are yet
to be fully characterized.

Functional effects of S1P signalling and fingolimod

Blood—brain barrier—Penetration of lymphocytes into the CNS across endothelial cells
of the blood—brain barrier is a critical event in the pathogenesis of MS [123]. Vascular
endothelial cells can express S1P1 and S1P3 [124]; hence, the S1P signalling pathway might
influence blood-brain barrier function [125]. Fingolimod can induce adherens junction
assembly in human umbilical vein endothelial cells /n vitro and can reduce vascular leakage
induced by vascular endothelial cell growth factor or lipopolysaccharide-mediated acute
lung injury in mice /in vivo[126, 127]. Fingolimod also enhanced human pulmonary
endothelial cell barrier function /n vitro[128]. Enhancement of barrier function in this
model appeared to be independent of S1P; binding and did not require phosphorylation of
fingolimod, indicating a non-S1P; mechanism of action [128]. Importantly, heterogeneity of
vascular beds leaves open the question of whether S1P signalling and prolonged fingolimod
exposure actually alters the blood—brain barrier. This issue is relevant to fingolimod acting
as a functional antagonist of S1P; on astrocytes [64]. Some models implicate astrocyte end-
feet as an integral component of the blood—brain barrier [129]; therefore, it is possible that
astrocyte-mediated effects of fingolimod might also influence some aspects of normal
blood—brain barrier function.

Lymphocyte penetration of the blood-brain barrier is dependent on vascular cell adhesion
molecules and matrix metalloproteinases (MMPs), which degrade the endothelial basement
membrane [130, 131]. In a rat EAE model, both prophylactic and therapeutic treatment with
fingolimod suppressed/reversed neurological deficits and normalized upregulated gene
expression of vascular cell adhesion molecules and MMP-9 in the spinal cord [132]. These
effects may in part be caused by direct effects of fingolimod on microvascular and/or glial
cells in the CNS [132].

Preservation of CNS tissue integrity and functional recovery in animal
models and organotypic cultures

Overall, the in vitroand in vivo studies described above suggest that fingolimod could
directly affect CNS resident cells in ways that could potentially prevent demyelination or
promote myelin repair in MS lesions (Fig. 2). In a relapsing—progressive EAE model in
mice, prophylactic and therapeutic fingolimod treatment during relapsing EAE inhibited
subsequent relapses and axonal loss in the spinal cord, and facilitated motor recovery. This
was not observed when fingolimod was initiated at a very late stage of the model (after 4
months), during the non-relapsing, secondary advanced progressive stage, after
accumulation of significant neurological deficits [133]. In the dark agouti (DA) rat model of
EAE, prophylactic fingolimod therapy protected against the presentation of EAE symptoms
and disturbances in neuronal function; therapeutic treatment decreased demyelination in the
brain and spinal cord, correlating with reversed paralysis and restored neuronal function
[134]. In another study in the DA rat model of EAE, fingolimod reversed blood-brain
barrier leakiness, reduced demyelination and also improved neurological function [132].
Administration of fingolimod was also found to reduce the area of demyelination in the
spinal cord in other EAE studies [135, 136]. Fingolimod did not promote remyelination
[137, 138] but attenuated injury to oligodendrocytes, myelin, and axons in the corpus
callosum during cuprizone-induced demyelination in mice [138], suggesting a protective
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effect of fingolimod that is independent of the effect on peripheral lymphocytes. The
protective effect of fingolimod was also associated with decreased IL-1p and chemokine (C-
C motif) ligand 2 levels in the corpus callosum and altered S1P4 expression [138].

Anthony et al. investigated fingolimod in a focal delayed-type hypersensitivity (DTH)
model of MS in rats. DTH lesions are initially characterized by breakdown of the blood—
brain barrier, macrophage and lymphocyte infiltration, and tissue damage, including myelin
loss. Fingolimod treatment during the active phase (when the blood-brain barrier is
disrupted) reduced blood-brain barrier breakdown, inflammatory cell infiltration, and tissue
damage [139]. During the remission phase of the DTH model, when the blood-brain barrier
was functionally intact, fingolimod treatment reduced demyelination and microglial
activation without a corresponding reduction in lymphocytes [140]. These results provide
evidence of direct effects of fingolimod in the CNS that are independent of the effects on
lymphocyte infiltration. One possible mechanism of CNS direct protective effects was
recently demonstrated by Deogracias et a/. using fingolimod in a mouse model of Rett
syndrome. Fingolimod increased brain-derived neurotrophic factor (BDNF) levels in the
cortex, hippocampus and striatum, and also improved motor functioning [141]. The precise
mechanism for these effects requires further investigation; however, these changes suggest
that fingolimod may promote neuronal repair and improve CNS function through the effects
of BDNF.

Jackson et al. found that fingolimod promoted remyelination in rat telencephalic
neurospheres (see earlier Microglia section) [116]. In rat organotypic cerebellar slice
cultures, both fingolimod-P and the S1P4-selective agonist, SEW2871, inhibited
lysolecithin-induced demyelination, upregulated S1P; expression on astrocytes and inhibited
the release of several chemokines, including lipopolysaccharide-induced CXC chemokine
(CXCLD5), macrophage inflammatory protein (MIP)-1a, and MIP-3a [142]. Fingolimod
may therefore attenuate demyelination not only by preventing S1P-receptor-mediated T-cell
migration into the CNS, but also via a mechanism that includes an S1P-receptor-mediated
reduction of cytokine/chemokine release in the CNS [142]. Fingolimod also enhanced
remyelination and process extension by OPCs and mature oligodendrocytes in neonatal
mouse organotypic cerebellar slice cultures following lysolecithin-induced demyelination
[63]. Increased numbers of microglia and astrocytes were also observed with fingolimod
treatment. In addition, selective removal of S1P; from astrocytes also preserved myelin /n
vivo [64]. These data suggest that S1P receptor modulation in the CNS can potentially
enhance remyelination or limit demyelination, although other data do not support
remyelination with fingolimod treatment. Fingolimod did not promote myelin repair in
cuprizone [137, 138] and lysolecithin demyelination animal models [137]. However,
because of the fast endogenous remyelination process in both models, it has been suggested
that these models may be more appropriate to explore negative, rather than positive effects
on myelin repair [143].

Clinical effects of S1P signalling altered by fingolimod in the CNS

Fingolimod (0.5 mg once daily) is approved for the treatment of relapsing forms of MS in
many countries [144, 145]. The clinical efficacy of fingolimod in relapsing—remitting MS
(RRMS) was demonstrated in two randomized, double-blind, phase 3 clinical trials:
FREEDOMS (FTY720 Research Evaluating Effects of Daily Oral Therapy in Multiple
Sclerosis; a placebo-controlled trial of 1272 patients) and TRANSFORMS (Trial Assessing
Injectable Interferon versus FTY720 Oral in Relapsing—Remitting Multiple Sclerosis;
comparing fingolimod with an interferon in a total of 1292 patients) [146, 147]. In
TRANSFORMS, oral fingolimod 0.5 mg significantly reduced the annualized relapse rate
(ARR) by 52% compared with intramuscular interferon beta-1a over 1 year (ARR 0.16 vs.
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0.33, respectively) [146]. In the 2-year FREEDOMS study, fingolimod 0.5 mg also
significantly reduced the ARR (p<0.001) and significantly reduced the risk of disability
progression confirmed at 3 and 6 months by 30% and 37%, respectively (p=0.02) [147]. In
both TRANSFORMS and FREEDOMS, fingolimod was superior to placebo or active
comparator with regard to magnetic resonance imaging (MRI) outcomes, including a
reduction in the rate of brain volume loss [146, 147]. A recent study that examined the
relationship between interferon beta exposure and disease progression indicated that such
treatments may not alter long-term disease progression [148]. Interferons, and perhaps other
immunologically targeted therapies, might therefore have limited effectiveness in preventing
long-term disability evolution. By contrast, agents like fingolimod that have dual activities
on not only the immune system but also the CNS, may access novel brain mechanisms by
preserving tissue integrity to reduce long-term disability, as suggested by experimental
animal studies, the preservation of brain atrophy, and the reduced risk of disability
progression observed in the FREEDOMS trial [147].

Imaging outcomes currently provide the best /7 vivo measures of neuroprotection and also
possibly of repair in MS [149]. Percentage change in brain volume, a sensitive measure of
neuroprotection over 1 year, was reported to correlate with physical disability, and to be a
strong predictor of future disability [149, 150]. Axonal loss and myelin damage result in
brain volume reduction in MS [151]. In phase 3 studies, fingolimod 0.5 mg significantly
reduced brain volume loss by 31% over 1 year compared with intramuscular interferon-beta
la (p<0.001; TRANSFORMS) [146], and by 35% over 2 years compared with placebo
(p<0.001; FREEDOMS) [147]. Subgroup analyses from FREEDOMS confirmed that these
effects over 2 years were independent of the presence or absence of gadolinium (Gd)-
enhancing lesions, T2 lesion load, previous treatment status, or level of disability [152].
Furthermore, the degree of brain volume loss with fingolimod differed from those observed
with interferon beta or natalizumab [153], in which early acceleration of brain volume loss
was seen (equal to or exceeding that of controls) with no treatment difference over 2 years.
These findings suggest that, in addition to peripheral immunomodulatory actions, other
effects of fingolimod, including direct CNS effects, could be related to reductions in brain
atrophy observed with fingolimod that are not seen with other conventional
immunomodulatory or immunosuppressant therapies.

Disease-modifying drugs such as interferon beta and glatiramer acetate are largely
ineffective in primary—progressive MS (PPMS), which exhibits neurodegeneration with a
relative lack of inflammatory lesion activity [154]. An ongoing study is evaluating whether
fingolimod is effective in delaying MS disability progression compared with placebo in
patients with PPMS [155]. If fingolimod is found to have efficacy in PPMS, this would be a
major step forward in the treatment of this MS subtype, and could be consistent with the
operation of direct CNS signalling mechanisms accessed by fingolimod treatment.

In addition to different subtypes of MS, fingolimod may potentially be useful in treating
other autoimmune diseases and disorders involving other systems. For example, the effect of
fingolimod as a therapeutic agent in a model of spontaneous autoimmune polyneuropathy
has recently been investigated in mice. Animals treated with fingolimod showed reduced
disease progression and demyelination compared with animals treated with water [156].
Treatment with fingolimod has demonstrated suppression of experimental autoimmune
uveitis in mice [157, 158]. Diabetes was prevented in non-obese diabetic mice with
peripheral insulitis treated continuously with fingolimod; fingolimod treatment also reversed
diabetes in mice that were diabetic [159]. Fingolimod also prevented autoimmune diabetes
in diabetes-resistant biobreeding rats [160]. In mice deficient for apolipoprotein-E, oral
administration of fingolimod significantly reduced atherosclerotic lesion formation
compared with control mice [161]. S1P has been proposed to play a role in the pathogenesis
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of rheumatoid arthritis and therefore may represent a possible therapeutic target in the
disease [162, 163]. The actions of fingolimod on CNS astrocytes in EAE [64] have further
suggested fingolimod actions in other CNS diseases such as amyotrophic lateral sclerosis,
where astrocytes have also been implicated [164]. Taken together, these data suggest that
fingolimod could potentially be beneficial in treating diseases other than MS.

Other S1P receptor modulators in clinical development include BAF312 [165], ONO-4641
[166], ponesimod (ACT-128800) [167], and CS-0777 [168]. Few clinical data have yet been
published for these investigational drugs. In a phase 2 trial of MS, ponesimod reduced the
cumulative number of new active MRI lesions during weeks 12—24 versus placebo [169]. In
a phase 2 trial in patients with RRMS, BAF312 reduced MRI lesion numbers by up to 80%
versus placebo and also improved relapse outcomes [170]. ONO-4641 significantly reduced
the number of T1 Gd-enhancing lesions during weeks 10-26 compared with placebo in a
phase 2 trial in patients with RRMS [171].

Other current or potential MS therapies

Interferon-p and glatiramer acetate are not thought to penetrate the blood—brain barrier, and
therefore these drugs have no proven, direct neurobiologic effects in the CNS [172, 173]. In
addition to the investigational S1P receptor modulators mentioned in the previous section,
other oral therapies in development for MS include teriflunomide, laquinimod, and BG-12
(dimethyl fumarate) [173]. Teriflunomide, a selective inhibitor of de novo pyrimidine
synthesis, is thought to act mainly by exerting a cytostatic effect on proliferating T and B
cells in the periphery [174]. However, teriflunomide has also been reported to increase the
secretion of 1L-10 by rat microglia /n vitro[175]. In addition, teriflunomide also
significantly reduced demyelination and axonal loss in a rat model of EAE [176]. There is
some evidence that laquinimod [177-179] and BG-12 [180, 181], both currently in phase 3
development for RRMS, may have some neuroprotective effects in the CNS. In animal
models, laquinimod treatment reduced axonal damage [177], astrogliosis and demyelination
[182]. This effect may be mediated by stimulating BDNF secretion in the periphery and
CNS [178]. In phase 2 trials in RRMS, laquinimod significantly increased BDNF serum
levels compared with placebo after 12 and 36 weeks of treatment [179]. Laquinimod may
also exert neuroprotection through other mechanisms. Laquinimod prevented alterations of
GABAergic synapses induced by EAE, preserved cannabinoid CB1 receptor sensitivity
(normally absent in EAE) and also regulated synaptic transmission [183]. Furthermore,
laguinimod has been shown to prevent cuprizone-induced demyelination by reducing
astrocytic nuclear factor-kB (NF-kB) activation [184]. Attenuation of the astrocytic
proinflammatory response may be a mechanism of laquinomod’s effects in the CNS, which
occur independently of its immunomodulatory actions [184]. In EAE, BG-12 treatment led
to reduced loss of neurons and glia in the CNS [180]. /n vitro, monomethyl fumarate, the
active metabolite of BG-12, protected cultured neurons and astrocytes from hydrogen-
peroxide-induced cell death [180]. In an /n vitro model of brain inflammation, BG-12
decreased the production of proinflammatory mediators in activated microglia and
astrocytes [185]. It has been proposed that cytoprotective effects of BG-12 are dependent on
anti-oxidative pathways mediated by NF-E2-related factor 2 [180, 181]. NF-E2-related
factor 2 has reported properties that include blood-brain barrier protection [186] and myelin
maintenance [187] that may also contribute to the mechanism of action of BG-12 [188].
BG-12 has also been reported to show a limited treatment effect in EAE in a therapeutic
setting [180]. The recent discontinuation of a NF-E2-related factor 2 activator compound in
phase 3 clinical trials (Bardoxolone [Abbott], for kidney disease) underscores a need to
better understand BG-12’s mechanism of action, as several cellular targets may be involved
[174, 189].
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Conclusions

As well as being the first oral MS disease-modifying therapy, fingolimod is the first human
medicine to be approved that targets S1P receptors, and thus has a fundamentally different
and validated molecular target compared with all previously approved MS therapies.
Emerging evidence from preclinical studies demonstrates that mechanisms independent of
peripheral immune effects contribute substantially to the efficacy of fingolimod in models of
MS. Fingolimod readily crosses the blood-brain barrier into the CNS where it is
phosphorylated to its active metabolite, fingolimod-P. Fingolimod-P then potentially
interacts with S1P receptors that are expressed on oligodendrocytes, astrocytes, neurons, and
microglia, as well as on vascular endothelial cells of the blood-brain barrier. Importantly,
the cell-specific expression of defined receptor subtypes during the course of MS may have
more restricted expression patterns. Several animal models and organotypic studies have
provided evidence that fingolimod treatment can reduce demyelination and promote
remyelination via direct effects in the CNS. Furthermore, deletion of S1P; or S1P5 from
CNS cells reduces EAE severity and fingolimod efficacy, again indicating direct CNS
effects. Results from phase 3 trials of fingolimod suggest that the preservation of neural cells
observed preclinically may be related to the efficacy on brain atrophy outcomes observed in
patients with MS. In addition, fingolimod has been shown to ameliorate synaptic
dysfunction in EAE, opening up the possibility that it may have efficacy in other
neurodegenerative diseases. The capacity of fingolimod for direct CNS preservation effects
also raises the possibility of efficacy in non-relapsing forms of MS, and results are awaited
from an ongoing trial of fingolimod in PPMS, for which direct CNS activities provide a
rationale for this form of MS that currently lacks specifically approved treatment.
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Fig. 1.

Distribution and functions of sphingosine 1-phosphate (S1P) receptor subtypes in cells
resident in the central nervous system from a composite review of the literature covering
many different growth conditions in culture, developmental stages, disease states or models
and species. For example, S1P receptor expression on microglia varies according to the
activation state of these cells and in the figure is shown for microglia in an inactive state
isolated acutely from rat brain [43].
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Fig. 2.
Summary of the effects of fingolimod treatment on different cells in the central nervous
system.
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