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Abstract
Food deprivation in mammals results in profound changes in fuel metabolism and substrate
regulation. Among these changes are decreased reliance on the counter-regulatory dynamics by
insulin-glucagon due to reduced glucose utilization, and increased concentrations of lipid
substrates in plasma to meet the energetic demands of peripheral tissues. As the primary storage
site of lipid substrates, adipose tissue must then be a primary contributor to the regulation of
metabolism in food deprived states. Through its regulation of lipolysis, adipose tissue influences
the availability of carbohydrate, lipid, and protein substrates. Additionally, lipid substrates can act
as ligands to various nuclear receptors (retinoid x receptor (RXR), liver x receptor (LXR), and
peroxisome proliferator-activated receptor (PPAR)) and exhibit prominent regulatory capabilities
over the expression of genes involved in substrate metabolism within various tissues. Therefore,
through its control of lipolysis, adipose tissue also indirectly regulates the utilization of metabolic
substrates within peripheral tissues. In this review, these processes are described in greater detail
and the extent to which adipose tissue and lipid substrates regulate metabolism in food deprived
mammals is explored with comments on future directions to better assess the contribution of
adipose tissue to metabolism.
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I. Introduction
Regulation of metabolism has been largely associated with the liver because it serves as a
critical target for most hormones to mediate their functions. However, in recent years
adipose tissue has received greater attention due to increased understanding of its endocrine
capabilities and its influence over insulin sensitivity [1–4]. In addition to being the storage
site for triacylglycerols (TAG), adipose tissue also secretes various adipokines such as
leptin, adiponectin, and apelin, which modulate insulin sensitivity by regulating the
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utilization of plasma lipids [4–6]. Through the breakdown of stored TAG, adipose tissue
also releases free fatty acids (FFA) and glycerol. FFA can be directly oxidized to generate
ATP while glycerol can be used as a substrate in gluconeogenesis or lipogenesis. In this
manner, adipose tissue can directly and indirectly modulate the availability of other
metabolic substrates.

When mammals endure food deprivation, significant changes to metabolism occur to
promote the preservation of metabolic substrates [7]. These changes were identified as the
three phases of starvation, and characterized by the predominant catabolism of a single class
of substrate: 1) carbohydrate, 2) lipid, and 3) protein [8, 9] (Figure 1). Because carbohydrate
stores are depleted within a matter of hours, metabolism must transition to reliance on lipids
to meet energetic demands [7, 9]. Mammals adapted to prolonged food deprivation, like
seals and bears, transition to a metabolism primarily reliant on lipid oxidation as part of their
natural life history [10–14]. However, other mammals (e.g., humans and rodents) that are
not adapted are incapable of shifting to a completely lipid-dependent metabolism [15]. This
can be due to either improper regulation of substrates during fasting (Phase I or II), or
simply inadequate lipid stores. Whatever the case, the inability to transition results in protein
catabolism and lean tissue degradation (cachexia) for energy. If not prevented, cachexia can
eventually lead to death.

These distinctions in lipid metabolism during phase II and III of Cahill’s model of starvation
provide the basis for differentiating the adapted mammals ability to fast versus the non-
adapted mammals endurance of starvation [16].

In the past, research concerning metabolic regulation during food deprivation focused on
hormonal control at the systemic level, allowing for the characterization of the typical
endocrine response to fasting [8, 9, 17]. However, because most endocrine factors that
regulate metabolism postprandially have reduced roles in food-deprived mammals [18],
considerable investigation has focused on the contributions of intracellular mechanisms of
substrate regulation to metabolism [19–22]. Though the majority of this work has been done
in humans and rodents during feeding or short term fasting, data from mammals that endure
prolonged bouts of food deprivation, like seals, suggests that lipid substrates may have the
same regulatory effects [10, 13, 23].

As the principal storage site of lipids, adipose tissue must contribute to metabolic regulation
under food-deprived conditions. Therefore, understanding its contributions, from the
systemic to the molecular level, is important to assess metabolic regulation during food
deprivation in mammals. Because hepatic regulation of metabolism is prominent, a better
understanding of the cross-talk between the liver and peripheral tissues would be useful.
Therefore, this review focuses on the regulation of substrate availability by adipose tissue,
the influence by the liver on this regulation, and how this may assist in the regulation of fuel
metabolism in prolong-fasted mammals.

II. Mechanisms Regulating Substrate Availability
Most mammals suppress sympathetic nervous system activity [24, 25], various endocrine
factors that regulate postprandial metabolism [18], and the activity of adipokines [26], in
order to reduce energy expenditure under food deprived states. Food deprivation also
increases the concentrations of slow-acting hormones like cortisol or biomolecules like
retinoic acid that control the expression of genes within the liver, adipose, and other
peripheral tissues to generate metabolism-regulating proteins like lipases or fatty acid
transporters [27, 28]. These proteins are responsible for shifting metabolism and maintaining
the availability and utilization of substrates within a tolerable range. Therefore, the
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regulation of their activity and expression is of critical importance to the survival of the
organism.

A. Lipolysis
Intracellular lipases are responsible for breaking down the stored TAG molecules to release
three FA and glycerol. Adipose triglyceride lipase (ATGL), hormone-sensitive lipase L),
and monoglyceride lipase (MGL) are the principal lipases. Each removes a single FA in a
stepwise fashion, converting the TAG to diacylglycerol (DAG), then monoacylglycerol
(MAG), and finally free glycerol. This ensures a steady supply of substrates for ATP
generation, but also allows for the utilization of glycerol in either hepatic lipogenesis or
gluconeogenesis [29]. Because hepatic synthesis of FFA is reduced during food deprived
conditions [30], essentially all of the FFA in circulation result from adipose tissue lipolysis.

ATGL is the rate-limiting enzyme in TAG hydrolysis [31]. ATGL expression increases
during food deprivation in humans, rats, and seals [21, 23, 32] and so is likely responsible
for the increased circulating FFA concentration during fasting. AMP-activated protein
kinase (AMPk) activity has also been reported to increase with fasting in rats and elephant
seals [19, 33, 34], and because its upregulation increases ATGL expression in vitro [35, 36],
it is likely responsible for the increased ATGL expression in vivo during prolonged fasting.
Though its affinity for TAG molecules is much less than that of ATGL, HSL is capable of
hydrolyzing TAG, DAG, and MAG molecules [37]. As its name implies, HSL is responsive
to various hormones, such as catecholamines and insulin and so can also increase or
decrease lipolysis depending on the needs of the organism. Insulin decreases substantially
during fasting in mammals [18, 38] while the concentration of catecholamines (e.g.
epinephrine, norepinephrine) increases [39], thus promoting increased lipolysis through
HSL. However, HSL lipolytic activity decreases when AMPk is chronically activated [40],
likely to limit the pro-lipolytic effects of catecholamines.

The inhibition of HSL and increased expression of ATGL by AMPk has been proposed as
an adaptive response to fasting lifestyles [23]. Increased ATGL activity would maintain
rates of lipolysis, while decreased HSL activity would reduce DAG hydrolysis, preventing
premature depletion of lipid stores [41] (Figure 2). As seen in fasting elephant seals [23],
this would increase the FFA:glycerol turnover ratio, potentially reducing the amount of free
glycerol available in plasma for subsequent conversion to carbohydrate via gluconeogenesis.
Interestingly, decreased HSL and increased ATGL activities are also associated with the
dysregulation of fat metabolism seen in high fat diet-induced obesity in mice [40]. The only
thing separating the two conditions is the impairment of AMPk activity due to obesity.

The effects of fasting on MGL have not been thoroughly investigated so these data are
scarce. However, in the postabsorptive state, MGL is responsible for catalyzing the final
step in the separation of glycerol and fatty acids by hydrolyzing MAG [42]. Several MAG
species have been shown to promote lipid storage and reduce energy expenditure by binding
to and activating the cannabinoid receptors in rats and humans [43]. Decreased MGL
activity and maintained endocannabinoid signaling may be beneficial to hibernators, since
they decrease their metabolic rate and do not maintain normothermic rates of energy
expenditure [43]. However, mammals maintaining their body temperature and metabolic
rate during food deprivation may increase MGL activity, since increased lipid storage would
not benefit their survival under these circumstances [44]. Alternatively, if increased AMPk
activity results in the accumulation of DAG molecules, then MGL activity would not be as
crucial because a limited amount of MAG would be produced and available for further
metabolism.
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B. Fatty Acid Uptake
Fatty acid transporters are the primary mediators of long chain fatty acid (LCFA) uptake
into cells and therefore have substantial control over the availability of FA in circulation.
Fatty acid translocase (CD36), fatty acid binding protein (FABP), and fatty acid transport
protein 1 (FATP1) are the three principal transporters regulating FA uptake by cells [45].
Retinoic acid has been reported to regulate the expression of CD36 and FATP1 through the
retinoic acid receptor (RAR) and peroxisome proliferator-activated receptor gamma
(PPARγ) in cells and diabetic rats [46, 47]. Regulation of the transporters appears to be
tissue specific as fasting increases their expression in muscle [48], but decreases their
expression in the liver and adipose tissue [23, 49, 50]. This differential expression suggests
that regulation of the transporters during fasting involves the activation of different subtypes
of RAR and PPAR within the different tissues. Additionally, the differential expression of
fatty acid transporters is likely associated with the availability of energy stores within the
tissues, as muscle stores are limited compared to liver and adipose tissue. This may also
result from the need to maintain elevated concentrations of FFA in circulation during fasting
to support a lipid-based metabolism [23]. The liver and adipose tissue actively participate in
the futile cycling of FA (re-esterification of FFA into TAG) even when attempting to
maintain elevated plasma FFA [51]. Because both tissues account for approximately 70% of
fatty acid uptake in the postabsorptive state [52], decreased transporter content may be the
principal mechanism contributing to a decrease in FA uptake under prolonged food deprived
conditions.

C. Hepatic Re-esterification
While most tissues will oxidize FA to generate ATP, a very small fraction of the plasma
FFA are re-esterified into TAG by the liver, packaged into very low density lipoproteins
(VLDL), and returned into circulation [53]. In the postabsorptive state, this process could
also entail the de novo synthesis of FA by fatty acid synthase (FAS) [30]. However, FAS
expression and activity decrease with fasting as a result of decreased insulin [54], so FFA
released by adipose tissue should account for the majority of the FA re-esterified into TAG
by the liver. Synthesis of glycerol-3-phosphate (G3P) is also necessary for hepatic re-
esterification because G3P serves as the backbone of the TAG molecule [55]. This involves
the phosphorylation of free glycerol by glycerol kinase (GK), or de novo synthesis of G3P
by phosphoenolpyruvate carboxykinase-cytosolic (PEPCK-C)[56]. The fasting induced
increase in plasma cortisol promotes hepatic PEPCK-C expression [28], which may
predominantly contribute to G3P synthesis via glyceroneogenesis. However, because
PEPCK-C is also involved in gluconeogenesis [57], its increased expression may facilitate
both processes. Though endogenous glucose production (EGP) has been reported to
decrease with fasting duration in seals, rats, and dogs [16, 58, 59], a basal level must be
maintained to ensure that glucose is available for tissues that do not rely on lipid oxidation
(e.g., CNS & RBC). Therefore, because TAG synthesis must be balanced against
gluconeogenesis, the liver contributes to a limited amount of FFA re-esterification.

D. Adipose Tissue Re-esterification
Fatty acid re-esterification is predominantly mediated by adipose tissue, which internalizes
FFA as well as the FA released from VLDL-TAG by lipoprotein lipase (LPL) [51].
However, like the FA transporters, LPL decreases as a result of fasting [60], likely in an
attempt to maintain plasma FFA concentration elevated. Similar to re-esterification in the
liver, a pool of fatty acid acceptors is necessary to synthesize the TAG molecule [55].
Because GK activity in adipose tissue of humans and rodents is relatively very low, even in
the fed state [61, 62], G3P must be derived from either conversion of glucose to
dihydroxyacetone (DHA) and then G3P [63], or by glyceroneogenesis using branched chain
amino acids (BCAA) or TCA cycle intermediates [64]. However, in rats fasted for 48 hours,
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adipose tissue glucose uptake decreases by 68% while PEPCK-C activity increases by 400%
[65], so glyceroneogenesis may be the preferred method of G3P synthesis during fasting.

Contrary to what is seen in the liver, cortisol decreases the expression of PEPCK-C in
adipose tissue [64, 66]. This differential regulation of PEPCK-C expression may be
indicative of the decreased need for TAG storage in adipocytes and increased need for FA
mobilization during prolonged food deprivation. Alternatively, because up to 40% of the
FFA released by lipolysis are re-esterified by adipocytes [67], a shift to partial hydrolysis
during fasting could allow for the accumulation of DAG and MAG within adipose tissue
that could serve as fatty acid acceptors (Figure 2). This would allow for reduced reliance on
glyceroneogenesis because remodeling of MAG and DAG by monoglyceride acyltransferase
(MGAT) and diglyceride acyltransferase (DGAT) [68] could achieve TAG synthesis. Both
MGAT and DGAT activities increase in adipose tissue of marmots prior to hibernation [69]
demonstrating that these enzymes are involved in the preservation of lipid substrates in
food-deprived mammals. Additionally, short-term fasting in rodents increases DGAT
expression in adipose tissue due to relatively low levels of carbohydrate [70] suggesting that
the same increase may be seen in adipose tissue of prolong-fasting mammals. This process
could potentially reduce the impact of futile cycling on energy stores by: 1) reducing the
amount of FFA released through lipolysis, 2) keeping a pool of acylglycerols in adipocytes
to serve as FA acceptors, and 3) reducing the need for glyceroneogenesis.

III. Substrate Availability & Fuel Metabolism
The effects of substrate availability on fuel metabolism at the systemic level have been
described as the three phases of starvation [8, 17]. Each phase is characterized by the
predominant catabolism of a different class of substrate and so has a different duration
depending on the stores of the specific mammal: 1) carbohydrate (24–48 hours), 2) lipid (2–
12 weeks), and 3) protein (1–3 days) [17, 71]. As carbohydrate stores are depleted, defined
mechanisms shift metabolism to reliance on lipid oxidation, with a small degree of protein
catabolism, until either a food source is found or the organism enters irreversible terminal
cachexia and succumbs. Though the characterization of the three phases was a substantial
addition to our understanding of starvation metabolism, there has been substantial work
demonstrating that the regulation of substrate utilization goes beyond the hormone-mediated
hydrolysis of available substrate [36, 46, 72–74]. Lipids exhibit substantial control over
metabolism through transcription regulation and through β-oxidation [72, 73, 75, 76], and
increase in circulation as a result of food deprivation [9]. Therefore, in addition to serving as
sources of energy, lipids could potentially be key regulators of metabolism by serving as
cellular signals during food deprivation in mammals.

A. Transcriptional Regulation
Lipid substrates can bind to and activate nuclear receptors like the liver X receptor (LXR),
retinoid X receptor (RXR), or PPAR to influence the expression of genes involved in the
regulation of metabolism in peripheral tissues [20, 46, 47, 77, 78]. Investigation into the
effects of different lipids on nuclear receptors has demonstrated consistency in both affinity
for receptor subtypes and effect across multiple species [20, 47, 77–79]. Polyunsaturated
fatty acids (PUFA) have been reported tobind to PPARα and promote the expression of
genes involved in lipid oxidation in muscle and liver, while downregulating hepatic fatty
acid synthase in rodents [20, 73, 80]. PUFA inhibit sterol regulatory element-binding protein
(SREBP) activity via deactivation of hepatic LXR, which impedes lipogenesis [55].
Monounsaturated fatty acids (MUFA) promote lipolysis through inhibition of PPARγ, but
do not significantly affect oxidation in rats and hamsters [72, 74]. Saturated fatty acids
(SFA) increase low-density lipoprotein (LDL) production, but have also been suggested to
contribute to FA chain elongation and to increase the expression of genes involved in
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hepatic de novo lipogenesis in mice [81–83]. Furthermore, derivatives of LCFA oxidation
maintain the expression of glucose transporter type 4 (GLUT4) by activating LXR in
cultured adipocytes [79] suggesting that lipid metabolism may contribute to cellular glucose
availability via effects on LXR.

Furthermore, glucose may be necessary for the binding of lipid ligands to these nuclear
receptors [77]. This suggests that in mammals that do not regularly endure prolonged food
deprivation, such as humans, reduced glucose availability could reduce lipid ligand-induced
activation of these nuclear receptors. If this is the case, then the elevated rates of EGP seen
in certain adapted mammals undergoing prolonged fasting [84] may retain or augment the
regulatory function of the lipid ligands on nuclear receptor activation. Additionally,
maintenance of GLUT4 expression in adipose by LCFA derivatives could preserve the
regulation of nuclear receptors in the absence of elevated rates of EGP, thereby preventing
impairments to lipid metabolism. For adapted mammals dependent on a lipid-derived
metabolism, alleviation of such impairments in lipid metabolism would be critically
important.

Because the only lipid substrates available to fasting and hibernating mammals are those
released from TAG stores through lipolysis, FA composition of TAG stores should be the
first consideration in evaluating the potential regulatory capacity of lipid substrates on
metabolism under food deprived conditions. Analysis of the FA composition in adipose
tissue of mammals adapted to prolonged bouts of food deprivation (e.g., bears, seals)
demonstrates a consistently greater abundance of MUFA than other FA, similar to that
observed in humans [10, 11, 13, 14, 85–93]. However, the relative amounts of PUFA and
saturated fatty acids (SFA) vary among the different species (Table 1, [10, 11, 14, 85–93]) in
a manner that appears to be related to their energy requirements. Fasting animals remain
normothermic and only slightly decrease their metabolic rate, while hibernators decrease
both body temperature and metabolic rate substantially [14]. The lipid composition of
fasting mammals [10, 13, 91] is consistent with what would be expected given the
regulatory effects described because PUFA would inhibit lipid synthesis and increase lipid
oxidation, while MUFA would maintain lipolysis. Similarly, the relatively high levels of
MUFA along with a lower PUFA:SFA ratio seen in hibernators [14, 86, 90, 92] would
maintain lipolysis without necessarily increasing lipid oxidation, allowing for the
preservation of energy stores to support the energetic burdens associated with prolonged
food deprivation.

Interestingly, humans maintain adipose tissue PUFA:SFA ratios lower than that of fasting
and hibernating mammals [87–89]. The respiratory quotient (RQ) of food deprived humans
at Phase II of starvation is approximately 0.82 [15] compared to an RQ of 0.71 throughout
the 10–12 weeks of fasting in elephant seals [94]. An adipose tissue FA composition that
promotes the preservation of lipids may be responsible for the inability of humans to rely
solely on β-oxidation under food deprived conditions. Because humans are not able to adjust
their metabolic rate to the same extent as fasting adapted mammals, this could explain why
humans, and other nonadapted mammals, starve (enter phase III) rather than fast during
prolonged periods of food deprivation.

B. β-oxidation
Besides the potential transcriptional regulation of metabolism during food deprivation, lipids
can also affect the availability and utilization of metabolic substrates through the
mitochondria [76, 95, 96]. For example, the acetyl-CoA remaining from oxidation of FA can
be used as a substrate in hepatic ketogenesis, decreasing glucose utilization by the CNS [7,
97] and not just by peripheral tissues, ultimately decreasing the need for EGP. Furthermore,
medium chain fatty-acyl carnitines derived from oxidation of LCFA are capable of
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increasing lipid oxidation in murine muscle cells [76]. Though this suggests that greater
availability of lipid substrates, as seen in food deprived mammals [20, 23], promotes proper
lipid utilization, increased flux of SFA through the mitochondria results in the
downregulation of oxidative capacity and leads to the production of lipid derivatives that
interfere with insulin signaling [96, 98–100].

SFA and MUFA are preferentially mobilized from TAG stores in food deprived humans and
some adapted mammals [87, 93]. SFA- and MUFA-carnitines also make up 51% and 41%,
respectively, of the plasma acylcarnitines in fasting elephant seal pups [23] suggesting that
the SFA and MUFA mobilized are being directed towards mitochondrial oxidation. This
also suggests that: 1) PUFA are spared from oxidation, regardless of whether a mammal is
adapted to food deprivation or not, likely to conserve PUFA for other purposes (e.g.,
maintenance of membrane fluidity, activation of nuclear receptors), and 2) downregulation
of oxidative capacity and interference of insulin signaling may be purposeful because more
SFA are oxidized even though MUFA content is greater. Inhibition of cellular insulin
signaling reduces glucose uptake, which could further decrease the need for EGP and
utilization of BCAA. Therefore insulin resistance associated with increased lipid utilization
may be an evolved strategy used by adapted mammals that frequently experience food
deprivation to prevent the protein oxidation and cachexia associated with starvation in
humans.

IV. Summary and Future Directions
The ultimate goal of any organism undergoing food deprivation is to find food before
endogenous energy stores are depleted. In the interim, metabolism is drastically altered to
facilitate the availability and utilization of substrates via tightly regulated mechanisms. The
mechanisms described here demonstrate the important cross talk that exists between liver
and adipose tissue during fasting, emphasizing the increased contribution of adipose tissue
as the storage site of the primary metabolic substrate in fasting-adapted mammals.
Additionally, the ability of lipid metabolites to activate nuclear receptors and regulate gene
expression of proteins associated with lipogenesis, lipolysis, and lipid oxidation provides an
indication of the contribution of lipids to the regulation of fasting metabolism beyond that as
merely a metabolic fuel. Future studies will benefit from profound examinations of the
contributions of nuclear receptors (i.e., LXR, RXR, and PPAR) and FA on the mechanisms
regulating lipid metabolism during prolonged fasting.

V. Translational Potential
Because of the nature of studies conducted on these types of animals, identifying potential
mechanisms using the available data is more challenging, as the original methods performed
were not necessarily designed to investigate cellular metabolism. However, because there is
substantial data that agrees in key changes to either biochemistry or cellular protein
expression, mechanisms can be inferred and compared to those seen in humans and rodents.
Mammals adapted to fasting lifestyles can depend primarily on lipid metabolism and still
maintain tight control of both substrate availability and utilization. Because they do so
despite experiencing decreased nervous system activity as well as decreased endocrine
regulation, they offer the unique opportunity to investigate the cellular contributions to
systemic metabolic regulation. As stated earlier, fasting seals experience cellular and
biochemical changes similar to that seen in obese humans, and appear to develop fasting-
induced insulin resistance. Unlike humans, the seal maintains control of its metabolism, and
appears to benefit from the reduced insulin action. Therefore, delineating the mechanisms
that allow seals, and other fasting-adapted mammals, to maintain control of metabolism has
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the potential to improve our understanding of the cellular perturbations that lead to
dyslipidemia and insulin resistance in humans.
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Abbreviations

AMPk AMP kinase

ATGL Adipose Triglyceride Lipase

BCAA Branched chain amino acid

CD36 Fatty acid Translocase

DAG Diacylglycerol

DHA Dihydroxyacetone

DGAT Diglyceride acyltransferase

EGP Endogenous glucose production

FAS Fatty acid Synthase

FATP Fatty acid Transport Protein

G3P Glycerol-3-phosphate

GK Glycerol Kinase

GLUT4 Glucose transporter type 4

HSL Hormone-sensitive Lipase

LCFA Long chain fatty acid

LPL Lipoprotein Lipase

LXR Liver X Receptor

MAG Monoacylglycerol

MGAT Monoglyceride acyltransferase

MGL Monoglyceride Lipase

MUFA Monounsaturated fatty acid

PEPCK-c Phosphoenolpyruvate Carboxykinase-cytosolic

PPAR Peroxisome Proliferator –activated Receptor

RAR Retinoic Acid Receptor

RQ Respiratory Quotient

RXR Retinoid X Receptor

SFA Saturated fatty acid

SNS Sympathetic nervous system

SREBP Sterol regulatory element-binding protein

TAG Triacylglycerol
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Figure 1.
Comparison of the changes to key metabolic parameters in mammals under postprandial,
postabsorptive, fasting, and starving conditions.
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Figure 2.
Schematic of the simplified A) complete hydrolysis of triacylglycerols and subsequent re-
esterification, and B) the proposed partial hydrolysis of triglycerides and subsequent re-
esterification of monoacylglycerols and diacylglycerols. Solid lines denote direct effects,
dashed lines denote indirect effects. Short downward pointing arrows denote a decrease.
Abbreviations: AMPK, AMP kinase; ATGL, adipose triglyceride lipase; BCAA, branched
chain amino acids; DAG, diacylglycerol; DGAT, diglyceride acyltransferase; FA-CoA, fatty
acyl-CoA; FFA, free fatty acid; G3P, glycerol-3-phosphate; HSL, hormone-sensitive lipase;
MAG, monoacylglycerol; MGAT, monoglyceride acyltransferase; MGL, monoglyceride
lipase; PEPCK-c, phosphoenolpyruvate carboxykinase cytosolic; TAG, triacylglycerol;
TCA, tricarboxylic acid
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