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Abstract
We report the results of an association study of melanoma based on the genome-wide imputation
of the genotypes of 1,353 cases and 3,566 controls of European origin conducted by the
GenoMEL consortium. This revealed a novel association between several single nucleotide
polymorphisms (SNPs) in intron 8 of the FTO gene, including rs16953002, which replicated using
12,313 cases and 55,667 controls of European ancestry from Europe, the USA and Australia
(combined p=3.6×10−12, per-allele OR for A=1.16). As well as identifying a novel melanoma
susceptibility locus, this is the first study to identify and replicate an association with SNPs in
FTO not related to body mass index (BMI). These SNPs are not in intron 1 (the BMI-related
region) and show no association with BMI. This suggests FTO’s function may be broader than the
existing paradigm that FTO variants influence multiple traits only through their associations with
BMI and obesity.

Cutaneous melanoma is a disease predominantly of fair-skinned individuals. Established risk
factors include a family history of melanoma1, pigmentation phenotypes such as inability to
tan2–5 and number of melanocytic naevi6,7. Established genetic risk factors include rare
highly-penetrant variants, at least 11 common variants of lower effect identified by genome-
wide association studies (GWAS)8,9 (many related to pigmentation or naevus count10,11)
and mutations of intermediate effect in the MITF gene identified through sequencing
multiple-affected melanoma families12,13.

The FTO gene was first found to be associated with obesity in GWAS of type 2 diabetes14

and obesity15,16. Most14,17–21 but not all22, 23 studies found no association between FTO
and type 2 diabetes risk after adjustment for BMI. The strongest associations were with
variants in intron 1 of FTO, but linkage disequilibrium (LD) stretches across introns 1 and 2
and exon 2. No SNP outside intron 1 has previously been associated with any trait and no
SNP within intron 1 has been associated with any trait unrelated to BMI.

The GenoMEL consortium focuses on genetic susceptibility to melanoma and has conducted
two melanoma GWAS (Phase 1 and Phase 2) using samples from populations of European
or Israeli ancestry9,11. Genotypes of the 1,373 cases and 3,571 controls from Phase 1 of the
GenoMEL GWAS of melanoma9 were imputed, giving 2.6M SNPs, each tested for
association with melanoma risk using geographic region as a covariate (see Online
Methods). The most significant SNP in a region not previously associated with melanoma
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was in FTO. Three SNPs in intron 8 of the gene FTO were significant at p<10−5, the most
significant being rs16953002 (p=5.59×10−6, per-allele OR=1.33, risk allele A, risk allele
frequency=0.19) and rs12596638 (p=4.4310−6, per-allele OR=1.34, risk allele A, risk allele
frequency=0.19) (in strong LD: r2=0.96). Imputation quality was confirmed by subsequent
genotyping (see Online Methods).

Following this finding, a region 1Mb either side of rs16953002 was imputed for 1,449 cases
and 4,043 controls in GenoMEL melanoma GWAS Phase 211 and SNP dosage regressed on
melanoma case-control status with geographic region as a covariate. In this analysis
rs16953002 was genotyped (p=0.015, OR=1.16) and rs12596638 imputed (p=0.023,
OR=1.15). Combining all GenoMEL GWAS gave 5 SNPs within 18kb with p<10−4 in
intron 8 of FTO and over 250 kb from the closest SNP associated with BMI (Fig. 1).

Replication (mainly using existing GWAS data) was sought using other samples of
European ancestry from Europe, Australia and the USA, totalling 10,865 cases and 51,624
controls (Supplementary Table 1). Combined, the replication samples showed association
between rs16953002 and melanoma with an allelic OR of 1.14, p = 4.8×10−9, with all
sample sets showing OR estimates in the same direction as the original finding and with no
evidence of heterogeneity. Combined with the GenoMEL samples, strong evidence of
association with melanoma was observed: p=3.6×10−12, per-allele OR=1.16, 95%
confidence interval (1.11,1.20), I2=0 (Fig 2).

BMI has, at best, a weak effect on risk of melanoma24,25. Given the clear association
between variants in FTO and BMI, we investigated whether the melanoma-associated SNPs
showed any association with BMI or, conversely, whether the known BMI-associated SNPs
showed any association with melanoma.

BMI data were available for 37% of cases and 59% of controls (many of the GenoMEL
samples and 7 replication sets) (Supplementary Table 1), with additional Icelandic controls
to give 63,518 Icelandic samples with BMI and 14,222 from elsewhere with BMI. Adjusting
log(BMI) for age and age2 and regressing this on SNP genotype, with case-control status
and sex as covariates, there was no significant association between rs16953002 and BMI
with a combined p-value of p=0.15 (Supplementary Fig. 1). A more powerful dataset for
assessing BMI-SNP associations is that of the GIANT consortium26 (http://
www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files). In
the GIANT consortium data allele A of rs16953002 was very weakly associated with
decreased BMI (p=0.0156 in 123,852 individuals, indicating at most a very small effect
size).

In contrast the genotyped SNP in the FTO region most strongly associated with BMI in the
GenoMEL data was rs8050136 (p=8.7×10−56 in all our datasets combined, Supplementary
Fig. 2 and Supplementary Fig. 3). In the GIANT dataset this association with BMI reaches
p=1×10−59.

We also find very little LD between the two SNPs (r2=0.000039 in 35,583 Icelandic controls
and <0.006 in every other control set). In a recent study that sequenced FTO, only SNPs in
intron 1 were associated with BMI27. It could be that the rs16953002-BMI association in the
GIANT data is due to a very well-powered dataset picking up on slight LD. The great
difference between the strength of association between BMI at rs8050136 and at rs16953002
can clearly be seen in a plot of the GIANT results (Supplementary Fig. 4).

rs8050136 was not associated with melanoma, having a combined meta-analysis p-value
with GenoMEL of 0.19 (per-allele OR=1.02) (Supplementary Fig. 5). Therefore from our
data the known BMI-related SNPs are associated with BMI, but not with melanoma risk,
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and the melanoma-associated SNPs show no evidence of association with BMI. We also
found no association between melanoma risk and adjusted BMI in the GenoMEL data
(p=0.96).

The association between rs16953002 and melanoma risk is consistent across geographic
regions (Fig. 2 and Supplementary Fig. 6) and we found no significant difference in effect
across subsets of the GenoMEL data defined by sex, tumour site, family history, early onset
of disease and multiple primary tumours or association with any established melanoma-
related trait (naevus count, sun sensitivity) (data not shown). The association between
rs16953002 and melanoma risk persists in the subset of samples with BMI recorded even
after adjusting for BMI (p=0.01) despite a substantial reduction in sample size
(Supplementary Table 2 and Supplementary Methods).

We split the GenoMEL data into quartiles defined by adjusted BMI of controls and
regressed case/control status on rs16953002 with sex as a covariate in each quartile. The
association was stronger for those samples in the first quartile (lowest BMI) than those in the
other quartiles (OR=1.66, p=3.00×10−5 versus max OR=1.03, min p=0.82) (Supplementary
Fig. 7), a difference that is significant (p=0.0005). This is consistent with rs16953002 only
being associated with melanoma risk in those people with low BMI. Attempting to replicate
the results, defining BMI quartiles within each population, the Australian data showed a
similar effect (p=0.003), but other non-UK replication sets gave more equivocal results
(Supplementary Fig. 7) (p=0.6 for all replicate samples and p=0.06 with GenoMEL samples
included). However in the 9 replication studies for which BMI data were available,
rs16953002 always had the greatest association with melanoma risk for those in quartile 1 or
2.

While the functional effect(s) of FTO is far from understood, evidence points to a variety of
possible effects on BMI-related traits. However, a loss-of-function mutation in FTO caused
gross developmental defects in nine members of a Palestinian family, suggesting a broader
function for FTO28.

FTO has been associated with end-stage renal disease29, acute coronary syndrome30,
myocardial infarction31, all-cause mortality32, Alzheimer’s disease33 and osteoarthritis34.
Even after adjustment for BMI, some BMI-related traits show association with FTO
variants, but it may be BMI simply correlates with a weight-related factor acting more
directly on the trait of interest. Given that BMI is a risk factor for many cancers, the BMI-
related SNPs in intron 1 of FTO have been studied in a number of cancers. A study of lung,
kidney and upper aero-digestive cancers showed no significant effect overall after correction
for multiple testing35. The largest study of FTO and endometrial cancer found an association
with a known BMI-associated SNP (p=0.01)36 that disappears after adjustment for BMI.

Thus there is little evidence of variants in FTO being associated with any trait unrelated to
BMI. It may be that the melanoma-associated SNPs are in LD with functional SNPs outside
of FTO, but given the low level of LD in the region (Fig. 1) this seems unlikely. It should be
noted that our most significant SNP, rs16953002, is only 31kb from exon 9 of FTO, over
146kb from exon 8 of FTO and over 202kb from the nearest other gene, IRX3. SNPs
overlapping regulatory elements, such as transcription factor binding sites can be identified
using the recent ENCODE data as well other data sources37,38. Looking up the FTO gene,
2,148 SNPs are identified, only 8 of which reach the highest score possible without eQTL
data (score 2a - “Likely to affect binding”). Six of these are in intron 1, the location of most
of the BMI-associated SNPs, 5 of these in a 5.4kb region less than 1kb from rs8050136. The
other two SNPs are 13kb apart from one another in intron 8 and, interestingly, one of these
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is rs16953002, the melanoma-associated SNP (see Supplementary material for further
details).

In conclusion, this is the first time to our knowledge that any variant in FTO has been shown
to have a replicable association with a trait without being associated with BMI. It is also the
first time that any variant in FTO outside intron 1 has been shown to have any association
with any trait. As such this will be of interest to researchers in the fields of both cancer
genetics and obesity research.

URLs
GenoMEL, http://www.genomel.org/; Wellcome Trust Case Control Consortium http://
www.wtccc.org.uk/; RegulomeDB, http://RegulomeDB.org/

Methods
Samples

Phase 1 of the original GenoMEL GWAS consisted of cases and controls collected from 8
centres across 6 different European countries. These were supplemented with controls from
the Wellcome Trust Case Control Consortium (WTCCC)19. Standard quality control (QC)
measures were applied to both samples and SNPs, giving a total of 1,353 cases and 3,571
controls. Phase 2 of the GenoMEL GWAS consisted of cases and controls from 10 centres
(4 not in Phase 1) in 8 different European countries and Israel, supplemented again by
samples from the WTCCC. In both phases cases were preferentially selected to have a
family history of melanoma, multiple primary tumours or an early age of onset. After QC
1,450 cases and 4,047 controls remained (see 11 for details of QC and samples). 680
supplementary UK cases and 1,785 controls were obtained from a population-based study of
incident melanoma cases diagnosed between September 2000 and December 2006 from a
geographically defined area of Yorkshire and the Northern region of the UK9,40,41. Controls
were ascertained by contacting general practitioners to identify eligible individuals. These
controls were frequency-matched with cases for age and sex from general practitioners who
had also had cases as part of their patient register. A further 220 controls were sex- and age-
matched and from the same primary care practice as incident cases of colorectal cancer
recruiting from hospitals in Leeds42.

The only GenoMEL centre that collected BMI data was Leeds. Within Leeds, two studies
were used, a family-based study that did not collect BMI and a case-control study that did
collect BMI (see Supplementary Table 1).

For details of replication samples see Supplementary Note.

Genotyping
Most GenoMEL Phase 1 samples were genotyped on the Illumina HumanHap300 BeadChip
version 2 duo array (with 317k tagging SNPs), with the exception of the French cases which
were genotyped on the Illumina HumanCNV370k array. The GenoMEL Phase 2 samples
were genotyped on the Illumina 610k array.

In the genotyping of the UK case-control samples, rs16953002 and rs12596638 were
genotyped using the Taqman assays C__34511379_10 and C__11776446_10 respectively
(Applied Biosystems). 2ul PCR reactions were performed in 384 well plates using 10ng of
DNA (dried), using 0.05 ul assay mix and 1ul Universal Master Mix (Applied Biosystems)
according to the manufacturer’s instructions. End point reading of the genotypes was
performed using an ABI 7900HT Real-time PCR system (Applied Biosystems).
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Imputation
Imputation was conducted genome-wide on the GenoMEL Phase 1 samples, excluding
SNPs with MAF<0.03, HWE p-value<10−4 (in controls) and missingness >0.03.
IMPUTEv243,44 was used and the reference panel consisted of 120 European samples from
HapMap release #24 (NCBI build36, Nov 2008). After the initial genome-wide imputation
had identified the FTO region as a candidate region, further imputation of this region (1Mb
either side of rs16953002, Chr16: 53,114,824–55,114,824) was conducted based on the
1000 Genomes Phase 1 integrated variant set (March 2012 release, excluding SNPs with
MAF<0.001 in the CEU European samples). The number of well-imputed SNPs (INFO
score>0.8) in the region increased from 1,245 to 4,874, although the most significant three
SNPs remained the same. The first p-values quoted for rs16953002 and rs12596638
(p=5.59×10−6 and p=4.4310−6 respectively) were from the genome-wide imputation but all
subsequent analyses are based on the FTO-regional imputation.

Imputed genotypes were analysed as expected genotype counts based on the posterior
probabilities (gene dosage) using SNPTEST245 assuming an additive model with geographic
region as a covariate. Only those with an ‘info’ score >0.8 are considered to be of sufficient
quality. The FTO region was imputed and analysed in the GenoMEL Phase 2 data in the
same way.

Imputation quality was confirmed by genotyping 3,694 of the previously-imputed samples
from GenoMEL Phase 1 at rs16953002. The imputed genotype with the highest posterior
probability was correct in 97% of cases (rising to 98% if we only consider those genotypes
where the maximum posterior probability is >0.8). Given this strong confirmation of the
quality of the imputation, unless otherwise stated we present the result using the imputed
Phase 1 results, rather than interleaving imputed and genotyped data indiscriminately. In the
Supplementary Material and Supplementary Table 2 results are presented using only
genotyped data for comparison with the imputed results.

In the replication samples rs16953002 and rs8050136 were genotyped, with the exception of
rs8050136 being imputed in the Harvard samples.

Meta-Analysis
Meta analyses assume fixed effects unless otherwise stated. In all cases heterogeneity
between studies is measured with the I2 metric; it has been suggested that values below 31%
are of “little concern” and those above 56% should induce “considerable caution”46. Where
I2 is>31% a random effects meta-analysis is applied. Here, the method of Dersimonian and
Laird47 was used to estimate the between-studies variance, τ̂2. An overall random effects
estimate was then calculated using the weights 1/(vi + τ̂2) where vi is the variance of the
estimated effect. τ̂2 = 0 for the fixed effects analyses.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Results of stratified trend tests of imputed data for association with melanoma in region
around FTO in GenoMEL Phase 1 and 2 data combined. −log10p values for association
between SNPs in the region of FTO and melanoma case-control status are shown adjusted
for geographic region. Colour of points indicates degree of LD with rs16953002 (indicated
by purple square). SNPs genotyped in all GenoMEL samples are plotted as circles, SNPs
imputed in all samples as crosses and SNPs genotyped in some samples and imputed in
others (as a result of chip differences) as squares. Positions of genes are given underneath
the graph and estimated recombination rates also given by the blue line along the bottom,
with scale on the right hand axis. Plot produced using LocusZoom39.
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Figure 2.
Forest plot of estimated per-allele ORs and p-values for effect of rs16953002 on melanoma
risk. Horizontal bars indicate 95% confidence intervals. Results shown for GenoMEL Phase
1 discovery data and subsequent replication data with meta-analysis for replication data only
and all data.
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