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Abstract

Paralysis following spinal cord injury (SCI), brainstem stroke, amyotrophic lateral sclerosis (ALS) 

and other disorders can disconnect the brain from the body, eliminating the ability to carry out 

volitional movements. A neural interface system (NIS)1–5 could restore mobility and 

independence for people with paralysis by translating neuronal activity directly into control 

signals for assistive devices. We have previously shown that people with longstanding tetraplegia 

can use an NIS to move and click a computer cursor and to control physical devices6–8. Able-

bodied monkeys have used an NIS to control a robotic arm9, but it is unknown whether people 
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with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals 

to direct useful arm actions. Here, we demonstrate the ability of two people with long-standing 

tetraplegia to use NIS-based control of a robotic arm to perform three-dimensional reach and grasp 

movements. Participants controlled the arm over a broad space without explicit training, using 

signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-

channel microelectrode array. One of the study participants, implanted with the sensor five years 

earlier, also used a robotic arm to drink coffee from a bottle. While robotic reach and grasp actions 

were not as fast or accurate as those of an able-bodied person, our results demonstrate the 

feasibility for people with tetraplegia, years after CNS injury, to recreate useful multidimensional 

control of complex devices directly from a small sample of neural signals.

The study participants, referred to as S3 and T2 (a 58 year-old woman, and a 65 year-old 

man, respectively), were each tetraplegic and anarthric as a result of a brainstem stroke. 

Both were enrolled in the BrainGate2 pilot clinical trial (see Methods). Neural signals were 

recorded using a 4 × 4 mm, 96-channel microelectrode array, which was implanted in the 

dominant MI hand area (for S3, in November 2005, 5.3 years prior to the beginning of this 

study; for T2, in June 2011, 5 months prior to this study). Participants performed sessions on 

a near-weekly basis to carry out point-and-click actions of a computer cursor using decoded 

MI ensemble spiking signals7. Across four sessions in her sixth year post-implant (trial days 

1952–1975), S3 used these neural signals to perform reach and grasp movements of either of 

two differently purposed right-handed robot arms. The DLR Light-Weight Robot III 

(German Aerospace Center, Oberpfaffenhofen, Germany, Fig 1b, left)10 is designed to be an 

assistive device that can reproduce complex arm and hand actions. The DEKA Arm System 

(DEKA Research and Development Corp., Manchester, NH, Fig 1b right) is a prototype 

advanced upper limb replacement for people with arm amputation11. T2 controlled the 

DEKA prosthetic limb on one session day (day 166). Both robots were operated under 

continuous user-driven neuronal ensemble control of arm endpoint (hand) velocity in 3D 

space; a simultaneously decoded neural state executed a hand action. S3 had used the DLR 

robot on multiple occasions over the prior year for algorithm development and interface 

testing, but she had no exposure to the DEKA arm prior to the sessions reported here. T2 

participated in three DEKA arm sessions for similar development and testing prior to the 

session reported here but had no other robotic arm experience.

To decode movement intentions from neural activity, electrical potentials from each of the 

96 channels were filtered to reveal extracellular action potentials (i.e., ‘unit’ activity). Unit 

threshold crossings (see Methods) were used to calibrate decoders that generated velocity 

and hand state commands. Signals for reach were decoded using a Kalman filter12 to 

continuously update an estimate of the participant’s intended hand velocity. The Kalman 

filter was initialized during a single “open-loop” filter calibration block (< 4 min) in which 

the participants were asked to imagine controlling the robotic arm as they watched it 

undergo a series of regular, pre-programmed movements while the accompanying neural 

activity was recorded. This open-loop filter was then iteratively updated during four to eight 

“closed-loop” calibration blocks while the participant actively controlled the robot under 

visual feedback, with gradually decreasing levels of computer-imposed error attenuation 

(see Methods). To discriminate an intended hand state, a linear discriminant classifier was 
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built on signals from the same recorded units while the participant imagined squeezing his 

or her hand8. On average, the decoder calibration procedure lasted ~ 31 minutes (ranging 

from 20–48 minutes, exclusive of time between blocks).

After decoder calibration, we assessed whether each participant could use the robotic arm to 

reach for and grasp 6 cm diameter foam ball targets, presented in 3D space one at a time by 

motorized levers (Fig. 1a–c, and Supplementary Fig. 1b). Because hand aperture was not 

much larger than the target size (only 1.3× larger for DLR, and 1.8× larger for DEKA) and 

hand orientation was not under user control, grasping targets required the participant to 

maneuver the arm within a narrow range of approach angles with the hand open while 

avoiding the target support rod below. Targets were mounted on flexible supports; brushing 

them with the robotic arm resulted in target displacements. Together, these factors increased 

task difficulty beyond simple point-to-point movements and frequently required complex 

curved paths or corrective actions (Fig. 1d, Supplementary Movies 1–3). Trials were judged 

successful or unsuccessful by two independent visual inspections of video data (see 

Methods). A successful “touch” trial occurred when the participant contacted the target with 

the hand; a successful “grasp” trial occurred when the participant closed the hand while any 

part of the target or the top of its supporting cone was within the volume enclosed by the 

hand.

In the 3D reach-and grasp task, S3 performed 158 trials across 4 sessions and T2 performed 

45 trials in a single session (Table 1; Fig. 1e,f). S3 touched the target within the allotted time 

in 48.8% of the DLR and 69.2% of the DEKA trials, and T2 touched the target within the 

allotted time in 95.6% of trials (Supplementary Movies 1–3, Supplementary Fig. 2). Of the 

successful touches, S3 grasped the target 43.6% (DLR) and 66.7% (DEKA) of the time, 

while T2 grasped the target 65.1% of the time. Of all trials, S3 grasped the target 21.3% 

(DLR) and 46.2% (DEKA) of the time, and T2 grasped the target 62.2% of the time. In all 

sessions from both participants, performance was significantly higher than expected by 

chance alone (Supplementary Fig. 3). For S3, times to touch were approximately the same 

for both robotic arms (Fig. 1f, blue bars; median 6.2 +/− 5.4 sec) and were comparable to 

times for T2 (6.1 +/− 5.5 sec). The times for combined reach and grasp were similar for both 

participants (S3, 9.4 +/− 6.2 sec; T2, 9.5 +/− 5.5 sec), although for the first DLR session, 

times were about twice as long.

To explore the utility of NISs for facilitating activities of daily living for people with 

paralysis, we also assessed how well S3 could control the DLR arm as an assistive device. 

We asked her to reach for and pick up a bottle of coffee, and then drink from it through a 

straw and place it back on the table. For this task, we restricted velocity control to the 2D 

tabletop plane and we used the simultaneously decoded grasp state as a sequentially 

activated trigger for one of four different hand actions that depended upon the phase of the 

task and the position of the hand (see Methods). Because the 7.2 cm bottle diameter was 

90% of the DLR hand aperture, grasping the bottle required even greater alignment 

precision than grasping the targets in the 3D task described above. Once triggered by the 

state switch, robust finger position and grasping of the object was achieved by automated 

joint impedance control. We familiarized the participant with the task for approximately 14 

minutes (during which we made adjustments to the robot hand grip force, and the participant 

Hochberg et al. Page 3

Nature. Author manuscript; available in PMC 2013 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



learned the physical space in which the state decode and directional commands would be 

effective in moving the bottle close enough to drink from a straw). After this period, the 

participant successfully grasped the bottle, brought it to her mouth, drank coffee from it 

through a straw, and replaced the bottle on the table, on 4 of 6 attempts over the next 8.5 

minutes (Fig. 2, Supplementary Fig. 4 and Supplementary Movie 4). The two unsuccessful 

attempts (#2 and 5 in sequence) were aborted to prevent the arm from pushing the bottle off 

the table (because the hand aperture was not properly aligned with the bottle). This was the 

first time since the participant’s stroke more than 14 years earlier that she had been able to 

bring any drinking vessel to her mouth and drink from it solely of her own volition.

The use of NISs to restore functional movement will become practical only if chronically 

implanted sensors function for many years. It is thus notable that S3’s reach and grasp 

control was achieved using signals from an intracortical array implanted over 5 years earlier. 

This result, supported by multiple demonstrations of successful chronic recording 

capabilities in animals13–15, suggests that the goal of creating long-term intracortical 

interfaces is feasible. At the time of this study, S3 had lower recorded spike amplitudes and 

fewer channels contributing signals to the filter than during her first years of recording. 

Nevertheless, the units included in the Kalman filters were sufficiently directionally tuned 

and modulated to allow neural control of reach and grasp (Fig. 3 and Supplementary Figs. 5 

and 6). S3 sometimes experiences stereotypic limb flexion. These movements did not appear 

to contribute in any way to her multidimensional reach and grasp control, and the neural 

signals used for this control exhibited waveform shapes and timing characteristics of unit 

spiking (Fig. 3 and Sup. Fig. 7). Furthermore, T2 produced no consistent volitional 

movement during task performance, which further substantiates the intracortical origin of 

his neural control.

We have shown that two people with no functional arm control due to brainstem stroke used 

the neuronal ensemble activity generated by intended arm and hand movements to make 

point-to-point reaches and grasps with a robotic arm across a natural human arm workspace. 

Moreover, S3 used these neurally-driven commands to perform an everyday task. These 

findings extend our previous demonstrations of point and click neural control by people with 

tetraplegia7,16 and show that neural spiking activity recorded from a small MI intracortical 

array contains sufficient information to allow people with longstanding tetraplegia to 

perform even more complex manual skills. This result suggests the feasibility of using 

cortically-driven commands to restore lost arm function for people with paralysis. In 

addition, we have demonstrated considerably more complex robotic control than previously 

demonstrated in able-bodied non-human primates (NHPs)9,17,18. Both participants operated 

human-scale arms in a 3D target task that required curved trajectories and precise 

alignments over a volume that was 1.4 to 7.7 times greater than has been used by NHPs. The 

drinking task, while only 2D + state control, required both careful positioning and correctly-

timed hand state commands to accomplish the series of actions necessary to retrieve the 

bottle, drink from it, and return it to the table.

Both participants performed these multidimensional actions after longstanding paralysis. For 

S3, signals were adequate to achieve control 14 years and 11 months after her stroke, 

showing that MI neuronal ensemble activity remains functionally engaged despite 
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subcortical damage of descending motor pathways. Future clinical research will be needed 

to establish whether more signals19–22, signals from additional or other areas2,23–25, better 

decoders, explicit participant training, or other advances (see Supplementary Materials) will 

provide more complex, flexible, independent, and natural control. In addition to the robotic 

assistive device shown here, MI signals might also be used by people with paralysis to 

reanimate paralyzed muscles using functional electrical stimulation (FES)27–29 or by people 

with limb loss to control prosthetic limbs. Whether MI signals are suitable for people with 

limb loss to control an advanced prosthetic arm (such as the device shown here) remains to 

be tested and compared to other control strategies11,26. Though further developments might 

enable people with tetraplegia to achieve rapid, dexterous actions under neural control, at 

present, for people who have no or limited volitional movement of their own arm, even the 

basic reach and grasp actions demonstrated here could be substantially liberating, restoring 

the ability to eat and drink independently.

Methods Summary

See Supplementary Information for additional Methods.

Permission for these studies was granted by the US Food and Drug Administration 

(Investigational Device Exemption; CAUTION: Investigational Device. Limited by Federal 

Law to Investigational Use Only) and the Partners Healthcare/Massachusetts General 

Hospital Institutional Review Board. Core elements of the investigational BrainGate system 

have been described previously6,7.

During each session, participants were seated in a wheelchair with their feet located near or 

underneath the edge of the table supporting the target placement system. The robotic arm 

was positioned to the participant’s right (Fig. 1a). Raw neural signals for each channel were 

sampled at 30 kHz and fed through custom Simulink (Mathworks Inc., Natick, MA) 

software in 100 ms bins (S3) or 20 ms bins (T2) to extract threshold crossing rates2,30; these 

threshold crossing rates were used as the neural features for real-time decoding and for filter 

calibration. Open and closed-loop filter calibration was performed over several blocks, 

which were each 3 to 6 minutes long and contained 18–24 trials. Targets were presented 

using a custom, automated target placement platform. On each trial, one of 7 servos placed 

its target (a 6 cm diameter foam ball supported by a spring-loaded wooden dowel rod 

attached to the servo) in the workspace by lifting it to its task-defined target location (Fig. 

1b). Between trials, the previous trial’s target was returned to the table-top while next target 

was raised. Due to variability in the position of the target-placing platform from session to 

session and changes in the angles of the spring-loaded rods used to hold the targets, visual 

inspection was used for scoring successful grasp and successful touch trials. Further details 

on session setup, signal processing, filter calibration, robot systems, and target presentations 

are given in Methods.

Methods

Permission for these studies was granted by the US Food and Drug Administration 

(Investigational Device Exemption; CAUTION: Investigational Device. Limited by Federal 
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Law to Investigational Use) and the Partners Healthcare/Massachusetts General Hospital 

Institutional Review Board. The two participants in this study, S3 and T2, were enrolled in a 

pilot clinical trial of the BrainGate Neural Interface System (additional information about 

the clinical trial is available at http://www.clinicaltrials.gov/ct2/show/NCT00912041).

At the time of this study, S3 was a 58-year-old woman with tetraplegia caused by brainstem 

stroke that occurred nearly 15 years earlier. As previously reported7,31, she is unable to 

speak (anarthria) and has no functional use of her limbs. She has occasional bilateral or 

asymmetric flexor spasm movements of the arms that are intermittently initiated by any 

imagined or actual attempt to move. S3’s sensory pathways remain intact. She also retains 

some head movement and facial expression, has intact eye movement, and breathes 

spontaneously. On November 30, 2005, a 96-channel intracortical silicon microelectrode 

array (1.5mm electrode length, produced by Cyberkinetics Neurotechnology Systems, Inc, 

and now by its successor, Blackrock Microsystems, Salt Lake City, UT) was implanted in 

the arm area of motor cortex as previously described6,7. One month later, S3 began regularly 

participating in ~1–2 research sessions per week during which neural signals were recorded 

and tasks were performed toward the development, assessment, and improvement of the 

neural interface system. The data reported here are from S3’s trial days 1952 to 1975, more 

than 5 years after implant of the array. Participant S3 has provided permission for 

photographs, videos and portions of her protected health information to be published for 

scientific and educational purposes.

The second study participant, referred to as T2, is a 65 year-old ambidextrous man with 

tetraplegia and anarthria as a result of a brainstem stroke that occurred in 2006, five and a 

half years prior to the collection of the data presented in this report. He has a tracheostomy 

and percutaneous gastrostomy (PEG) tube; he receives supportive mechanical ventilation at 

night but breathes without assistance during the day, and receives all nutrition via PEG. He 

has a left abducens palsy with intermittent diplopia. He can rotate his head slowly over a 

limited range of motion. With the exception of unreliable and trace right wrist and index 

finger extension (but not flexion), he is without voluntary movement at and below C5. 

Occasional coughing results in involuntary hip flexion, and intermittent, rhythmic chewing 

movements occur without alteration in consciousness. Participant T2 also had a 96 channel 

Blackrock array with 1.5mm electrodes implanted into the dominant arm-hand area of motor 

cortex; the array was placed 5 months prior to the session reported here.

Setup

During each session, the participant was seated in her/his wheelchair with her/his feet 

located underneath the edge of the table supporting the target placement system. The robot 

arm was positioned to the participant’s right (Fig. 1a). A technician used aseptic technique 

to connect the 96-channel recording cable to the percutaneous pedestal and then viewed 

neural signal waveforms using commercial software (Cerebus Central, Blackrock 

Microsystems, Salt Lake City, UT). The waveforms were used to identify channels that were 

not recording signals and/or were contaminated with noise; for S3, those channels were 

manually excluded and remained off for the remainder of the recording session.
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Robot systems

We used two robot systems with multi-joint arms and hands during this study. The first was 

the DLR Light-Weight Robot III10,32 with the DLR Five-Finger Hand33 developed at the 

German Aerospace Center (DLR). The arm weighs 14 kg and has 7 degrees of freedom 

(DoF). The hand has 15 active DoF which were combined into a single DoF (hand open/

close) to execute a grasp for these experimental sessions. Torque sensors are embedded in 

each joint of the arm and hand, allowing the system to operate under impedance control, and 

enabling it to handle collision safely, which is desirable for human-robot interactions34. The 

hand orientation was fixed in Cartesian space. The second robotic system was the DEKA 

Generation 2 prosthetic arm system, which weighs 3.64 kg and has 6 DoF in the arm 

(shoulder abduction, shoulder flexion, humeral rotation and elbow flexion, wrist flexion, 

wrist rotation), and 4 DoF in the hand (also combined into a single DoF to execute a grasp 

for these experimental sessions). The DEKA hand orientation was kept fixed in joint space; 

therefore, it could change in the Cartesian space depending upon the posture of other joints 

derived from the inverse kinematics.

Both robotic arms were controlled in endpoint velocity space while a parallel state switch, 

also under neural control from the same cortical ensemble, controlled grasp. Virtual 

boundaries were placed in the workspace as part of the control software to avoid collisions 

with the tabletop, support stand, and participant. Of the 158 trials performed by S3, 80 were 

carried out during the first two sessions using the DLR arm and 78 during the two sessions 

using the DEKA arm.

Target presentation

Targets were defined using a custom, automated servo-based robotic platform. On each trial, 

one of the 7 servos placed its target (a 6 cm diameter foam ball attached to the servo via a 

spring-loaded wooden dowel rod) in the workspace by lifting it to its task-defined target 

location. Between trials, the previous target was returned to the table while the next target 

was raised to its position. The trials alternated between the lower right ‘home’ target and one 

of the other six targets. The targets circumscribed an area of 30 cm from left to right, 52 cm 

in depth, and 23 cm vertically (see Supplementary Figs. 1 and 9).

Due to variability in the position of the target-placing platform from session to session and 

changes in the angles of the spring-loaded rods used to hold the targets, estimates of true 

target locations in physical space relative to the software-defined targets were not exact. 

This target placement error had no impact on the 3D reach and grasp task because the goal 

of the task was to grab the physical target regardless of its exact location. However, for this 

reason, it was not possible to use an automated method for scoring touches and grasps. 

Instead, scoring was performed by visual inspection of the videos: for S3, by a group of 

three investigators (N.Y.M., D.B., and B.J.) and independently by a fourth investigator 

(L.R.H.); for T2, independently by four investigators (J.D.S., D.B., and B.J. and L.R.H.). Of 

203 trials, there was initial concordance in scoring in 190 of them. The remaining 13 were 

re-reviewed using a second video taken from a different camera angle, and either a 

unanimous decision was reached (n = 10) or when there was any unresolved discordance in 

voting, the more conservative score was assigned (n = 3).
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Signal acquisition

Raw neural signals for each channel were sampled at 30 kHz and fed through custom 

Simulink (Mathworks Inc., Natick, MA) software in 100 ms bins (for participant S3) or 20 

ms bins (for participant T2). For participant T2, coincident noise in the raw signal was 

reduced using common-average referencing: from the 50 channels with the lowest 

impedance, we selected the 20 with the lowest firing rates. The mean signal from these 20 

channels was subtracted from all 96 channels.

To extract threshold crossing rates2,30, signals in each bin were then filtered with a 4th order 

Butterworth filter with corners at 250 and 5000 Hz, temporally reversed, and filtered again. 

Neural signals were buffered for 4 ms before filtering to avoid edge effects. This symmetric 

(non-causal) filter is better matched to the shape of a typical action potential35, and using 

this method led to better extraction of low-amplitude action potentials from background 

noise and higher directional modulation indices than would be obtained using a causal filter. 

Threshold crossings were counted as follows. For computational efficiency, signals were 

divided into 2.5 ms (for S3) or 0.33 ms (for T2) sub-bins, and in each sub-bin, the minimum 

value was calculated and compared to a threshold. For S3, this threshold was set at −4.5 

times the filtered signal’s root-mean-square (RMS) value in the previous block. For T2, this 

threshold was set at −5.5 times the RMS of the distribution of minimum values collected 

from each sub-bin. (Offline analysis showed that these two methods produced similar 

threshold values relative to noise amplitude). To prevent large spike amplitudes from 

inflating the RMS estimate for both S3 and T2, signal values were capped between 40 µV 

and −40 µV before calculating this threshold for each channel. The number of minima that 

exceeded the channel’s threshold was then counted in each bin, and these threshold crossing 

rates were used as the neural features for real-time decoding and for closed-loop filter 

calibration.

Filter calibration

Filter calibration was performed at the beginning of each session using data acquired over 

several “blocks” of 18–24 trials (each block lasting approximately 3 to 6 minutes). The 

process began with one open-loop filter initialization block, in which the participant was 

instructed to imagine that s/he was controlling the movements of the robot arm as it 

performed pre-programmed movements along the cardinal axes. The trial sequence was a 

center-out-back pattern. Each block began with the endpoint of the robot arm at the “home” 

target in the middle of the workspace. The hand would then move to a randomly selected 

target (distributed equidistant from the home target on the cardinal axes), pause there for 2 

seconds, and then move back to the home target. This pattern was repeated 2 to 3 times for 

each target. To initialize the Kalman filter12,36, a tuning function was estimated for each unit 

by regressing its threshold crossing rates against instantaneous target directions (see below). 

In participant T2, a 0.3 sec. exponential smoothing filter was applied to the threshold 

crossing rates before filter calibration.

Open-loop filter initialization was followed by several blocks of closed-loop filter 

calibration (adapted to the Kalman filter from Taylor et al.37 and Jarosiewicz et al.38), in 

which the participant actively controlled the robot to acquire targets, in a similar home-out-
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back paradigm, but with the home target at the right of the workspace (Supplementary Fig. 

1). In each closed-loop filter calibration block, the error in the participant’s decoded 

trajectories was attenuated by scaling down decoded movement commands orthogonal to the 

instantaneous target direction by a fixed percentage, similar to the technique used by 

Velliste et al.9. The amount of error attenuation was decreased across filter calibration 

blocks until it was zero, giving the participant full 3D control of the robot.

During each closed-loop filter calibration block, the participant’s intended movement 

direction at each moment was inferred to be from the current endpoint of the robot hand 

toward the center of the target. Time bins from 0.2 to 3.2 seconds after the trial start were 

used to calculate tuning functions and the baseline rates (see below) by regressing threshold 

crossing rates from each bin against the corresponding unit vector pointing in the intended 

movement direction; using this time period was meant to isolate the initial portion of each 

trial, during which the participant’s intended movement direction was less likely to be 

influenced by error correction. Times when the endpoint was within 6 cm of the target were 

also excluded, because angular error in the estimation of the intended direction is magnified 

as the endpoint gets closer to the target.

The state decoder used to control the grasping action of the robot hand was also calibrated 

during the same open-loop and closed-loop blocks. During open-loop blocks, after each trial 

ending at the home target, the robot hand would close for 2 seconds. During this time, the 

participant was instructed to imagine that s/he was closing his/her own hand. State decoder 

calibration was similar during closed-loop calibration blocks: after each home target trial, 

the hand moved to the home target if the participant hadn’t already moved it there, and an 

auditory cue instructed the participant to imagine closing his/her own hand. In closed-loop 

grasp calibration blocks using the DLR arm, the robot hand would only close if the state 

decoder successfully detected a grasp intention from the participant’s neural activity. In 

closed-loop calibration blocks using the DEKA arm, the hand always closed during grasp 

calibration irrespective of the decoded grasp state.

Sequential activation of DLR robot hand actions during the drinking task

In the drinking task, when participant S3 activated a grasp state, one of four different 

hand/arm actions were activated, depending upon the phase of the task and the position of 

the hand: 1) close the hand around the bottle and raise it off the table, 2) stop arm movement 

and pronate the wrist to orient the bottle towards the participant, 3) supinate the wrist back 

to its original position and re-enable arm movement, or 4) lower the bottle to the table and 

withdraw the hand.

Tracking baseline firing rates

Endpoint velocity and grasp state were decoded based on the deviation of each unit’s neural 

activity from its baseline rate; thus, errors in estimating the baseline rate itself may create a 

bias in the decoded velocity or grasp state. To reduce such biases despite potential drifts in 

baseline rates over time, the baseline rates were re-estimated after every block using the 

previous block’s data.
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During filter calibration, in which the participant was instructed to move the endpoint of the 

hand directly towards the target, we determined the baseline rate of a channel by modeling 

neural activity as a linear function of the intended movement direction plus the baseline rate. 

Specifically, the following equation was fit: z = baseline + Hd z = baseline + Hd, where z is 

the threshold crossing rate, H is the channel’s preferred direction, and d is the intended 

movement direction. As described above for the filter calibration, only data during the initial 

portion of the trial, from 0.2 to 3.2 seconds after trial start, was used to fit the model. Only 

the last block’s data was used to estimate each unit’s baseline rate for use during decoding in 

the following block (unless the last block was aborted for a technical reason, in which case 

the baseline rates were taken from the last full block).

This method for baseline rate tracking was not used for S3’s drinking demonstration or for 

the blocks in which the participant was instructed to reach and grasp the targets because it 

could no longer be assumed that the participant was intending to move the endpoint of the 

hand directly towards the target (Fig. 1d). For these blocks, the mean threshold crossing rate 

of each unit across the entire block was used as a proxy for its baseline rate. Mean rates did 

not differ substantially from baseline rates calculated from the same block (data not shown).

Hand velocity and grasp filters

During closed-loop blocks, the endpoint velocity of the robot arm and the state of the hand 

were controlled in parallel by decoded neural activity, and were updated every 100 ms for 

S3, and every 20 ms for T2. The desired endpoint velocity was decoded using a Kalman 

filter7,8,12,36. The Kalman filter requires four sets of parameters, two of which were 

calculated based on the mean-subtracted (and for T2, smoothed with a 0.3 sec exponential 

filter) threshold crossing rate, z̅, and the intended direction, d, while the other two 

parameters were hard coded. The first parameter was the directional tuning, H, calculated as 

H = z̅dT (ddT)−1. The second parameter, Q, was the error variance in linearly reconstructing 

the neural activity, Q = (z̅ − Hd)(z̅ − Hd)T. The two hard-coded parameters were the state 

transition matrix A, which predicts the intended direction given the previous estimate d(t) = 

Ad(t − 1), and the error in this model,

These values were set to A = 0.965I for both S3 and T2, and W = 0.03I for S3 and W = 

0.012I for T2, where I is the identity matrix (W was set to a lower value for T2 to achieve a 

similar endpoint “inertia” as for S3 despite the smaller bin size used for T2). From past 

experience, it was found that fitting these two parameters from the perfectly smoothed open-

loop kinematics data produced too much inertia in the commanded movement to properly 

control the robot arm, though this may have been a function of the relative paucity of signals 

rather than a suboptimal component of the decoding algorithm.

To select channels to be included in the filter, we first defined a “modulation index” as the 

magnitude of a unit’s modeled preferred direction vector (i.e., the amplitude of its cosine fit 

from baseline to peak rate), in Hz. When unit vectors are used for the intended movement 
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direction in the filter calibration regression, this is equivalent to ‖Hi‖, where Hi is the row of 

the running model matrix H that corresponds to channel i. We further defined a “normalized 

modulation index” as the modulation index normalized by the standard deviation of the 

residuals of the unit’s cosine fit. Thus, a unit with no directional tuning would have 

normalized modulation index of 0, a unit whose directional modulation is equal to the 

standard deviation of its residuals would have a normalized modulation index of 1, and a 

unit whose directional modulation is larger than the standard deviation of its residuals would 

have a normalized modulation index greater than 1. We included all channels with baseline 

rates below 100 Hz and with normalized modulation indices above 0.1 for S3 and 0.05 for 

T2. For T2, we included a maximum of 50 channels; channels with the lowest normalized 

modulation indices were excluded if this limit was exceeded. Across the six sessions, the 

number of channels included in the Kalman filter ranged from 13 to 50 (see Supplementary 

Table 1 and Supplementary Fig. 8).

The state decoder used for hand grasp was built using similar methods, as previously 

described8. Briefly, threshold crossings were summed over the previous 300 ms, and linear 

discriminant analysis was used to separate threshold crossing counts arising when the 

participant was intending to close the hand from times that s/he was imagining moving the 

arm. For the state decoder, we used all channels that were not turned off at the start of the 

session (see Setup in Methods) and whose baseline threshold crossing rates, calculated from 

the previous block, were between 0.5 Hz and 100 Hz. Additionally for T2, we only included 

channels if the difference in mean rates during grasp vs. move states divided by the firing 

rate standard deviation (the d-prime score) was above 0.05. As for the Kalman filter, we 

included a maximum of 50 channels in the state decoder for T2; channels with the lowest d-

prime scores were excluded if this limit was exceeded. Across the six sessions, the number 

of channels included in the state decoder ranged from 16 to 50 (see Supplementary Table 1). 

Immediately after a grasp was decoded, the Kalman prior was reset to zero. For both robot 

systems, at the end of a trial, velocity commands were suspended and the arm was 

repositioned under computer control to the software-expected position of the current target, 

in order to prepare the arm to enable the collection of metrics for the next 3D point-to-point 

reach. Additionally, during the DEKA sessions, 3D velocity commands were suspended 

during grasps (which lasted 2 sec).

Bias correction

For T2, a bias correction method was implemented to reduce biases in the decoded velocity 

caused by within-block nonstationarities in the neural signals. At each moment, the velocity 

bias was estimated by computing an exponentially-weighted running mean (with a 30 

second time constant) of all decoded velocities whose speeds exceeded a predefined 

threshold. The threshold was set to the 66th percentile of the decoded speeds estimated 

during the most recent filter calibration, which was empirically found to be high enough to 

include movements caused by biases as well as “true” high-velocity movements, but 

importantly, to exclude low-velocity movements generated in an effort to counteract any 

existing biases. This exponentially-weighted running mean was subtracted from the decoded 

velocity signals to generate a bias-corrected velocity that commanded the endpoint of the 

DEKA arm.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental setup and performance metrics. (a) Diagram showing an overhead view of 

participant’s location at the table (grey rectangle) from which the targets (purple spheres) 

were elevated by a motor. The robotic arm was positioned to the right and slightly in front of 

the participant (the DLR and DEKA arms were mounted in slightly different locations to 

maximize the correspondence of their workspaces over the table; for details, see 

Supplementary Fig. 9). Both video cameras were used for all DLR and DEKA sessions; 

labels indicate which camera was used for the photographs in (b). (b) Photographs of the 

DLR (left panel) and DEKA (right panel) robots. (c) Reconstruction of an example trial in 

which the participant moved the DEKA arm in all three dimensions to successfully reach 

and grasp a target. The top panel illustrates the trajectory of the hand in 3D space. The 

middle panel shows the position of the wrist joint for the same trajectory decomposed into 

each of its three dimensions relative to the participant: the left-to-right axis (dashed blue 

line), the near-to-far axis (purple line) and the up-down axis (green line). The bottom panel 

shows the threshold crossing events from all units that contributed to decoding the 

movement. Each row of tick marks represents the activity of one unit and each tick mark 

represents a threshold crossing. The grey shaded area shows the first 1 sec of the grasp. (d) 

An example trajectory from a DLR session in which the participant needed to move the 

robot hand, which started to the left of the target, around and to the right of the target in 

order to approach it with the open part of the hand. The middle and bottom panels are 

analogous to (c). (e) Percentage of trials in which the participant successfully touched the 

target with the robotic hand (blue bars) and successfully grasped the target (red bars). (f) 
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Average time required to touch (blue bars) or grasp (red bars) the targets. Each circle shows 

the acquisition time for one successful trial.
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Figure 2. 
Participant S3 drinking from a bottle using the DLR robotic arm. (a) Four sequential images 

from the first successful trial showing participant S3 using the robotic arm to grasp the 

bottle, bring it towards her mouth, drink coffee from the bottle through a straw (her standard 

method of drinking), and place the bottle back on the table. The researcher in the 

background was positioned to monitor the participant and robotic arm. (See Supplementary 

Movie 1 from which these frames are extracted).
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Figure 3. 
Examples of neural signals from three sessions and two participants: a 3D reach and grasp 

session from S3 (a–c) and T2 (d–f), and the 2D drinking session from S3 (g–i). (a,d,g) 

Average waveforms (thick black lines) ± 2 standard deviations (grey shadows) from two 

units from each session with a large directional modulation of activity. (b,e,h) Rasters and 

histograms of threshold crossings showing directional modulation. Each row of tick marks 

represents a trial, and each tick mark represents a threshold crossing event. The histogram 

summarizes the average activity across all trials in that direction. Rasters are displayed for 

arm movements to and from the pair of opposing targets that most closely aligned with the 

selected units’ preferred directions. (b) and (e) include both closed-loop filter calibration 

trials and assessment trials and (h) includes only filter calibration trials. Time 0 indicates the 

start of the trial. The dashed vertical line 1.8 seconds before the start of the trial identifies 

the time when the target for the upcoming trial began to rise. Activity occurring before this 

time corresponded to the end of the previous trial, which often included a grasp, followed by 

the lowering of the previous target and the computer moving the hand to the next starting 

position if it wasn’t already there. (c,f,i) Rasters and histograms from calibration and 

assessment trials for units that modulated with intended grasp state. During closed-loop filter 

calibration trials, the hand automatically closed starting at time 0, cueing the participant to 

grasp; during assessment trials, the grasp state was decoded at time 0. Expanded data appear 

in Supplementary Fig 5.
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