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Structured Abstract
Objective—To determine if deficiency of nitric oxide bioactivity contributes to the physiologic
instability that occurs following brain death and, if so, to also determine in this setting whether
administration of a renitrosylating agent could improve systemic physiologic status.

Summary Background Data—Organ function following brain death is negatively impacted by
reduced perfusion and increased inflammation; the magnitude of these responses can impact post-
graft function. Perfusion and inflammation are normally regulated by protein S-nitrosylation but
systemic assessments of nitric oxide bioactivity following brain death have not been performed.

Methods—Brain death was induced in instrumented swine by inflation of a balloon catheter
placed under the cranium. The subjects were then serially assigned to receive either standard
supportive care or care augmented by 20 ppm of the nitrosylating agent ethyl nitrite blended into
the ventilation circuit.

Results—Circulating nitric oxide bioactivity (in the form of S-nitrosohemoglobin) was markedly
diminished 10 h after induction of brain death—a decline that was obviated by administration of
ethyl nitrite. Maintenance of S-nitrosohemoglobin was associated with improvements in tissue
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blood flow and oxygenation, reductions in markers of immune activation and cellular injury, and
with preservation of organ function.

Conclusions—In humans the parameters monitored in this study are predictive of post-graft
function. As such, maintenance of endocrine nitric oxide bioactivity after brain death may provide
a novel means to improve the quality of organs available for donation.

Introduction
Transplantation is an accepted intervention to correct innate organ failure but a successful
outcome is highly dependent upon the physiologic status of the donor. On average, more
than 75% of transplanted organs are recovered from deceased individuals, the majority of
which are classified as brain dead heart beating donors (Organ Procurement and
Transplantation Network; http://optn.transplant.hrsa.gov/). Five year survival rates for
recipients of these organs range from 80% for kidneys to just over 50% for lungs; where
comparisons can be made (kidney, liver) survival rates are significantly higher for those
patients who received their new organ from a living donor1, 2. Stressors placed upon organs,
particularly brain death, are believed to contribute to these survival rate differences.
Stressors are also significant contributors to the poor procurement rate of suitable organs
from consented donors (<50%) due primarily to in situ organ failure3.

The period during and following brain death is characterized by physiologic instability, the
result first of intense sympathetic stimulation and significant release of catecholamines (the
Cushing Response) with transient vasoconstriction, hypertension, and tachycardia, followed
by the complete loss of sympathetic activity leading to hypotension and a profound
reduction in systemic vascular resistance4. Hemodynamic homeostasis is regulated in part
by nitric oxide (NO)5. A disruption of endocrine NO bioactivity may contribute to the tissue
ischemia and organ damage that has previously been ascribed to loss of autonomic function.
Post-brain death organ function can be further impaired by an inflammatory state6, and this
too may reflect a deficiency of NO7.

Once brain death is confirmed, care of the patient switches from restorative to supportive as
organ donation status is assessed8. Supportive care aims to maintain organ perfusion and, to
some extent, the acidosis and systemic effects of brain death can be controlled by altering
ventilation rates and/or administration of vasoactive agents. However, such interventions
may have minimal ability to preserve end-organ oxygen delivery, which is primarily a
function of local tissue perfusion. Local blood flow is “auto-regulated” at least in part
through NO bioactivity derived from red blood cells9, 10. Hemoglobin (Hb) plays a central
role in this auto-regulation by coupling the binding and release of oxygen with that of NO11.
Hypoxic vasodilation by red blood cells is linked to Hb desaturation, which effects release
of NO from thiols of Hb (S-nitrosoHb; SNO-Hb), thereby providing a regulated mechanism
for matching blood flow (oxygen delivery) with local metabolic demand5.

Decreased levels and/or impaired processing of SNO-Hb have been observed in diseases
characterized by tissue hypoxemia12–18; where examined, red blood cells from these
disparate patient populations exhibited impaired vasodilatory capacity. Such data suggest
that red blood cell-derived NO bioactivity may play an important role in the respiratory
cycle and that impairment of this activity might contribute to the pathophysiology of
ischemic conditions. Based on these findings, we reasoned that a similar disruption of this
endocrine function of red blood cells might occur following cessation of central nervous
system activity, thus contributing to systemic hemodynamic instability. We further reasoned
that in this setting an intervention directed towards increasing NO bioactivity could be
beneficial.
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Methods
This study was approved by the Duke University IACUC and all procedures complied with
The Guide for the Care and Use of Laboratory Animals and the Animal Welfare Act.
Experiments were conducted on young adult swine with the experimental treatment cohort
receiving 20 ppm of the S-nitrosylating agent ethyl nitrite (ENO; blended in nitrogen by
Custom Gas Solutions of Durham, NC).

Surgical Instrumentation
Animals were sedated with acepromazine (0.8 mg/kg) and ketamine (20 mg/kg; both im)
then anesthesia was induced with thiopental (10 mg/kg, iv). After endotracheal intubation,
anesthesia was maintained with isoflurane (1.5 to 2.0%). Ventilatory settings were adjusted
to maintain end-tidal CO2 below 35 mm Hg. Isoflurane and end-tidal CO2 concentrations
were continually measured by an airway gas monitor (Datex Instrumentation Corporation,
Helsinki Finland). Body temperature was maintained at 38 (±0.5) °C with a Bair-Hugger
warming system (Arizant Healthcare Incorporated, Eden Prairie, MN). EKG leads were
placed, vascular access was obtained at various sites (right internal jugular for the central
line, femoral artery and vein for the peripheral lines), and bladder access was secured
through a peritoneal incision. Hemodynamic parameters (cardiac output, arterial pressures,
etc) were monitored using a Vigilance system from Edwards Lifesciences (Irvine, CA).
After revealing the scalp, a small hole was bored for placement of an intra-cranial pressure
(ICP) probe (Aesculap Inc. USA, Center Valley, PA) and a forehead sensor was placed to
monitor brain electrical activity (Aspect Medical Systems, Inc. Norwood, MA). A second
trepanation was conducted for insertion of a balloon catheter.

Brain Death
Brain death was induced by inflation of the balloon catheter over a period of 10–15 min
until ICP exceeded systolic blood pressure. This state of elevated ICP was maintained
throughout the study to keep cerebral perfusion pressure at 0 mm Hg. Loss of brain
electrical activity was confirmed and then the vaporizer was turned off. When expired
isoflurane concentration reached 0, a brain death assessment was conducted (pupils fixed
and non-reactive to light, no lash or corneal touch response, absent oculo-cephalic reflex,
absent vestibulo-ocular reflex following auricular washing with cold saline, no gag reflex,
and no cough with tracheal suction). A ventilatory drive test was not conducted because we
determined during model development that this procedure induced cardiac instability. ENO
treatment was begun after confirmation of brain death and continued for 10 h. Cardiac
instability was treated with fluids and pharmacologic therapy19; hormone replacement was
not initiated. Ventricular fibrillation refractory to electro-cardioversion was cause for early
study termination.

Physiologic Analyses
Tissue oxygenation and tissue Hb levels (the latter serving as a surrogate for tissue blood
flow) were measured in the buccal mucosa using a spectrophotometric monitoring system
(T-Stat; Spectros Corporation, Portola Valley CA)20. Arterial and venous blood gas
parameters were measured at 60 min intervals during the study using a Gem Premier 3000
(Instrumentation Laboratory, Lexington, MA) Additional venous blood samples were
collected before and then again 10 h after the determination of brain death for clinical
chemistry analyses (Antech Diagnostic; Cary, NC) and for determination of red blood cell
SNO-Hb levels, the latter using mercury-coupled photolysis-chemiluminescence21, 22.

Glomerular filtration rate (GFR) was estimated from the serum chemistry data using the
following formula: 170 × [creatinine]−0.999 × [blood urea nitrogen]−0.170 × [albumin]+0.318,
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modified from Levey et al23. Inulin clearance was another methods used to measure kidney
function: 60 mg/kg of inulin (Alfa Aesar, Ward Hill, MA) in 250 ml of normal saline was
rapidly infused (iv), urine was collected for 1 h, and at the end of this collection period a
venous blood sample was obtained; inulin clearance assessments were also conducted before
and then started 9 h after brain death to account for the 60 min interval between inulin
infusion and blood/urine collection. Blood and urine inulin levels were then quantitated
using an established chromatographic method24, 25.

Statistical Analyses
Data are presented as means ± standard deviations (SD) except for changes in oxygen
content, which are presented as medians ± first and third quartile deviations. For finite
parameters, testing involved paired t-tests to determine differences before and after brain
death; where significant changes were identified analysis of variance (ANOVA) was used to
test if the magnitude of the changes were different between groups.

To determine change in oxygen utilization, arterial and venous blood oxygen contents were
calculated using the standard clinical formula ([blood oxygen saturation × Hb × 1.34] +
[0.003 × blood oxygen partial pressure]) from which the difference was determined by
subtracting the venous value from the arterial value. Subsequent changes in the A/V
difference were determined by subtraction: A/Vexperiment – A/Vbaseline. Positive values
indicate an decrease in venous blood oxygen content and thus an increase in oxygen
utilization since arterial oxygen content was essentially constant; negative values reflect an
increase in venous blood oxygen content and thus an reduction in oxygen utilization.

For continual parameters, median values were calculated at 60-min intervals and averaged to
obtain group data for presentation. Area under the curve values for percent change from
baseline of tissue oxygenation and tissue-Hb, and of the A/V differences were calculated
and then tested for treatment effects using ANOVA. Tukey’s test was used to identify group
differences when the F statistic was significant. Linear regression, where noted, was
conducted to test for temporal relationships. Comparisons were made using the Prism
Graphpad software package (Graphpad, La Jolla, CA); p values of < 0.05 were considered
significant.

Results
General Physiologic Status

A total of 39 adult swine were utilized for this study: 16 were employed for model
development and initial ENO dose titration assessments; 3 developed intractable ventricular
fibrillations and cessation of cardiac activity after induction of brain death but before the end
of the study (2 in the control group and 1 in the ENO group); and 20 completed the study
(n=10 per group). Data on the cardiovascular status for these latter swine are presented in
Figure 1. Parameters for all animals that completed the study met the United Network for
Organ Sharing guidelines, specifically cardiac output was > 3.8 l/min and mean arterial
pressure was > 60 mm Hg. Ventilation was actively regulated to keep end-tidal CO2 below
35 mm Hg and the PaO2/FiO2 ratio significantly higher than 300 mm Hg (data depicted in
the Supplemental Digital Content Figure 1).

SNO-Hb, Brain Death, and Tissue Oxygenation
SNO-Hb levels were measured in venous blood samples obtained after securing vascular
access and then again 10 h after the determination of brain death (Table 1). In the control
cohort, SNO-Hb concentrations declined from 0.52 ± 0.68 to 0.21 ± 0.22 moles of SNO per
moles of Hb tetramer × 10−3 (p=0.04 paired t-test; n=8 with two samples lost during
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processing) whereas there was minimal decline in SNO-Hb in the 20 ppm cohort (0.38 ±
0.64 to 0.35 ± 0.15 SNO per Hb tetramer × 10−3; p>0.05, n=9 with one sample lost during
processing). The decline in SNO-Hb in the control group was associated with alterations in
oxygen utilization and local blood flow (Figure 2) as demonstrated by the changes from
baseline in A/V oxygen content differences and buccal skeletal muscle bed tissue
oxygenation and tissue-Hb values. In the control group, the changes in A/V difference
following brain death were negative, indicative of a rise in venous oxygen content. This was
accompanied by and correlated with (p<0.001) declines in both tissue oxygenation and
tissue blood flow (i.e. a reduction in tissue Hb). ENO treatment reversed these effects: the
A/V oxygen content difference was greater after brain death (i.e. venous blood oxygen
content declined) and tissue oxygenation and tissue blood flow increased. Similar to the
control group, the changes in A/V oxygen content correlated with tissue oxygenation and
tissue blood flow (p<0.001). Area under the curve comparisons determined that the three
parameters were all significantly different between the control and 20 ppm ENO groups
(p=0.028, p=0.0037, and p=0.021 for A/V content, tissue oxygenation, and tissue Hb,
respectively).

Metabolic Parameters
Values for various serum enzymes and metabolic markers before and 10 h after confirmation
of brain death are presented in Table 1. (Additional serum chemistry results can be found in
the Supplemental Digital Content Table 1.) Changes were most notable in the control group.
Serum glucose levels increased, presumably reflecting an increase in glycogenolysis26. Total
protein decreased, which along with the changes in serum electrolytes and increase in urine
volume is indicative of induction of diabetes insipidus27. Lipase (but not amylase or alkaline
phosphatase) increased in both groups. Markers of liver (alanine aminotranferease, ALT;
aspartate aminotransferase, AST), kidney (creatinine), and tissue (creatine phosphokinase;
CPK) injury were all significantly elevated in the control animals. While AST and CPK also
increased in the ENO group, the magnitudes of these increases were significantly smaller.
Modest elevations in hematocrit, and hemoglobin occurred in both groups. White blood cell
(WBC) count only rose in the control group, which represented statistically significant
increases in circulating neutrophils and monocytes.

Kidney Function
GFR and inulin clearance were assessed before and after brain death with clearance
calculated as the plasma to urine inulin concentration ratio. These parameters along with
mean serum creatinine levels are presented in Figure 3. In the control group, the mean
inulin/plasma ratio increased significantly 10 h after brain death (from 0.15 to 1.89; p=0.011
paired t-test). This was accompanied by a significant decline in GFR (from 102 ± 13 to 77 ±
18 arbitrary units; p=0.0009) and a significant increase in serum creatinine (p=0.02). In
contrast, neither the before/after inulin ratios (0.21 versus 0.17; p=0.49) nor GFR (91 ± 15
versus 84 ± 22; p=0.10) were different in the 20 ppm ENO group nor was there a change in
the treated subjects’ serum creatinine (p=0.90).

Discussion
Altered levels of SNOs and impaired vasodilatory activity of red blood cells have been
observed in several chronic disease states characterized by aberrant tissue oxygenation.
More recently, it has become apparent that various medical interventions, including blood
transfusion28 and peritoneal insufflation with carbon dioxide29 can adversely affect red
blood cell NO bioactivity with resultant reductions in organ blood flow. Based on the
current results, brain death may constitute an acute stress characterized by relatively rapid
reductions in SNO-Hb (i.e. within 10 h), leading to decreases in oxygen utilization (Figure
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2). Our data thus provide a new perspective on the peripheral response to cessation of
central nervous system activity in which the sequelae represent a system-wide failure of
microvascular oxygen delivery rather than a disparate collection of failing organs.

The mechanism to account for the depletion of SNO-Hb following brain death is probably
mutli-fold. Increasing acidosis disfavors the binding of NO to the beta cysteine residue of
Hb21. The post-brain death catecholamine surge with resultant vasoconstriction and
progressive lung injury may also contribute to this decline through effects on Hb
oxygenation5.

The inability of SNO-Hb-depleted red blood cells to facilitate hypoxic vasodilation has been
well-documented16, 28, 30 and thus provides a potential therapeutic target. Indeed,
nitrosylating therapies directed towards increasing SNO-Hb have recently been developed
and have shown therapeutic potential. In particular, ENO has been shown to correct
impairments in tissue perfusion in a number of clinical and preclinical conditions that have
in common a deficiency in SNO-Hb16, 29, 31–34. In the current setting, inhalation of ENO
following brain death restored SNO-Hb concentration, enhanced tissue oxygenation and
blood flow, and reduced markers of injury and inflammation. Collectively, these measures
of organ viability are predictive of post-graft function35.

Particularly notable were the effects of ENO on kidney function where 10 h after brain death
no significant changes were seen in inulin clearance, GFR, or serum creatinine concentration
(Figure 3). In the control group, the > 0.3 mg/dl increase in creatinine (Table 1) meets the
criteria for diagnosing acute kidney injury (AKI)36. Serum creatinine can increase during
donor support37 with some authors reporting > 20% elevations (a level observed in our
study) in more than 40% of human donors prior to organ procurement38. Elevated donor
creatinine and reduced GFR are significant risk factors for delayed graft function and graft
failure in kidney transplant recipients39. The major non-drug based cause of AKI is renal
hypo-perfusion40, which implies there were differences in kidney blood flow between the
two experimental groups. ENO increased buccal blood flow (Figure 2), a finding that is
consistent with our previous work demonstrating this agent can maintain flow to multiple
organs29. As such, our data support the notion that brain death induced perturbations in
blood flow to the kidneys (and to other organs) are reversed by inhalation of ENO.

Nitrosylation therapy with ENO may confer additional benefits. Hemoglobin is the major
target of inhaled ENO but SNO-Hb can exchange NO with other proteins via
transnitrosylation reactions to distribute NO bioactivity in vivo42. Under normal conditions,
the activities of many inflammatory and pro-apoptotic proteins including toll-like receptors,
interleukins, tumor necrosis factors, caspases, etc are tightly-controlled by S-
nitrosylation47–49; their subsequent over-expression following loss of CNS function43–46

may well reflect a loss of this regulatory control and are thus potential targets for ENO.
Indeed, administration of a nitrosylating agent (or an exogenous SNO) can produce
beneficial results in a number of acute and chronic inflammatory conditions where SNO
levels are reduced50–55. Since neutrophil infiltration appears to negatively impact post-graft
function56, a more in-depth elucidation of ENO’s actions on the inflammatory cascade
following brain death would be worthwhile. In addition, nitrosylating therapy may also
provide the means to enhance the activities of protective genes such as HIF-157 and HO-158

(a more selective approach than current therapies such as using dopamine to induce HO-1
activity59).

With respect to recording blood flow and tissue oxygenation, we selected the buccal mucosa
as a monitoring site because this location allowed for easy sensor placement and it provided
for continued access in case of displacement. Previous studies with the T-Stat have
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demonstrated measurements of the buccal mucosa correlate well with recordings from more
invasive locations and that changes in buccal mucosa oxygen levels and blood flow are
sensitive indicators of global oxygenation status20. In addition, it has long been recognized
that the external carotid arteries can remain well-perfused following brain death, even as
blood flow within the internal carotids is significantly impaired41. While additional testing is
needed, the current findings suggest that this site may be a convenient location to monitor
for perfusion changes during donor support.

Our study has limitations. The method of brain death induction was rapid whereas in
humans there can be a more delayed increase in ICP and this can subsequently alter the
pattern of systemic organ disruption60. We were not in a position to conduct histologic
assessments to determine if the functional benefits of ENO also prevented structural
damage. The period of monitoring was short compared to the interval between declaration of
death and organ procurement for some brain dead human donors. Nonetheless, it is doubtful
that the observed depletion of SNO-Hb in the standard therapy control group would have
resolved if the experimental duration increased. We deliberately chose to not initiate any
hormone therapy so as to focus on documenting the effects of ENO inhalation. As
administration of vasopressin, thyroxine, insulin, etc to human donors may confer benefits
with respect to post-graft function61, it is tempting to speculate that such benefits could be
augmented when NO bioactivity levels are maintained following brain death.

In summary, inhalation of the S-nitrosylating agent ENO is an effective means to attenuate
brain death-induced reductions in SNO-Hb concentrations, maintain tissue oxygenation, and
reduce tissue injury, inflammation, and organ damage. As a result, clinical assessments of
the utility and benefits of this intervention may be warranted. More generally, the present
findings further support the importance of endocrine NO bioactivity in the regulation of
organ function and they provide a novel example in which aberrant S-nitrosylation can be
reversed with beneficial effects. Our results suggest that ENO has potential to improve
physiologic status and organ function following brain death and to possibly expand the pool
of organs available for donation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Cardiovascular status. Mean (± SD) time courses for cardiac output, mean arterial pressure,
and heart rate after the determination of brain death for the untreated (solid line) and ethyl
nitrite (ENO) exposed (small dashes) cohorts. Within each graph, baseline mean (± SD)
values are depicted by the bar and arrows. These parameters met the United Network Organ
Sharing guidelines for donor maintenance with cardiac output > 3.8 l/min and mean arterial
pressure > 60 mm Hg. Assessing for cardiovascular treatment differences was not a
component of this study.
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Figure 2.
Oxygen utilization and tissue oxygenation. Median (± QD) changes in arterial/venous (A/V)
oxygen content differences along with mean (± SD) tissue oxygenation and tissue
hemoglobin (a measure of blood flow) percent changes from baseline after the determination
of brain death for the untreated (solid line) and ethyl nitrite (ENO) exposed (small dashes)
cohorts. A/V values were determined by the formula A/Vexperimental – A/Vbaseline. Negative
values, as seen in the control group, reflect an increase in venous blood oxygen content
following brain death and thus a reduction in oxygen utilization since arterial oxygen
content was constant. The positive values, as seen with the ENO treatment, indicate a
decrease in venous blood oxygen content and thus an increase in oxygen utilization. Tissue
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oxygenation and tissue hemoglobin were both significantly increased by 20 ppm ENO
compared to the control values.
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Figure 3.
Kidney function and serum creatinine. Mean (± SD) serum creatinine (top panel), calculated
individual glomerular filtration rates (GFR; middle panel), and individual inulin plasma/
urine ratios (bottom panel) before and 10 h after determination of brain death. The group
means for GFR and inulin ratios are demarcated with bars. Serum creatinine and the plasma/
urine inulin ratios significantly increased and GFR significantly decreased in the untreated
control cohort after brain death (p < 0.05; brackets with asterisks). In the 20 ppm ethyl
nitrite (ENO) treatment group, the before and after brain death values for all three
parameters were not statistically different.
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Table 1
Metabolic Parameters

Data on S-nitroso hemoglobin (moles of SNO per moles of Hb tetramere × 10−3) along with various serum
enzymes and metabolic markers before and 10 h after determination of brain death for the two experimental
groups.

Parameter (units) Control 20 ppm ENO

before after before after

SNO-Hb (Hbx10−3) 0.52 ± 0.68 0.21 ± 0.22* 0.28 ± 0.64 0.35 ± 0.15

Glucose (mg/dl) 95 ± 32 120 ± 35* 91 ± 24 113± 32

Total Protein (g/dl) 5.9 ± 0.6 5.1 ± 0.6* 5.5 ± 0.4 4.6 ± 0.4*

Lipase (U/l) 15 ± 28 45 ± 30* 3.8 ± 3.6 41 ± 48*

Amylase (U/l) 2755 ± 1531 2842 ± 1234 2084 ± 687 2110 ± 984

Alk Phosphatase (U/l) 128 ± 29 127 ± 29 137 ± 35 149 ± 48

Creatinine (mg/dl) 1.7 ± 0.3 2.1 ± 0.5* 1.9 ± 0.3 1.9 ± 0.4

ALT (U/l) 27 ± 6 48 ± 33* 30 ± 8 34 ± 8

AST (U/l) 37 ± 12 248 ± 175*† 37 ± 11 147 ± 64*

CPK (U/l) 2963 ± 1368 32418 ± 18770*† 3444 ± 1377 16422 ± 6730*

Hemoglobin (g/dl) 10.6 ± 1.5 11.4 ± 1.8* 10.5 ± 0.9 11.2 ± 1.4

Hematocrit 0.33 ± 0.05 0.34 ± 0.05 0.32 ± 0.03 0.34 ± 0.04

WBC (per mm3) 12.5 ± 3.4 15.7 ± 3.4* 13.4 ± 2.7 12.6 ± 3.9

Neutrophils (cell count) 5940 ± 2621 8304 ± 2215* 6558 ± 1404 5453 ± 2684

Monocytes (cell count) 245 ± 152 939 ± 620* 285 ± 151 208 ± 231

Values in the “after” columns that are followed by an asterisk (*) indicate a significant difference from the pre brain death values (p<0.05).

Values in the “after” column of the control group also followed by a cross (†) indicate that the magnitude of the increase was significantly larger
than the change observed in the ENO treatment group (again, p<0.05).

Abbreviations: ENO, ethyl nitrite; SNO-Hb,; Alk, alkaline; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CPK, creatine
phosphokinase.
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