Skip to main content
. 2013 Apr 15;13:347. doi: 10.1186/1471-2458-13-347

Table 2.

Multivariate Poisson regression model for hemorrhagic fever with renal syndrome

 
Climate model
Climate + air pollution model
    RR (95% CI) P   RR (95% CI) P
Seasonality
Winter
1 (Reference)
 
Winter
1 (Reference)
 
 
Spring
0.998 (0.853–1.168)
.981
Spring
0.813 (0.683–0.967)
.019
 
Summer
1.275 (1.062–1.529)
.009
Summer
1.146 (0.952–1.380)
.150
 
Autumn
1.818 (1.562–2.116)
< .001
Autumn
1.656 (1.419–1.933)
< .001
Humidity
4–month lag
1.102 (1.094–1.110)
< .001
4–month lag
1.102 (1.094–1.110)
< .001
Precipitation
3–month lag
1.022 (1.018–1.026)
< .001
3–month lag
1.018 (1.014–1.022)
< .001
Mean temperature
1–month lag
1.022 (1.013–1.032)
< .001
1–month lag
1.038 (1.027–1.049)
< .001
PM10       No time lag 1.013 (1.008–1.017) < .001

CI confidence interval, RR relative risk, PM10 particulate matter smaller than 10 μm.

Dependent variable is the occurrence of hemorrhagic fever with renal syndrome.