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Natural genetic diversity provides a powerful tool to study the complex interrelationship between metabolism and growth.
Profiling of metabolic traits combined with network-based and statistical analyses allow the comparison of conditions and
identification of sets of traits that predict biomass. However, it often remains unclear why a particular set of metabolites is linked
with biomass and to what extent the predictive model is applicable beyond a particular growth condition. A panel of 97
genetically diverse Arabidopsis (Arabidopsis thaliana) accessions was grown in near-optimal carbon and nitrogen supply,
restricted carbon supply, and restricted nitrogen supply and analyzed for biomass and 54 metabolic traits. Correlation-based
metabolic networks were generated from the genotype-dependent variation in each condition to reveal sets of metabolites that
show coordinated changes across accessions. The networks were largely specific for a single growth condition. Partial least
squares regression from metabolic traits allowed prediction of biomass within and, slightly more weakly, across conditions
(cross-validated Pearson correlations in the range of 0.27–0.58 and 0.21–0.51 and P values in the range of ,0.001–,0.13 and
,0.001–,0.023, respectively). Metabolic traits that correlate with growth or have a high weighting in the partial least squares
regression were mainly condition specific and often related to the resource that restricts growth under that condition. Linear
mixed-model analysis using the combined metabolic traits from all growth conditions as an input indicated that inclusion
of random effects for the conditions improves predictions of biomass. Thus, robust prediction of biomass across a range of
conditions requires condition-specific measurement of metabolic traits to take account of environment-dependent changes of the
underlying networks.

Plant biomass is the ultimate output of the interplay
between metabolism and the cellular and develop-
mental programs that control allocation (Poorter and
Nagel, 2000; Hermans et al., 2006; Poorter et al., 2011)
and cell and organ growth (Gonzalez et al., 2009;
Krizek, 2009). A predictive understanding of these
complex relationships would open up new perspectives

in crop improvement. Given that an increase in the rate
of growth must be underpinned by changes in metab-
olism, it should be possible to identify metabolic states
that are associated with higher growth rates. One way
to characterize metabolic states would be to measure
fluxes. However, most flux measurements are in fact
estimates based on fitting labeling patterns of metabo-
lites to a selected metabolic model. This is technically
challenging in multicellular life forms such as higher
plants (Zamboni, 2011). Furthermore, such estimates
would need to be very precise because small changes in
flux can result in large changes in biomass; plant
growth is exponential, with a typical increase in bio-
mass of 10% to 25% per day, so a relatively small dif-
ference in fluxes and the momentary rate of growth will
lead, within 1 to 2 weeks, to a large difference in bio-
mass (Poorter, 1989; Stitt and Zeeman, 2012). A com-
plementary approach is to identify metabolic traits,
such as the levels of metabolites, which are associated
with higher rates of growth and biomass formation. The
attractiveness of this approach has been enhanced by
the development of increasingly powerful platforms to
measure metabolite levels and sophisticated tools to
analyze the resulting data sets (Lisec et al., 2006; Saito
and Matsuda, 2010; Fernie et al., 2011).

1 This work was supported by theMax Planck Society, the German
Ministry for Education and Research (GABI-GNADE 0315060E and
OPTIMAL 031958G), and the European Commission Framework
Programme 7 collaborative project TiMet (contract no. 245143).

2 These authors contributed equally to the article.
3 Present address: National University of Ireland, Galway, Plant

Systems Biology Lab, Plant and AgriBiosciences Research Centre,
Botany and Plant Science, Galway, Ireland.

* Corresponding author; e-mail mstitt@mpimp-golm.mpg.de.
The author responsible for distribution of materials integral to the

findings presented in this article in accordance with the policy de-
scribed in the Instructions for Authors (www.plantphysiol.org) is:
Mark Stitt (mstitt@mpimp-golm.mpg.de).

[W] The online version of this article contains Web-only data.
[OA] Open Access articles can be viewed online without a subscrip-

tion.
www.plantphysiol.org/cgi/doi/10.1104/pp.112.210104

Plant Physiology�, May 2013, Vol. 162, pp. 347–363, www.plantphysiol.org � 2013 American Society of Plant Biologists. All Rights Reserved. 347

mailto:mstitt@mpimp-golm.mpg.de
http://www.plantphysiol.org
mailto:mstitt@mpimp-golm.mpg.de
http://www.plantphysiol.org/cgi/doi/10.1104/pp.112.210104


Metabolite profiling of large populations of Arabi-
dopsis (Arabidopsis thaliana) natural accessions or in-
bred lines and the application of multivariate analysis
tools, such as canonical correlation analysis and partial
least squares (PLS) regression, has allowed the identi-
fication of descriptor sets of metabolites that are pre-
dictive of biomass (Meyer et al., 2007; Sulpice et al.,
2009; Cuadros-Inostroza et al., 2010; Steinfath et al.,
2010a; Carreno-Quintero et al., 2012) and physiological
traits such as freezing tolerance (Korn et al., 2010) and
herbivore resistance (Kliebenstein, 2012; Züst et al.,
2012). The advantage of surveying a wide range of
metabolites is underlined by the fact that multivariate
analysis allows predictions to be made from data
matrices in which no individual metabolite signifi-
cantly correlates with biomass (Meyer et al., 2007).
This approach was recently extended to hybrid vigor.
The relative density of networks based on correlations
extracted from metabolite profiles in Arabidopsis is
modified in plants that show a strong degree of het-
erosis (Meyer et al., 2012). Furthermore, metabolite
profiles measured in parents allow prediction of hybrid
vigor in their progeny both in Arabidopsis (Steinfath
et al., 2010b) and maize (Zea mays; Riedelsheimer et al.,
2012). In an analogous approach, robotized platforms
can be used to profile large numbers of enzymes and
search for relationships between their maximum activ-
ities and growth (Sulpice et al., 2010).

Nevertheless, this top-down approach suffers from
two major weaknesses. First, a statistical relationship
between a set of metabolites and growth does not
provide functional insights into how metabolism de-
termines the rate of growth. Functional interpretation
is compromised because the complexity of metabolic
networks in primary metabolism makes it difficult
to draw inferences about fluxes from changes in me-
tabolite levels (Stitt et al., 2010; Sulpice et al., 2010;
Fernie and Stitt, 2012) by the fact that current metab-
olite profiles only cover a small fraction of the total
metabolome (Saito and Matsuda, 2010) and by the
likelihood that many connections between metabolism
and growth may be mediated by signaling pathways
that impinge on physiological or developmental pro-
cesses (LeClere et al., 2010; Lilley et al., 2012). The
occurrence of a correlation between biomass and in-
dividual metabolites or linear combinations of metab-
olites also does not imply causality. Such correlations
might arise if a given combination of metabolic traits
supports increased biomass formation, but also if in-
creased biomass formation resulted in a corresponding
change in metabolite levels. Second, levels of metab-
olites in primary metabolism are dramatically influ-
enced by the environment (Hannah et al., 2010;
Caldana et al., 2011; Obata and Fernie, 2012), including
the irradiance regime (Gibon et al., 2006, 2009; Bräutigam
et al., 2009; Jänkänpää et al., 2012) and the nitrogen re-
gime (Tschoep et al., 2009; Kusano et al., 2011; Amiour
et al., 2012). It is not yet clear if the same sets of metab-
olites are predictive of biomass across different growth
conditions.

Under short-day conditions, biomass is strongly and
negatively correlated with starch content at dusk and
with the total protein content per unit of fresh weight
(FW) in a panel of Arabidopsis accessions (Sulpice
et al., 2009). Multivariate data analysis using PLS
revealed that biomass, starch, and protein are pre-
dicted by overlapping sets of metabolites, indicating
that starch and protein concentration are integrative
metabolic traits that capture information about the
levels of many low-Mr metabolites and are closely
linked to biomass formation. Starch is a transient car-
bon store, which accumulates in leaves during the day
and is remobilized to support metabolism and growth
at night (Smith and Stitt, 2007; Stitt and Zeeman, 2012).
A negative correlation between biomass and starch
levels at dusk implies that faster-growing accessions
convert carbon more efficiently to biomass, at least
during the night. A negative correlation between
protein concentration and biomass will result in a
larger leaf area per unit of invested protein and hence
absorption of more light per plant. This finding is
consistent with comparative studies of different spe-
cies, where there is often a negative correlation be-
tween leaf area mass (dry weight per unit leaf area)
and the growth rate, especially in limiting irradiance
(Poorter and Nagel, 2000; Poorter et al., 2009). Further-
more, because protein synthesis is an energetically costly
process (Piques et al., 2009; Raven, 2012), it is possible
that the lower protein concentration might contribute to
the observed increased efficiency of carbon use. Subse-
quently, Sulpice et al. (2010) showed that large accessions
invested a large proportion of their protein in enzymes of
photosynthesis. This will allow photosynthetic capacity
per unit leaf area to be maintained irrespective of the fact
that the total leaf protein concentration decreases.

The studies of Sulpice et al. (2009, 2010) were carried
out in short-day conditions, where growth is limited
by carbon (Gibon et al., 2009). Plant growth is also
often restricted by the supply of nutrients, especially
nitrogen (Poorter and Nagel, 2000; Krapp et al., 2005;
Hirel et al., 2007; Xu et al., 2012). In the following
experiments, we profiled metabolites and enzyme
activities in the same set of accessions in conditions
where nitrogen was limiting for growth (Tschoep et al.,
2009) and in conditions where nitrogen was saturating
and carbon was close to saturating for growth. These
data were combined with our previously published
data for short-day conditions and analyzed to identify
which, if any, features of the relationships and con-
nectivity between metabolic traits and growth are shared
across different growth conditions.

RESULTS

Experimental Design

In earlier studies, we established three growth pro-
tocols for the reference accession Columbia-0 (Col-0) in
which a decreased nitrogen or carbon supply leads to
compensatory changes in metabolism and a mild and
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sustained decrease in growth rate. (1) Growth with a
full nutrient supply in a 12-h photoperiod (12hHN)
allows near-to-maximal growth rates of Col-0, and
increasing the photoperiod does not lead to a major
further stimulation of growth (Supplemental Fig. S1;
Gibon et al., 2009). Longer photoperiods were avoided
because they lead to early induction of flowering. (2) A
low-nitrogen growth regime (12hLN) was established,
in which there was a 20% to 25% decrease in the rel-
ative growth rate and an approximately 50% decrease
in biomass after 29 to 35 d, compared with 12hHN
(Tschoep et al., 2009). Protein levels were hardly al-
tered, and some amino acids even increased, revealing
that metabolism and growth have adjusted in a coor-
dinated manner to the decreased nitrogen supply. (3)
Similarly, in the 8-h photoperiod used by Sulpice et al.
(2009, 2010), there was an approximately 30% decrease
in the relative growth rate, compared with a 12-h
photoperiod (Supplemental Table S2). Starch turnover
was adjusted such that starch was almost but not
completely exhausted at the end of the night, carbon
was available throughout the 24-h cycle, and carbon
starvation marker genes were not induced until after a
short extension of the night (Usadel et al., 2008; Gibon
et al., 2009; for review, see Stitt and Zeeman, 2012).
A panel of 97 Arabidopsis accessions selected to

maximize genotypic and geographic variation and bio-
mass variation (Sulpice et al., 2009, 2010; see Supple-
mental Table S1 for a list of accessions, abbreviations,
and passport data) was grownwith an optimal supply of
nitrogen in a 12-h/12-h light/dark regime and a sub-
optimal supply of nitrogen in a 12-h/12-h light/dark
regime (Tschoep et al., 2009). Sets of plants from both
growth conditions were analyzed for rosette biomass
and the levels of metabolites and enzyme activities at
dusk. The resulting data were combined with published
data for the same accessions grown in an 8-h/16-h light/
dark regime (8hHN) to more strongly limit growth by
the carbon supply (Sulpice et al., 2009, 2010). The com-
bined data set included information about rosette bio-
mass and 54 metabolic traits in three growth conditions.
The metabolic traits included the three structural com-
ponents (protein and chlorophylls a and b), the major
transitory carbon store starch, 43 low-Mr metabolites,
including a range of sugars, amino acids, organics acids,
and other metabolites, and maximum activities of eight
enzymes from central carbon and nitrogen metabolism
(for a list of the metabolic traits and abbreviations, see
Supplemental Table S1). As measurements of nitrate,
Orn and spermidine were not available for the published
8hHN data set; random numbers were introduced for
these traits in the calculations of condition-specific cor-
relation matrices. However, these traits were not used in
the PLS and mixed-model analyses.

Biomass Involves an Interaction between Accession and
Growth Condition

Biomass differed between the 97 accessions by
3.1-fold, 2.8-fold, and 4.2-fold in 12hHN, 12hLN, and

8hHN, respectively, relative to the accession with the
lowest biomass in that growth regime (Fig. 1, A and B;
Supplemental Table S1). The impact of low nitrogen
and low carbon differed between accessions, with
some accessions showing a greater than 70% decrease
in biomass and others showing no decrease (Fig. 1,
A and B). Accessions that had a large biomass in
12hHN tended to show a marked decrease in bio-
mass in carbon-limiting or nitrogen-limiting condi-
tions, while many of the accessions that had a small

Figure 1. Biomass of 97 accessions in the three growth conditions. A
panel of 97 Arabidopsis accessions was grown in 12hHN, 12hLN, and
8hHN. A, Biomass in each condition; the accessions are ordered on
the x axis according to their biomass in the control treatment (12hHN).
B, Three-dimensional plot of the biomass of each accession in the
three growth conditions; accessions that have a high and low ranking
for biomass in all three conditions are indicated by green and red
symbols, respectively. C, Spearman correlation between biomass in the
three growth conditions. The original data are provided in Supplemental
Table S1.
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biomass in 12hHN showed little or no further de-
crease in carbon-limiting or nitrogen-limiting condi-
tions. When individual accessions are inspected,
some show a marked decrease in biomass in low-
carbon and low-nitrogen conditions, some maintain
biomass in low-carbon and low-nitrogen conditions,
and others are especially sensitive to low carbon
(Mh1, Nok2, and Lov5) or low nitrogen (Bur0,
Dijon5, and Old1; Supplemental Table S1). Small sets
of accessions ranked high (Bsch2, Da112, Dra0, Mt0,
and Wei1) or low (Ang0, Bla11, Je54, Pyl1, RRS10,
and TAMM2) for biomass in all three conditions (Fig.
1B). Overall, pairwise scatter plots revealed signifi-
cant positive correlation (Spearman rank correlation
coefficient [r] = 0.47, P = 1.19e–06) between biomass in
8hHN and 12hHN and weaker relationships between
biomass at 8hHN and 12hLN (r = 0.31, P = 0.001) and
biomass in 12hHN and 12hLN (r = 0.28, P = 0.0046;
Fig. 1C).

Thus, the main trends are 3-fold: (1) subsets of ac-
cessions produce higher or lower biomass than others
in all three conditions, (2) many accessions that pro-
duce high biomass in high-nitrogen and high-carbon
conditions tend to show a larger decrease in biomass
when nitrogen or carbon is decreased, and (3) many
individual accessions respond differently to low nitro-
gen and low carbon.

Metabolic Traits Are Subject to Environmental and
Genotypic Variation

The absolute levels of structural components, me-
tabolites, enzymes, and a list of abbreviations are
provided in Supplemental Table S1. ANOVA showed
that all structural and metabolic traits, except succi-
nate, showed highly significant changes (P, 0.0001) in
the growth condition term (Supplemental Table S2).
Significant traits in the accession term included bio-
mass, starch, protein (all P , 0.0001), and many me-
tabolites, including Fru, Glc, malate, myoinositol, Pro,
Thr, and nicotinic acid at P, 0.0001 and Suc, raffinose,
total amino acids, and many individual amino acids
at P , 0.05, and enzyme activities, including nitrate
reductase, phosphoenolpyruvate carboxylase (PEPCx),
ADP Glc pyrophosphorylase (AGPase), and NAD-
dependent Glu dehydrogenase (GlDH) at P , 0.0001
and Glu synthetase (GS) and NAD-dependent malate
dehydrogenase (NAD-MDH) at P , 0.05).

Principle components analysis generated three dis-
tinct groups corresponding to the three growth con-
ditions (Fig. 2A; Supplemental Table S3). Principal
component 1 (41.3% of total variance) separated
carbon-limited (8hHN) and nitrogen-limited (12hLN)
conditions, with near-optimal conditions (12hHN) in
an intermediate position. Principle component 2
(14.3%) separated near-optimal conditions from the
two limiting conditions. When axes are chosen that
reflect the variance captured by each principal com-
ponent, the 97 accessions formed a fairly compact

group in near-optimal conditions and a slightly more
spread-out group, especially in principal component 1,
in low-carbon and low-nitrogen conditions. In princi-
pal component 1, positive weightings were found for
myoinositol and traits related to nitrate assimilation
(nitrate reductase activity and nitrate), ammonium as-
similation (Gln:oxoglutarate aminotransferase [GOGAT]),
and organic acid metabolism (PEPCx, malate, and fu-
marate), and negative weightings were found for pro-
tein, Suc, total amino acids, and several minor amino
acids. In principal component 2, positive weightings
were found for GlDH activity, several sugars (Suc, Glc,
and Fru), spermidine, and Orn and negative weightings
for shikimic acid, chlorophyll, starch, Glu, and nicotinic
acid.

Figure 2B (see Supplemental Table S4 for details)
summarizes the changes of individual metabolic traits
in 12hLN and 8hHN compared with 12hHN. Some
metabolic traits showed consistent changes across all
97 accessions in low nitrogen. This included an in-
crease of Suc, several amino acids (e.g. Leu, Ile, and
Lys), urea, 4-aminobutyrate, and NAD-GlDH activity
and a decrease in raffinose, myoinositol, Gly, Pro, sper-
midine, shikimate, malate, fumarate, dehydroascorbate,
nitrate, and nitrate reductase activity. Nevertheless,
the extent of the change varied. Some traits showed
large variation between accessions, with an increase in
some and a decrease in others (e.g. maltose, trehalose,
Ala, Glu, Asn, and threonate). As previously reported
for the reference accession Col-0 (Tschoep et al., 2009),
there was, perhaps against expectations, a slight but
consistent increase in the protein concentration in
12hLN compared with 12hHN. This, and the mainte-
nance or increase in most amino acids, shows that all
accessions adjust to compensate for the decrease in
nitrogen supply.

A different set of metabolic traits showed consistent
changes across all accessions in low carbon. This
included an increase in Suc, Glc, Fru, Ala, and dehy-
droascorbate levels and GOGAT, PEPCx, and NAD-
GlDH activities and a decrease of chlorophyll, several
amino acids (including asparate, Glu, Phe, Asn, Gln,
and Arg), shikimate, and nicotinic acid. As previously
reported for the reference accession Col-0 (Gibon et al.,
2009; Hannemann et al., 2009), there was a slight but
consistent decrease in protein in all accessions in 8hHN
compared with 12hHN. The decrease in the protein
concentration and the levels of many amino acids re-
flects the strong dependence of nitrogen metabolism
on the carbon supply (Nunes-Nesi et al., 2010). As in
the previous comparison, many metabolites showed
quite varied changes between 12hHN and 8hHN, again
pointing to genotypic variation in the response to the
growth condition.

The coefficient of variation (CV, the SD divided by
the mean) was estimated to provide insights into
which metabolic traits show the largest genetic varia-
tion in a given growth condition (Supplemental Fig.
S2A). The average CV of all metabolic traits in
8hHN, 12hHN, and 12hLN was 34%, 33%, and 31%,
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respectively. CV was generally low for structural
components and higher for low-Mr metabolites. Pro-
tein, chlorophyll a, chlorophyll b, starch (CV , 10%),
Suc, total amino acids, shikimate, and most enzymes
(CV, 20%) had a low CV in all three conditions, while
maltose, trehalose, raffinose, Gln, Asn, Arg, and Pro had
a high CV in all conditions. Somemetabolic traits showed
a high CV in one condition; for example, nitrate had a
high CV in 12hLN. This may be because nitrate

accumulates to high levels in nitrogen-replete conditions
but is used for growth in low nitrogen (see below).

Correlations between Individual Metabolites and Biomass
in Each Growth Condition

We next investigated if the same or different indi-
vidual metabolic traits correlate to biomass in the three
growth conditions. Biomass-metabolite trait correlations

Figure 2. Structural and metabolic
traits. A, Principle components analysis
based on z-score values for 97 acces-
sions grown in three contrasting con-
ditions (12hHN, green circles; 12hLN,
red squares; and 8hHN, blue triangles).
In total, 58 traits were determined per
accession. The full data set for each
growth condition are provided in
Supplemental Table S1. VIP scores for
the metabolic trait inputs are provided
in Supplemental Table S7. B, Heat
maps of the metabolite changes under
nitrogen deficiency (12hLN) or short
days (8hHN) compared with control
conditions (12hHN). Each square rep-
resents the log2 ratio of the metabolite
level using false color scale. Regions of
red or blue indicate the metabolite
level is decreased or increased, re-
spectively. The full data set for each
growth condition as provided in
Supplemental Table S4.
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that were significant at a false discovery rate (FDR)
of less than 5% are listed in Table I (for a full list, see
Supplemental Table 5).

There was a highly significant negative correlation
of starch with biomass in 8hHN (r = –0.54; Sulpice
et al., 2009) and 12hHN (r = –0.49) and a weaker non-
significant negative correlation in 12hLN (r = –0.33).
The weakening of the negative correlation between
biomass and starch in 12hLN is consistent with the
hypothesis that allocation of carbon to transitory starch
plays an especially important role when carbon limits
growth. Ala, Val, and succinate were also negatively
and significantly correlated with growth in all three
conditions.

Protein showed a highly significant correlation with
biomass in 8hHN (r = –0.39; Sulpice et al., 2009) that
became weaker in 12hHN (r = –0.30) and was not
significant in 12hLN (r = –0.014); Table I; see
Supplemental Fig. S3 for scatter plots of biomass
against starch and protein). This is in agreement with
earlier reports that the negative relationship between
biomass and protein observed in short-photoperiod
conditions is lost when the photoperiod is longer
than 12 h (Hannemann et al., 2009). This negative
correlation may be related to a possible link in low-
carbon conditions between efficient use of carbon and
increased biomass formation, possibly because nitro-
gen assimilation and protein synthesis represent a

Table I. Spearman rank correlation coefficient between biomass and metabolic traits in different growth conditions

Adjusted P values were calculated using the Benjamini-Hochberg correction. This display summarizes metabolites that correlated at P, 0.05 in at
least one growth condition. A full set of correlations is provided in Supplemental Table S5. NA, Not available; AA, total amino acids; NR_Vmax,
maximum activity of nitrate reductase.
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major cost for growth (Piques et al., 2009; Amthor,
2010).
Suc, Ile, shikimic acid, malate, and 4-Hyp were neg-

atively and significantly correlated with growth in both
12hHN and 12hLN, while Asp, Glu, and Gly were
negatively correlated with growth in both 12hHN and
8hHN and raffinose was negatively and significantly
correlated with growth in both 12hLN and 8hHN.
Other correlations were restricted to one growth con-

dition. In 12hHN, biomass was negatively correlated with
Xyl, Trp, and PEPCx activity and positively with sper-
midine. In 12hLN, biomass was negatively correlated to
maltose, trehalose, myoinositol, nitrate, Leu, threonate,
and nitrate reductase activity and positively correlated to
Glu and Asn. Nitrate is the major source of inorganic
nitrogen and is assimilated via nitrate reductase, while

Asn is a major store for nitrogen. In 8hHN, biomass was
negatively correlated with total amino acids and several
individual amino acids, including Asn, dehydroascorbate,
and putrescine and positively correlated with PEPCx and
NAD-GlDH activity. Asn accumulates and NAD-GlDH
activity is induced in carbon starvation (Melo-Oliveira
et al., 1996; Gibon et al., 2004; Mayashita and Good,
2008; Gibon et al., 2009). Some metabolic traits were
negatively correlated with growth in one condition and
positively in another (Glu, Asn, and PEPCx activity).

Comparison of Metabolic Networks in the Three
Growth Conditions

We next analyzed connectivity between metabolic
traits. To this end, matrices were generated from the

Figure 3. Comparison of the correlation matrices for structural and metabolic traits in three growth conditions. Three separate
networks were generated from the values of 50 metabolic traits, starch, protein, and biomass in 97 Arabidopsis accessions
grown in the three different growth conditions 12hHN, 12hLN, and 8hHN. A, Analysis of the RV coefficient between the
matrices. The lower left-hand segment shows the RV coefficients and the upper right-hand segment the P values. The RV
coefficient values vary between +1 (two identical matrices) and zero (no similarity). B, Condensed heat map of correlation
coefficients (r, FW basis) in the networks for 12hHN, 12hLN, and 8hHN. The individual values are provided in Supplemental
Table S1. Positive (blue) and negative (red) correlations are indicated at a level of P , 0.01, P , 0.001, and P , 0.0001 (light,
medium, and dark, respectively). The order of traits is as in Supplemental Table S2. C, Numbers of pairwise correlations be-
tween traits in one, two, or all three growth conditions. The original matrices are provided in Supplemental Table S5. D, Vi-
sualization of the numbers of shared and nonshared correlations (FDR [FD], 0.01). The area of the circle depicts the number of
shared correlations. The gray shell shows how overlap increases if FDR is relaxed to FDR less than 0.1 in all except one of the
shared growth conditions.
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variation in metabolic traits across 97 accessions in
each growth condition to reveal which traits are sub-
ject to coordinated changes between accessions in a
given growth condition (Supplemental Table S6).

Of a total of 1,683 trait pairs, significant correlations
at 10%, 5%, and 1% FDR were found for 493, 303, and
293 trait pairs in 12hHN, for 493, 261, and 129 trait
pairs in 12hLN, and for 347, 261, and 129 trait pairs in
8hHN, respectively. The vast majority of the correla-
tions were positive. This resembles earlier reports of
high connectivity between metabolic traits in panels of
cultivars, accessions, or inbred lines (Carrari et al.,
2006; Meyer et al., 2007, 2012; Keurentjes et al., 2008;
Schauer et al., 2008; Sulpice et al., 2009, 2010).

A total of 893, 737, and 434 trait pairs showed a
significant correlation in at least one condition at 10%,
5%, and 1% FDR, respectively. These numbers are
much higher than those for any single condition, in-
dicating that there is considerable nonoverlap between
the correlation matrices in the three growth conditions.
The RV coefficient can be used to compare matrices in
high-dimensional data analysis studies (Robert and
Escoufier, 1976; Abdi, 2007). It is a measure of the
similarity between two matrices and varies between +1
(if the two compared matrices are identical) and zero
(if the two matrices are completely different). The RV
coefficients (Fig. 3A) were between 0.35 and 0.26,
which are rather low values, confirming that the met-
abolic networks are condition dependent. The P values
were nonetheless significant, indicating there are some
robustly shared features.

Figure 3B provides a visual overview of the corre-
lation matrix in each condition (for original data and
the full matrices, see Supplemental Table S1). Color
coding is used to distinguish positive and negative
correlations and to denote significance at P, 0.01, P,
0.001, and P , 0.0001. Some general features were
conserved across all growth conditions. First, there
were many more positive correlations than negative
correlations, and second, while there were many cor-
relations between metabolites and many correlations
between enzymes, there were relatively few correla-
tions between enzymes and metabolites (Sulpice et al.,
2010). However, closer inspection reveals that many
correlations were condition dependent. The 12hHN
data set showed a relatively low connectivity between
metabolites, while enzymes were strongly correlated.
In 12hLN, correlations between metabolites were stron-
ger, especially between amino acids and between organic
acids. Nitrate assimilation is closely linked with organic
acid synthesis because organic acids act as counteranions
for nitrate and provide carbon skeletons for the synthesis
of amino acids (Nunes-Nesi et al., 2010; Xu et al., 2012).
In 8hHN, the matrix is dominated by positive correla-
tions between amino acids and positive correlations be-
tween enzymes. The positive correlations between amino
acids reveals that the decrease in the levels of different
amino acid levels noted above (Fig. 2B) occurs in a co-
ordinated manner and is larger in some accessions than
in others.

The extent of overlap of individual links (correla-
tions) in the three correlation matrices is further ex-
plored in Figure 3, C and D. Of the links that are
significant at FDR of less than 0.01, only 19 were
shared across all three growth conditions. These were
restricted to metabolites that are immediately adjacent
to each other in metabolic pathways or have very
similar functionalities (Glc and Fru; Asp and Glu; the
three basic amino acids Lys, Asn, and Arg, the three
aliphatic amino acids Val, Leu, and Ile, and amino-
butyric acid; and Asp, Arg, Pro, and 4-Hyp), two
closely adjacent enzymes that are involved in malate
formation (PEPCx and NADH-MDH), and the three
structural components (protein and chlorophylls a and
b; Supplemental Table S6).

Testing for shared links at FDR of less than 1% may
result in false negatives because traits pairs that are
significant in one growth condition may lie slightly
below this stringent threshold in another. We therefore
investigated how many conserved links are found for
trait pairs that show a correlation at FDR of less than
0.01 in at least one growth condition and a more re-
laxed significance level of FDR of less than 10% for the
other two conditions (Fig. 3D). This analysis revealed
that up to 83 (4.9% of all possible) links are conserved
in all three conditions. The additional shared links
include Suc with protein, amino acids with chloro-
phylls a and b, further pairs of amino acids, and a set of
enzymes involved in starch and nitrogen metabolism
(AGPase, GS, PEPCx, and NAD-MDH).

We also tested for links that were conserved in two
of the three growth conditions. At FDR of less than
0.01, another 39, 19, and 32 pairwise correlations were
significant in the 12hHN versus 12hLN, 12hHN versus
8hHN, and 12hLN versus 8hHN comparisons, re-
spectively, rising to 115, 74, and 72 when the criteria
were relaxed, as discussed above. We also asked for
selected metabolic traits if the variation between ac-
cessions was conserved across different growth con-
ditions. Pairwise plots revealed a weak but significant
agreement for starch (r = 0.30, P = 0.05) and protein
(r = 0.35, P = 0.001) when 8hHN was compared with
12hHN and a nonsignificant correlation for starch (r =
0.16, P = 0.12) and protein (r = 0.15, P = 0.15) when
12hHN was compared with 12hLN (Supplemental
Fig. S4).

Altogether, these results point to a strong impact
of the growth condition on the links in networks ex-
tracted from metabolic profiles. While there are a small
proportion of conserved links, these are mainly for
metabolites or enzymes that are closely related with
respect to pathway topology or trait function.

PLS Regression of Biomass, Starch, and Protein on Other
Metabolic Traits

As already noted, some individual metabolic traits
correlate with biomass (Table I). Predictive power can
be increased by using multivariate analysis to predict
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biomass from a linear combination of a set of low-Mr
metabolites (Meyer et al., 2007; Sulpice et al., 2009).
Therefore, we investigated whether multivariate anal-
ysis reveals shared features in the network linking
metabolic traits and biomass formation that are not
apparent at the level of pairwise comparisons.
In data sets such as ours, where the number of

predictors (52) is lower than the number of accessions
(97), the predictive power of linear models can be
improved by dimensionality reduction methods such
as PLS regression. PLS identifies combinations of the
original input traits (also termed variables or predic-
tors) that have the maximum covariance with the
output trait of interest. These orthogonal combinations
of input traits, referred to as latent variables, are then
used to predict the output trait. Sulpice et al. (2009)
previously found, for Arabidopsis accessions growing
in short-day conditions, that biomass, starch levels,
and protein concentration are correlated and that each
is predicted by a similar combination of low-Mr me-
tabolites. We repeated this analysis for all three growth
conditions. The idea of PLS is to provide models of
high predictive power while selecting a small number
of latent variables, which might correspond to a re-
duced number of metabolic traits in the model. Selec-
tion of the number of latent variables was performed
based on minimization of the residual mean-squared
prediction error after leave-one-out (LOO) cross vali-
dation. The predictive power of the model was eval-
uated in a second round of cross validation by
determining the correlation between the predicted
values and the respective response variable with the
previously determined fixed number of latent varia-
bles; significance was evaluated by permutation of the

data 5,000 times (see “Materials and Methods” for
details). Shuffling was conducted to allow consider-
ation of permutations specific for a metabolic trait. The
use of two separate rounds of cross validation for ro-
bust estimation of the number of latent variables and
for evaluation of the predicting power of the model
reduces the possibility of overfitting.

In each growth condition, PLS regression using
metabolite levels as an input allowed a significant
prediction of biomass (Pearson correlation of 0.36, 0.58, and
0.27 for 12hHN, 12hLN, and 8hHN, respectively, P ,
0.05) and starch (Pearson correlation of 0.67, 0.39,
and 0.23 for 12hHN, 12hLN, and 8hHN, respectively,
P , 0.05). It also allowed a significant prediction of
protein concentration in 12hHN and 12hLN (Pearson
correlation of 0.46 and 0.57, respectively, P . 0.05) but
not in 8hHN (Table II; Supplemental Table S7). The
predictive power was improved compared with indi-
vidual metabolites (Table I).

We also asked whether metabolite profiles mea-
sured in one growth condition allow prediction of
biomass, starch, or protein in a different growth condition.
While almost all PLS regressions were significant (except
for the prediction of protein in 8hHN by metabolic traits
from any condition), the cross-validated correlations were
generally smaller (Table II). For significant regressions,
the range and average of P values was 0.001 to 0.003
and 0.013 for within-growth condition comparisons
and 0.001 to 0.030 and 0.023 for cross-growth condition
comparisons, respectively.

We also analyzed two additional scenarios. In the
first, we conducted PLS on the means of the traits
across all three conditions, while in the second, we
employed PLS on a combination of the three data sets

Table II. PLS regression analysis of the relation between low molecular weight metabolites and biomass, starch level, or protein concentration

PLS was performed using 52 metabolic traits from condition A as input and FW, starch, or protein as output traits from condition B, for each of the
nine combinations of conditions A and B. The correlation between the predicted values and the response variables, denoted by R, was determined
after cross-validated selection of the number of latent variables (n). The number of latent variables (n) and the P values were determined in two
successive and independent rounds of cross validation, and significance was then determined by permutation test (see “Materials and Methods”). PLS
was also performed on the means of traits across the three growth conditions, and on a combined data set containing all individual values from the
three growth conditions; in these regressions, growth conditions are not given because the output traits were averaged or combined, respectively,
across all three growth conditions. Italic font indicates regressions in which the input and output traits are from the same growth condition. Sig-
nificant regressions are indicated by boldface.

Growth

Condition
Output Trait

12hHN 12hLN 8hHN Mean
Combination of All

Individual Values

R/n P R/n P R/n P R/n P R/n P

12hHN FW 0.36/1 0.002 0.26/1 0.006 0.28/1 0.002
Starch 0.67/1 0.001 0.47/1 0.001 0.68/1 0.001
Protein 0.46/1 0.001 0.34/1 0.001 0.46/1 0.001

12hLN FW 0.51/1 0.001 0.58/1 0.001 0.51/1 0.001
Starch 0.35/1 0.001 0.39/1 0.001 0.36/3 0.001
Protein 0.45/1 0.001 0.57/2 0.001 0.34/1 0.002

8hHN FW 0.27/1 0.003 0.21/1 0.023 0.27/1 0.013
Starch 0.26/1 0.006 0.05/2 0.302 0.23/1 0.023
Protein 0.13/1 0.102 0.17/1 0.057 0.17/1 0.072

Mean or All FW 0.45/1 0.001 0.73/3 0.001
Starch 0.61/2 0.001 0.77/31 0.001
Protein 0.57/3 0.001 0.94/32 0.001
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(“Mean” and “All,” respectively, in Table II). More
specifically, in the “Mean” scenario, we used the mean
input traits across the three conditions to build a PLS
regression on the mean output traits across the three
conditions; in the “All” scenario, we conducted PLS
analysis on the concatenated data matrices from the
three conditions. Using the mean of the traits over the
three conditions in the PLS analysis, we found that all
regressions are significant and of greater predictive
power than the average power of condition-specific
PLS. This gain was even greater when we used all
three data sets (“All”). However, although similar
observations with much greater correlation values
were obtained using the combined data sets, these
regressions were based on a much larger number of
latent variables, especially when we combined the data
sets (as many as 32 from 52 available). Altogether,
these findings suggest that PLS regression on metab-
olites to predict output traits such as biomass and
starch may be specific and more robust for compari-
sons within a given growth condition than for com-
parison across conditions.

The importance of individual input traits (variables)
in the linear combination is provided by the variable
importance in the projection (VIP; Chon and Jung,
2005). The VIP for each individual metabolic trait
as input in each growth condition is provided in
Supplemental Table S7. We next investigated the cor-
relation between the VIP of the input traits from the
PLS regressions on the pairs of output traits. This
analysis led to two main conclusions. First, there was
close agreement between the VIP of metabolic input
traits in the prediction of the three output traits in
12hHN (P , 0.001 in all pairwise comparisons of
biomass, starch, and protein; Table III). The agreement
was lower under 12hLN (especially for the comparison
protein versus biomass, P = 0.17) and still weaker in
8hHN, when there was good agreement between bio-
mass and protein (P , 0.0001) but not between bio-
mass and starch (P = 0.059) or starch and protein (P =
0.28). The latter differs from a previous report (Sulpice
et al., 2009; see “Discussion”). Second, different meta-
bolic traits were important in the PLS regression in
different conditions (assessments are based on VIP .
1). Taking the PLS regressions on biomass as an
example, in 12hHN, Xyl, several central amino acids

(Gln, Ala, Asp, and Gly), all three aromatic amino
acids (Phe, Trp, and Tyr), Pro, 4-Hyp, malate, and suc-
cinate had a high VIP, while in 8hHN, raffinose, a
similar set of central amino acids (Gln, Glu, Ala, Asp,
and Gly), all nitrogen-rich amino acids (Lys, Asn, and
Arg), fumarate, threonate, and putrescine had a high
VIP and in 12hLN, raffinose, maltose, trehalose,
erythritol, a different set of amino acids (Ala, Asn, and
Arg), succinate, glycerate, 4-Hyp, dehydroascorbate,
threonate, putrescine, and nitrate reductase activity
had a high VIP for biomass. Some metabolic traits (e.g.
Ala and 4-Hyp) were represented in all three conditions,
while others (e.g. Pro, Asn, and Arg) were represented
in two conditions and many in only one condition.
With the exception of nitrate reductase, enzyme ac-
tivities did not show high VIP. By comparing Table I
with Supplemental Table S5, we observed that many
of the metabolic traits with a high VIP show sig-
nificant correlations with biomass in that condition.
The correlation between the VIP in the regression
for biomass and the Spearman rank correlation co-
efficients of individual metabolic traits and biomass,
with values of 0.65, 0.72, and 0.42 in 12hHN, 12hLN,
and 8hHN, respectively, provide statistical support
for this observation.

Relationship between Biomass and Nitrate and Total
Nitrogen Content in Plants Growing with a Restricted
Nitrogen Supply

We next asked whether nitrate or other metabolic
traits related to nitrogen adopt a more important role
as a predictor for biomass in low-nitrogen conditions.
These analyses were limited to 12hHN and 12hLN
because values for nitrate were not available for the
published 8hHN study. Nitrate levels were higher in
12hHN, where they typically accounted for about 20%
of the nitrogen in the rosette, than in 12hLN (Fig. 4A).
Nitrate levels were negatively correlated to biomass in
12hLN but unrelated to biomass in 12hHN (r = –0.5,
P = 8e–06 and r = –0.18, P = 0.18, respectively; Table I;
Fig. 4, A and B). Total nitrogen content was estimated
by summing nitrogen in nitrate, protein, amino acids,
and chlorophyll. Total nitrogen content was similar in
both 12hLN and 12hHN and was unrelated to biomass
in both conditions (Fig. 4A).

As already noted, accessions that maintained a rel-
atively high biomass in low nitrogen tended to show
only a small increase in biomass in high nitrogen,
whereas accessions that showed a relatively small
biomass in low nitrogen showed a large (greater than
3-fold) increase in biomass in high nitrogen (Fig. 4C).
The ability of plants to grow with a low nitrogen
supply, sometimes termed nitrogen use efficiency, can
be divided into two components: the ability to produce
more biomass per unit nitrogen in the plant and the
ability to obtain nitrogen from the soil (Moll et al.,
1982). The total nitrogen concentration in the rosette
was unrelated to the biomass difference between low

Table III. Correlation (R) between the VIP of metabolic traits in the
PLS regression on biomass, starch, and protein

The VIP of the metabolite traits in the PLS regressions on biomass,
starch, and protein concentration are provided in Supplemental Table
S7). Significant correlations are indicated by boldface.

Growth

Condition

Biomass and

starch

Biomass and

protein

Starch and

protein

R P R P R P

12hHN 0.81 0.000 0.43 0.001 0.65 0.000
12hLN 0.28 0.042 0.19 0.172 0.53 0.000
8hHN 0.26 0.059 0.55 0.000 0.15 0.278
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and high nitrogen (Fig. 4D). The nitrogen content
(milligrams of nitrogen per rosette) was strongly
related to the response of an accession to nitrogen;
accessions that maintained biomass in low nitrogen
contained more nitrogen in the rosette than accessions
that showed a large gain in biomass in high nitrogen
(Fig. 4E). These results imply that accessions differ in
the extent to which they can acquire nitrogen from
low-nitrogen soil and that this is far more important
for the response of biomass to nitrogen supply than
changes in the nitrogen content of the rosette.

Mixed-Model Analysis

The results presented in the previous sections were
mainly based on per-condition PLS regressions with-
out controlling for the effects of environmental con-
ditions. This is usually referred to as a by-group
approach, where each group corresponds to a condi-
tion. A by-group approach does not detect relation-
ships that are conserved across conditions and may
highlight very specific effects for the individual con-
ditions. We therefore asked if a more generalizable
model for each of the three output traits (i.e. biomass,

starch, and protein) can be obtained by combining the
data sets from the three conditions, using an approach
based on linear mixed models.

Linear mixed models are a type of generalized linear
mixed model (Breslow and Clayton, 1993) that offers a
parsimonious way to account for group level structure
in data while simultaneously assessing effects within
and across groups (i.e. conditions). In addition to in-
dividual level noise, linear mixed models allow for
normally distributed group level differences centered
on the individual level parameters. Our analysis is
based on a linear mixed model with random intercepts
by condition (defined as a grouping factor), formu-
lated as:

yi;cond ¼ b9þ ∑
N

k¼1
bk logxi;k þ «i;

b9 ¼ b0 þ bcond

where « follows normal distribution N(0, s«), bcond fol-
lows N(0, scond), and bcond is perpendicular to «.

In this model, the intercept (b�) is the sum of the
ordinary intercept (i.e. the global mean [b0]) and the

Figure 4. Nitrogen concentration and
nitrogen content in accessions growing
in low and optimal nitrogen supply. A,
Rosette biomass and total nitrogen
in nitrate, protein, amino acids, and
chlorophyll (red and green diamonds)
and against nitrogen in nitrate (red and
green triangles). Total nitrogen con-
tents are calculated in Supplemental
Table S8. B, Relationship between ni-
trate concentration and rosette biomass
in 12hLN; data in A is replotted with an
expanded y-axis scale. C to E, The x
axis ranks accessions according to their
gain in biomass between low-nitrogen
and high-nitrogen growth conditions.
The x axis shows the values for a given
accession for 12hHN (green circles)
and 12hLN (red triangles). C, Rosette
biomass. D, Summed nitrogen content
in protein, amino acids, chlorophyll,
and nitrate. E, Summed nitrogen con-
tent per rosette.
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adjustment based on the group (i.e. the condition
[bcond]) for each of the three output traits. The adjust-
ment is assumed to be normally distributed, centered
on zero, and orthogonal to the individual level noise
(«). This adjustment is termed the random intercept
because it adjusts the overall intercept to reflect a
randomly distributed condition-specific intercept.

Here, we first ask whether we can remove the ran-
dom intercept without sacrificing the power of the
model. This is achieved by x2 test (with 1 degree of
freedom) over the difference in deviance (defined as
twice the log likelihood) between the model with a
random intercept against the same model without a
random per-condition intercept. This test aims to
determine whether the added number of parameters
(due to the random intercepts) significantly improves
the model quality. While inclusion of random inter-
cepts increases the quality for the model of biomass
(P , 0.05), this is not the case for starch and protein
concentration (Supplemental Table S9). The random
intercepts in the case of a linear mixed model for bio-
mass were 35.75, 2.21, and –37.96 for 12hHN, 12hLN,
and 8hHN, respectively, indicating the condition
specificity. Moreover, analysis of the deviance table
(Supplemental Table S9) reported that chlorophyll a,
Suc, myoinositol, Asp, Gly, Ser, and nicotinic acid had
significant coefficients in the regression for biomass
at a significance level of 0.05. While some of these
metabolites (Suc and Gly) had a significant correlation
(Table I) or a high VIP in the PLS regression on bio-
mass (Supplemental Table S5) in two of the growth
conditions, others (e.g. Ser and nicotinic acid) had not
been uncovered in the previous analyses. This is due
to the more important role of these metabolic traits
in the generalized (cross-condition) model. Never-
theless, as for the PLS regressions, enzymes make
only a weak contribution (none significant at P ,
0.05 and only one, GS, at P , 0.1).

We next tested if random effects for the slope of
these seven significant metabolic traits improve the
quality of the model for biomass. x2 test (7 degrees of
freedom) indicated that adding random slopes, pre-
sented in Supplemental Table S9, improves the pre-
dictive power of the model. Subsequent analysis of the
deviance table indicated that the combined effects (i.e.
fixed and random) for Suc and Gly are significant,
while Ala has a significant fixed effect (P , 0.05;
Supplemental Table S9). Ala was one of the very few
metabolites that in all three growth conditions corre-
lated significantly (P , 0.05) with biomass (Table I)
and had a high VIP in the PLS regression on biomass
(Supplemental Table S5).

DISCUSSION

While it can be anticipated that metabolism will
affect growth and that this dependence should be
reflected in the values of metabolic traits, this con-
nection is often masked due to the complexity of the

network that links metabolism with growth (Fernie
and Stitt, 2012). Natural genetic diversity provides a
powerful tool to analyze complex networks because it
allows the study of thousands of genetic perturbations
that vary independently between different genotypes.
Profiling of populations of Arabidopsis natural acces-
sions or inbred lines and application of multivariate
analysis tools has allowed sets of metabolites to be
identified that are predictive of biomass (Meyer et al.,
2007; Sulpice et al., 2009; Steinfath et al., 2010a, 2010b;
Cuadros-Inostroza et al., 2010; Carreno-Quintero et al.,
2012) and in some cases has allowed hypotheses to be
formulated with respect to which aspects of metabo-
lism play a key role in the determination of growth
(Sulpice et al., 2009, 2010). However, metabolite levels
depend on the growth condition (Caldana et al., 2011;
Obata and Fernie, 2012; see the introduction for further
references). We have investigated (1) whether metab-
olite profiles provide information that is predictive for
biomass in three different growth conditions and (2)
whether the network connectivity is conserved or
changes between growth conditions. To do this, a
panel of 97 genetically diverse Arabidopsis accessions
was grown in three growth conditions: near-optimal
carbon and nitrogen supply, restricted carbon supply,
and restricted nitrogen supply. The growth protocols
used to restrict carbon and nitrogen decreased biomass
by, on average, about 2-fold compared with near-
optimal carbon and nitrogen. This represents a small
decrease in the rate of growth. Previous work in the
reference accession Col-0 has shown that Arabidopsis
adjusts to these regimes to avoid an acute carbon
limitation (Gibon et al., 2009; Stitt and Zeeman, 2012)
or nitrogen limitation of metabolism and growth
(Tschoep et al., 2009).

The large genetic diversity in Arabidopsis for bio-
mass is apparent, with approximately 3-fold differ-
ences in biomass between the smallest and largest
accessions in a given growth condition. Accessions
vary in their response to the growth condition (Fig. 1).
While there is a trend for accessions that are large in
one condition to also be large in other conditions, this
is modified by two further trends; first, accessions that
develop a high biomass in near-optimal conditions
show a larger decrease of biomass in limiting condi-
tions and second, many individual accessions show
differing responses to low carbon and low nitrogen.

While there are no other published studies of the
response of biomass to low carbon in Arabidopsis,
three earlier studies used a much smaller but partly
overlapping panel of accessions to study the re-
sponse to low nitrogen (http://dbsgap.versailles.inra.fr/
vnat/; Supplemental Table S10; North et al., 2009;
Chardon et al., 2010). The trend for accessions that
produce a high biomass in high nitrogen to show a
larger decrease in biomass in low nitrogen is visible in
these earlier studies. However, detailed comparison is
difficult because of differences in accession ranking for
biomass. In high-nitrogen conditions, there is very
good agreement between biomass in our study and the
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Natural Variation of Arabidopsis thaliana (VNAT)
database (20 shared accessions, r = 0.69) and weak
agreement with the study of Chardon et al. (2010; 18
shared accessions, r = 0.23, due to two accessions that
show low biomass in our study and the VNAT data-
base but have a high biomass in the study of Chardon
et al., 2010). In low-nitrogen treatments, the agreement
between our data and that of the VNAT database and
Chardon et al. (2010) breaks down (r = –0.03 and 0.07,
respectively). This poor agreement may be due to
different protocols in the low-nitrogen treatments.
Whereas we used large pots containing soil with a
high or a very low nitrogen content from the beginning
of the experiment, earlier studies grew plants in small
pots with sand and watered regularly with nutrient
solution containing different amounts of nitrogen. In
our growth protocol, nitrogen-restricted plants contain
less nitrate and show a slower rate of growth but
maintain rosette levels of amino acids and protein
(Figs. 2 and 4; Supplemental Table S1; Tschoep et al.,
2009), whereas rosette nitrogen concentration de-
creased by 20% to 30% in North et al. (2009) and
Chardon et al. (2010). Furthermore, while the variation
in biomass is similar in high-nitrogen and low-
nitrogen treatments in our growth protocol, in the
other growth protocols, there is less variation in bio-
mass formation in low-nitrogen than in high-nitrogen
treatments. Despite this variation between studies, our
analysis confirms previous reports (Chardon et al.,
2010, 2012) that Bur0 shows a large response to
nitrogen, reveals that this accession is relatively in-
sensitive to low carbon, and identifies further acces-
sions that show a similar response (Dijon5 and Old1).
Our study also identifies accessions that show a re-
verse response, with a large decrease in biomass in low
carbon, and maintained biomass in low-nitrogen con-
ditions (Mh1, Nok2, and Lov5).
The response of metabolic traits is dominated by the

growth condition (Fig. 2), with low carbon or low
nitrogen leading to marked and differing changes in
many metabolic traits across all the accessions. Nev-
ertheless, there is genetic variation for metabolic traits.
This can be captured in each growth condition as a
correlation matrix (Fig. 3). These networks identify
metabolic traits that are subject to coordinated changes
between accessions in a given growth condition. The
correlation matrices show some shared general fea-
tures, in particular a predominance of positive corre-
lations, and the presence of many correlations between
metabolite levels, many correlations between enzyme
activities, and few correlations between metabolite
levels and enzyme activities. As previously discussed
(Sulpice et al., 2010), this may reflect the complexity of
the network that links enzyme activities with metab-
olite levels. A small number of links are found in all
three growth conditions, mainly between topologically
adjacent or functionally similar metabolic traits.
Nonetheless, the main feature emerging from our large
study is that both the metabolic traits and the corre-
lation network depend strongly on growth conditions.

First, low nitrogen and low carbon lead to character-
istic changes in metabolite levels that affect all acces-
sions (Fig. 2). In low nitrogen, this includes an increase
in many amino acid levels, a decrease in organic acids,
and a decrease in nitrate reductase activity. In low
carbon, this includes an increase in Suc and reducing
sugars, a decrease in many amino acids, with the ex-
ception of Ala, which increases, and an increase in
NAD-GlDH activity. Second, most of the individual
links in the metabolic network are condition specific
(Fig. 3). In low nitrogen, the correlation network is
dominated by strong connectivity between amino
acids and between organic acids, in low carbon, the
network is dominated by strong connectivity between
amino acids, and in near-optimal conditions, the net-
work is dominated by a less topologically defined
response.

The growth condition modifies the relationship be-
tween metabolic traits and biomass. A different set of
individual metabolic traits correlate to biomass in each
growth condition (Table I). While PLS regression al-
lows a highly significant prediction of biomass in each
growth condition and often between growth condi-
tions, the statistical significance for the predictive
power tends to be stronger and a smaller number of
latent variables is required when these analyses are
made within a given growth condition (Table II). Ap-
plication of linear mixed models highlighted that the
inclusion of random (condition-dependent) effects for
the intercept in the regression increases the quality of
the model for biomass, but not for starch and protein
concentrations. This further supports the condition
specificity of biomass prediction that is suggested by
the PLS regressions. Additional analysis suggested
that the inclusion of random slopes for metabolic traits
that have significant coefficients in the linear mixed
models could further improve the quality of these
models.

A small number of individual metabolic traits are
linked to biomass in all three growth conditions. For
example, Ala correlated with biomass in all three
growth conditions (Table I), had high VIP in PLS re-
gressions on biomass in all conditions (Supplemental
Table S7), and, together with Suc and Gly, was high-
lighted as important in the mixed linear model
(Supplemental Table S9). We previously reported that
biomass is negatively correlated with starch and pro-
tein (Sulpice et al., 2009). This finding is confirmed for
starch in all conditions used in this study and for
protein in near-optimal and low-carbon conditions,
but not in low nitrogen (Table I). We also reported that
a similar set of metabolites has a high VIP in a PLS
regression on all three traits and proposed that starch
and protein concentration are integrative metabolic
traits that capture information about the levels of
many low-Mr metabolites and are closely linked to
biomass formation (Sulpice et al., 2009). This relation-
ship with biomass is confirmed in near-optimal
(12hHN) conditions for starch and for protein (P ,
0.001), in low nitrogen for starch (P , 0.05), but not for
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protein (P = 0.17), and in low-carbon conditions for
protein (P , 0.001), but not, or only very weakly, for
starch (P = 0.059; Table III). The analysis in Sulpice
et al. (2009) was carried out in short-day (low-carbon)
conditions; hence, there is a discrepancy in this par-
ticular condition. This may be due to use of a more
stringent procedure for selection of the number of la-
tent variables and validation of prediction in this study
and because the published 8hHN data set was obtained
using a weaker experimental design than that used to
obtain the 12hHN data set in this study (see “Materials
and Methods”).

The metabolic traits that adopt a major role in the
network linking metabolism and growth in a given
growth condition are often closely related to the met-
abolic resource that limits growth in that condition. In
short-day (low-carbon) conditions, low starch is the
most powerful single predictor of biomass (Table I).
Protein is also negatively correlated to biomass, as are
many amino acids (Table I). Furthermore, protein and
many amino acids decrease in short-day conditions
(Table II). As outlined in the introduction, in low-
carbon conditions, low protein concentration may in-
crease the efficiency with which resources are used to
generate biomass, which in turn may explain why
starch reserves can be decreased (Sulpice et al., 2009,
2010). The second most strongly correlating individual
metabolic trait is a positive correlation with NADH-
GlDH activity. NAD-GlDH activity is induced by
carbon starvation (Melo-Oliveira et al., 1996; Gibon
et al., 2004; Mayashita and Good, 2008). This prompts
the hypothesis that large accessions, which contain less
starch, operate with a lower margin of carbon than
small accessions. When more carbon is available for
growth in a 12-h photoperiod (Gibon et al., 2009), the
negative correlation between biomass and starch is
retained, but the links to protein concentration, amino
acid metabolism, and NAD-GlDH activity are weakened
or abolished. This is consistent with the idea that this
link is driven by metabolic adjustment to low carbon
and that there is variation between accessions for the
way in which this interaction is regulated (Table I;
Fig. 3).

By contrast, in low-nitrogen conditions, the meta-
bolic traits that correlate strongly with biomass include
nitrate reductase activity and nitrate, with the latter
being the most strongly correlating individual meta-
bolic trait (Table I). A trivial explanation for the neg-
ative relationship between biomass and nitrate would
be that accessions with a larger biomass in low-
nitrogen conditions exhaust nitrate; this, however,
can be excluded because total nitrogen concentration
was independent of accession biomass (Fig. 4). A
similar observation has been made in earlier studies
with a small panel of Arabidopsis accessions (Chardon
et al., 2010, 2012). Nitrate is typically taken up in the
day and the night but is mainly assimilated during the
day, when nitrate reductase is posttranslationally ac-
tivated and photosynthetic electron transport provides
reducing equivalents of the reduction of nitrate and the

subsequent reduction of nitrite (Lea et al., 2006; Lillo,
2008). This results in a diurnal rhythm in which nitrate
levels decrease in the light and recover during the
night (Stitt and Krapp, 1999; Matt et al., 2001). The
lower level of nitrate and higher activity of nitrate
reductase at dusk in accessions that maintain a large
biomass in low-nitrogen conditions is consistent with
them assimilating more of the incoming nitrate during
the day. Furthermore, accessions that maintain a larger
biomass in low-nitrogen conditions absorb far more
nitrogen from the soil (Fig. 4). Earlier studies of small
panels of Arabidopsis accessions indicate that differ-
ences in the root system may partly explain differences
in nitrogen uptake (Loudet et al., 2005). It is possible
that the lower rosette nitrate levels may promote root
growth and nitrogen uptake, although more studies of
root growth and transport activity will be needed to
test this hypothesis.

In conclusion, while metabolic traits can be used to
predict biomass in different growth conditions, this
will require collection of data for the metabolic input
traits in each growth condition. The growth condition
has a large impact on the values of metabolic traits and
on the connectivity between metabolic traits and in-
fluences the connectivity between metabolism and
growth. While metabolic traits determined in one
growth condition allow prediction of biomass in other
conditions, the analysis is more robust when full input
and output trait data are available for all conditions
under study. Application of linear mixed models also
reveals a marked condition effect on the biomass pre-
diction and reveals that prediction can be improved
when metabolic input data in all conditions is used
as part of the model. Based on the growth conditions
related to carbon and nitrogen availability analyzed in
our study, in a given condition, metabolic traits related
to the limiting resource can adopt a more central role
in the network that connects metabolism and growth.
This implies that there is substantial natural variation
in Arabidopsis for adjustment of metabolism to improve
growth in low-carbon and low-nitrogen conditions. This
variation, however, means that environmental condi-
tions must be taken into account when searching for
individual metabolites or sets of metabolites that act
as biomarkers and may compromise attempts to make
predictions about genotype performance between dif-
ferent growth conditions.

MATERIALS AND METHODS

Selection of the Accessions and Growth Conditions

Arabidopsis (Arabidopsis thaliana) accessions used in this study were
obtained from various sources as previously described (Sulpice et al., 2009,
2010). Geographical origin of the accessions is available at VNAT (http://
dbsgap.versailles.inra.fr/vnat/). For the 8hHN treatment, plants were grown
in multiple overlapping experiments as previously described (Sulpice et al.,
2009, 2010). For the 12hHN and 12hLN treatments, plants were grown in large
replicated experiments with all accessions. To eliminate effects due to seedling
germination and establishment, in all growth regimes, seeds were germinated
and grown for 7 d with a 16-h daylength (irradiance, 145 mmol m–2 s–1;
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temperature, 20°C in the light and 6°C at night; humidity, 75%) and then in an
8-h-light/16-h-dark regime for 7 d (irradiance, 145 mmol m–2 s–1; respective
temperatures and humidities of 20°C and 60% during the day and 16°C and
75% at night). At 14 d, plants of average sizes were transferred to 6-cm-
diameter pots (five plants per pot). In all experiments, the position of the
pots containing individual accessions was randomized.

For the 8hHN treatment, the soil substrate was GS90 (composition: peat,
clay, coconut fiber, 2 g L–1 salt, 160 mg L–1 nitrogen, 190 mg L–1 P2O5,
230 mg L–1 K2O, pH 6; Werner Tantau GmbH and Co.) and vermiculite
(Gebrueder Patzer; Cross et al., 2006). For the 12hLN treatment, the soil
substrate was 50% (v/v) white peat (Gramoflor GmbH) and 30% (v/v) fine-
and 20% (v/v) coarse-grained vermiculite (AGRA-RHP, Kausek GmbH) fer-
tilized with 260 mg K2HPO4, 396 mg GRANUKAL 85 (80% [w/v] CaCO3 and
5% [w/v] MgCO3, Kreidewerke Dammann KG), 1.6 mg Fetrilon-Combi
micronutrient fertilizer (BASF AG), and 30 mL of tap water per 100-mL pot
(Tschoep et al., 2009). For the 12hHN treatment, the soil substrate was iden-
tical to 12hLN, except that it was additionally supplemented with 90 mg solid
NH4NO3 per 100-mL pot. Prior to use, soils were stored for 2 weeks at 10°C to
allow homogenization of nutrients. At 21 d, plants were transferred to a
controlled small growth chamber (145 mmol m–2 s–1, 20°C day and night) for 2
additional weeks in either an 8-h photoperiod (8hHN) or a 12-h photoperiod
(12hHN and 12hLN). Plants were watered daily. Within each experiment, the
position of the pots containing individual accessions was randomized. Har-
vests (five samples per accession, each consisting of three rosettes) were per-
formed at the end of the light period. The entire sample was powdered under
liquid nitrogen and stored at –80°C until its use.

Enzyme and Metabolite Assays

Chemicals were purchased as described (Gibon et al., 2004). Total protein,
starch, Glc, Fru, Suc, and total amino acids were assayed as described (Cross
et al., 2006). Malate and fumarate were assayed as described (Nunes-Nesi
et al., 2007). For enzyme measurements, aliquots of 20 mg frozen FW were
extracted by vigorous mixing with extraction buffer (Nunes-Nesi et al., 2007).
AGPase, fumarase, GlDH, PEPCx, invertase, GOGAT, nitrate reductase, and
GS were assayed as described (Gibon et al., 2004). NAD-MDH was assayed as
described by Nunes-Nesi et al. (2007). Metabolite extraction for Gas
chromatography-mass spectrometry was performed as described previously
(Schauer et al., 2008).

Derivatization and gas chromatography-mass spectrometry analysis were
performed as described previously (Lisec et al., 2006), starting from aliquots of
20 mg frozen FW. Because measurements of nitrate, Orn, and spermidine were
not available for the published 8hHN data set, random numbers were intro-
duced for these traits in the calculations of condition-specific correlation ma-
trices. However, these were not used in the PLS and mixed-model analyses.

Statistical Analysis

PLS regression is a dimensionality reduction method that aims at deter-
mining predictor combinations with maximum covariance with the response
variable (Wold, 1966; Eriksson et al., 2001). The identified combinations, called
latent variables, are used to predict the response variable. Selection of the
number of latent variables was performed based on minimization of the re-
sidual mean-squared prediction error after LOO cross validation. The pre-
dicted vector was correlated with the measured values to assess the predictive
power of the predictor variables with the fixed number of latent variables. The
significance of the prediction power was evaluated by permutation test with
5,000 permutations of the data. We note that in every permutation, each row
of the data matrix, corresponding to the profile of a metabolic trait, was
shuffled independently of the others. Such permutation strategy is intended to
break correlations in pairs of metabolic traits, while maintaining the range that
is specific for each metabolic trait. Then, for each permutation, a PLS model
with the predetermined number of latent variables was built to predict the
randomized response variable and a Pearson correlation between the per-
muted response variable and in LOO cross validation. The 5,000 random
correlations are compared with the performance of the PLS model that was
used to predict the true response variable. The predictors were ranked
according to their VIP (Chon and Jung, 2005). The VIP measure of a predictor
estimates its contribution in the PLS regression. The predictors having VIP
values greater than one are considered important for the PLS prediction of the
response variable. All procedures were applied after log scaling the metabolic
profiles. Our computations were carried out using the R package PLS (Mevik

and Wehrens, 2007). For the analysis based on linear mixed models, we used
the lmer function from the R package lme4 (Bates and Maechler, 2010), while
analysis of the deviance table was carried out with the ANOVA function from
the R package car (Fox and Weisberg, 2011).

The RV coefficient is a multivariate generalization of the squared Pearson
correlation coefficient, provides a measure of the similarity between two
squared symmetric positive semidefinite matrices, and varies between +1 (two
identical matrices) and zero (no similarity; Robert and Escoufier, 1976; Abdi,
2007). It was calculated using the R package located at http://CRAN.
R-project.org/package=FactoMineR. CV is defined as the ratio of the SD to the
mean of all mean values obtained for a trait/accession pair.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Relationship between photoperiod and biomass
in the Col-0 wild type.

Supplemental Figure S2. CV for the metabolic traits analyzed between the
accessions grown in a given growth condition or averaged CV of all the
accessions for the variation in metabolite amounts between two growth
conditions.

Supplemental Figure S3. Relationship between biomass and selected met-
abolic traits in different growth conditions.

Supplemental Figure S4. Relationship between selected metabolic traits
(starch and protein) in different growth conditions.

Supplemental Table S1. Accessions, biomass, structural components,
starch, low-Mr metabolites, enzyme activities, and abbreviations plus
correlation matrices.

Supplemental Table S2. ANOVA analysis.

Supplemental Table S3. Principle components analysis.

Supplemental Table S4. Heat map of changes in metabolic traits under
low-carbon and low-nitrogen conditions compared with near-optimal
conditions.

Supplemental Table S5. Correlation of individual metabolic traits with
biomass.

Supplemental Table S6. Correlation matrices for metabolic traits in each of
the three growth conditions.

Supplemental Table S7. PLS regression for biomass, starch, or protein
concentration on low-Mr metabolites in three growth conditions.

Supplemental Table S8. Calculation of nitrogen contents.

Supplemental Table S9. Linear mixed models for biomass, starch, and
protein concentration: analysis of deviance tables.

Supplemental Table S10. Comparison with published data for biomass in
Arabidopsis accessions.
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