
Behavioral/Systems/Cognitive

Dynamic Reconfiguration of Structural and Functional
Connectivity Across Core Neurocognitive Brain Networks
with Development

Lucina Q. Uddin,1* Kaustubh S. Supekar,1* Srikanth Ryali,1 and Vinod Menon1,2,3

Departments of 1Psychiatry and Behavioral Sciences, 2Neurology and Neurological Sciences and 3Program in Neuroscience, Stanford University School of
Medicine, Stanford, California 94305

Brain structural and functional development, throughout childhood and into adulthood, underlies the maturation of increasingly so-
phisticated cognitive abilities. High-level attentional and cognitive control processes rely on the integrity of, and dynamic interactions
between, core neurocognitive networks. The right fronto-insular cortex (rFIC) is a critical component of a salience network (SN) that
mediates interactions between large-scale brain networks involved in externally oriented attention [central executive network (CEN)]
and internally oriented cognition [default mode network (DMN)]. How these systems reconfigure and mature with development is a
critical question for cognitive neuroscience, with implications for neurodevelopmental pathologies affecting brain connectivity. Using
functional and effective connectivity measures applied to fMRI data, we examine interactions within and between the SN, CEN, and DMN.
We find that functional coupling between key network nodes is stronger in adults than in children, as are causal links emanating from the
rFIC. Specifically, the causal influence of the rFIC on nodes of the SN and CEN was significantly greater in adults compared with children.
Notably, these results were entirely replicated on an independent dataset of matched children and adults. Developmental changes in
functional and effective connectivity were related to structural connectivity along these links. Diffusion tensor imaging tractography
revealed increased structural integrity in adults compared with children along both within- and between-network pathways associated
with the rFIC. These results suggest that structural and functional maturation of rFIC pathways is a critical component of the process by
which human brain networks mature during development to support complex, flexible cognitive processes in adulthood.

Introduction
The human brain undergoes a protracted period of development
during which widespread changes occur. The maturation of
specific functional systems underlies the development of in-
creasingly sophisticated cognitive functions from childhood to
adulthood, including working memory, attention, and cognitive
control (Bunge and Crone, 2009). These functions are imple-
mented through interactions within and between large-scale
brain networks (Mesulam, 1998; Bressler and Menon, 2010).
Network analyses are increasingly used to assess global, interde-

pendent properties of the developing brain and to understand
dynamic maturation processes (Chu-Shore et al., 2011).

Some principles governing the development of gray and
white matter have emerged. Structural neuroimaging has
shown that while gray matter volume follows a regionally spe-
cific inverted U-shaped trajectory, white matter volume shows
protracted increases with development (Lenroot and Giedd,
2006; Giedd and Rapoport, 2010). Diffusion tensor imaging
(DTI) studies have shown that anisotropy increases and over-
all diffusion decreases with age (Cascio et al., 2007). How
structural changes impact functional brain maturation is less
well understood.

Understanding dynamic reconfiguration of brain networks
between childhood and adulthood requires identifying changes
in structural and functional connectivity during this period. In
the adult brain, several canonical brain networks have been iden-
tified (Damoiseaux et al., 2006). Three of these can be considered
core neurocognitive networks because of their critical roles in
high-level cognition: (1) a frontoparietal central executive net-
work (CEN) comprising the dorsolateral prefrontal cortex
(DLPFC) and posterior parietal cortex (PPC), related to mainte-
nance and manipulation of information and decision making in
the context of goal-directed behavior; (2) a default mode network
(DMN), including the ventromedial prefrontal cortex (VMPFC)
and posterior cingulate cortex (PCC), associated with internally
oriented and social cognition; and (3) a salience network (SN)
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with nodes in the right fronto-insular cortex (rFIC) and anterior
cingulate cortex (ACC), involved in attention as well as intero-
ceptive and affective processes (Sridharan et al., 2008). An impor-
tant hypothesized function of the SN is to identify relevant
internal and extrapersonal stimuli to guide behavior (Seeley et al.,
2007). The rFIC node of the SN has been shown to initiate control
signals that enable switching between the CEN and DMN in re-
sponse to cognitive demands, acting as a “causal outflow hub”
coordinating other large-scale networks (Sridharan et al., 2008;
Menon and Uddin, 2010). In networks, hubs allow for increased
levels of information flow between distant nodes, acting as inte-
grators (Honey et al., 2007). A causal outflow hub is a region that
has a high number of causal outflow connections and low num-
ber of causal inflow connections as assessed using Granger cau-
sality analyses (GCA).

Little is known about the neural systems supporting the devel-
opment of these control processes. Here, we examine develop-
mental changes in brain network interactions using multimodal
imaging, combining functional and effective connectivity of in-
trinsic fMRI and DTI tractography. We hypothesized that we
would find differences in causal outflow from network nodes
between children and adults, with more dramatic changes with
development detected in the rFIC, and that these changes would
be further reflected in structural connectivity measures.

Materials and Methods
Participants
Twenty-three children and 22 IQ-matched adults participated in this
study after providing written informed consent. For those children who
were unable to give informed consent, written informed consent was
obtained from their legal guardian. The study protocol was approved by
the Stanford University Institutional Review Board. Children (10
males, 13 females) ranged in age from 7 to 9 years (mean age, 7.95
years), with an IQ range of 88 –137 (mean IQ, 112). Adults (11 males,
11 females) ranged in age from 19 to 22 years (mean age, 20.4 years),
with an IQ range of 97–137 (mean IQ, 112). All participants were
recruited locally: children from local schools and adults from Stan-
ford University and neighboring community colleges in the greater
San Francisco Bay area (Table 1).

Data acquisition
Functional MRI
For the resting-state fMRI scan, subjects were instructed to keep their
eyes closed and try not to move for the duration of the 8 min scan.
Functional images were acquired on a 3 T GE Signa scanner (GE Health-
care) using a custom-built head coil. Head movement was minimized
during scanning by a comfortable custom-built restraint. A total of 29
axial slices (4.0 mm thickness, 0.5 mm skip) parallel to the anterior
commissure–posterior commissure (AC–PC) line and covering the
whole brain were imaged using a T2*-weighted gradient echo spiral in–
out pulse sequence (Glover and Law, 2001) with the following parame-
ters: TR, 2000 ms; TE, 30 ms; flip angle, 80°; 1 interleave. The field of view
was 20 cm, and the matrix size was 64 � 64, providing an in-plane spatial
resolution of 3.125 mm. To reduce blurring and signal loss arising from
field inhomogeneities, an automated high-order shimming method
based on spiral acquisitions was used before acquiring functional MRI
scans.

Structural MRI
For each subject, a high-resolution T1-weighted spoiled grass gradient
recalled (SPGR) inversion recovery 3D MRI sequence was acquired to
facilitate anatomical localization of functional and DTI data. The follow-
ing parameters were used: TI, 300 ms; TR, 8.4 ms; TE, 1.8 ms; flip angle,
15 o; 22 cm field of view; 132 slices in coronal plane; 256 � 192 matrix;
number of excitation, 2; acquired resolution, 1.5 � 0.9 � 1.1 mm.

DTI
DTI data were obtained from 18 of the 23 children and 15 of 22 adults.
The DTI pulse sequence was a diffusion-weighted single-shot spin-echo,
echo planar imaging sequence (TE, 70.8 ms; TR, 8.6 s; field of view, 220
mm; matrix size, 128 � 128; bandwidth, �110 kHz; partial k-space ac-
quisition). We acquired 63 axial, 2-mm-thick slices (no skip) for two b
values: b � 0 and b � �850 s/mm 2. The high b value was obtained by
applying gradients along 23 different diffusion directions. Two gradient
axes were energized simultaneously to minimize TE. The polarity of the
effective diffusion-weighting gradients was reversed for odd repetitions
to reduce cross-terms between diffusion gradients and imaging and
background gradients. Previous work of Jones (2004) suggests that
measuring more diffusion directions is a more efficient way to reliably
estimate diffusion tensors of arbitrary orientation. Although we were
not able to obtain more diffusion directions in the current study, we
were able to obtain four repeats, producing a signal-to-noise ratio
that is sufficiently high to produce very reliable tensor estimates suit-
able for tractography.

Data processing
Functional MRI
Preprocessing. A linear shim correction was applied separately for each
slice during reconstruction using a magnetic field map acquired auto-
matically by the pulse sequence at the beginning of the scan (Glover and
Lai, 1998). Functional MRI data were then analyzed using SPM5 analysis
software (http://www.fil.ion.ucl.ac.uk/spm). Images were realigned to
correct for motion, corrected for errors in slice timing, spatially trans-
formed to standard stereotaxic space [based on the Montreal Neurologic
Institute (MNI) coordinate system], resampled every 2 mm using sinc
interpolation and smoothed with a 6 mm full-width half-maximum
Gaussian kernel to decrease spatial noise before statistical analysis.
Translational movement in millimeters (x, y, z) and rotational motion in
degrees ( pitch, roll, yaw) was calculated based on the SPM5 parameters
for motion correction of the functional images in each subject. No par-
ticipants had a range of movement �3 mm translation or 3 degrees of
rotation. Motion parameters did not differ between children and adults.

Independent component analysis. Each participant’s smoothed, normal-
ized images were concatenated across time to form a four-dimensional ma-
trix using FSL 3.3 [for FMRIB Software Library (in which FMRIB is
Functional MRI of the Brain), Oxford University, Oxford, UK]. This four-
dimensional matrix was then analyzed with FSL 4.4 melodic independent
component analysis (ICA) concatenated across participants. This analysis
was limited to output only 25 components for the group. From these com-
ponents, networks of interest—SN, CEN, and DMN—were selected for sub-
sequent analyses using previously validated methods (Greicius et al., 2004).
These components were then binarized using SPM5 to create templates for
choosing network components for individuals.

Each participant’s smoothed, normalized, four-dimensional matrix was
analyzed with FSL melodic ICA version 12. The number of components
output by ICA was determined automatically by the principal component
analysis process of the melodic software. For adults, the number of ICA
components generated ranged from 23 to 93. For children, the number of
ICA components generated ranged from 45 to 74. The templates created
above for the three networks were then applied to each participant’s individ-
ual ICA components to select the “best-fit” network component. To do this,
we developed a nonlinear template-matching procedure that involved tak-
ing the average z-score of voxels falling within the template minus the aver-
age z-score of voxels outside the template and selecting the component in
which this difference (the goodness-of-fit) was the greatest. z-scores here
reflect the degree to which the time series of a given voxel correlates with the
times series corresponding to the specific ICA component. There were no

Table 1. Participant demographics

Children (n � 23) Adults (n � 22)

Age 7.95 years (range, 7–9 years) 20.40 years (range, 19 –22 years)
Gender 10 males, 13 females 11 males, 11 females
IQ 112 (range, 88 –137) 112 (range, 97–137)

Participant groups did not differ on IQ or gender distribution.
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differences between the child and adult groups with respect to goodness-of-
fit scores to each of the templates (DMN, p � 0.15; CEN, p � 0.10; SN, p �
0.54). The template-matching method allowed us to select each individual’s
SN, CEN, and DMN. A combined-group analysis was performed using the
individual best-fit network components for the three networks. Individual
t-statistic images from both groups were used to determine combined
group-level statistical maps using a one-sample t test as implemented in
SPM5. The results were masked with a skull-stripped binary image of the
standard MNI T1. Significant clusters were determined using a voxel-wise
statistical height (p � 0.01) and extent (p � 0.01) threshold, corrected at the
whole-brain level. These steps were undertaken to avoid bias and ensure that
equal weight was given to networks identified in both children and adults
because previous work suggests that, although resting-state networks are
reliably and consistently identifiable in adults
(Damoiseaux et al., 2006), they can be more vari-
able in their presentation in children (de Bie et al.,
2011).

Region-of-interest selection. We defined re-
gions of interest (ROIs) in key nodes of the SN,
CEN, and DMN based on the peaks of the ICA
clusters. ROIs were selected from respective
combined-group ICA clusters (created as de-
scribed above): in the rFIC and ACC (on the
SN ICA map); in the rDLPFC and rPPC (on the
CEN ICA map); and in the VMPFC and PCC
(on the DMN ICA map). After selecting voxels
with the highest z-scores within each cluster on
the functional map, the final ROIs were con-
structed by drawing spheres with centers as the
seed point and a radius of 8 mm. Correspond-
ing left-hemisphere ROIs were also created to
explore laterality effects (Table 2). These ROI
selection procedures are widely used in extant
functional and effective connectivity studies
(Fox et al., 2005; Fair et al., 2008; Kelly et al.,
2009; Supekar et al., 2010).

Functional connectivity analysis. The re-
gional resting-state fMRI time series was com-
puted for each of the ROIs by averaging all the
voxels within each region at each time point in
the time series, resulting in 235 time points for
each of the ROIs. These regional time series
were temporally filtered using a bandpass filter
(0.0083 Hz � f � 0.15 Hz). We used partial
correlation as a measure of strength of func-
tional connectivity between the network brain
regions. Partial correlation measures the degree of association between
two regions, controlling for the effect of other regions, and has been
widely used in task- and resting-state fMRI (Sun et al., 2004; Salvador et
al., 2005; Liu et al., 2008; van den Heuvel et al., 2008; Supekar et al., 2010).
As noted by van den Heuvel et al. (2008), this partial correlation ap-
proach has significant advantages over the pure correlation approach
used in previous studies. In particular, our analysis allows the investiga-
tion of functional connectivity uncontaminated by activity in other
nodes under investigation. To account for the non-normality of partial
correlations, a Fisher’s r-to-z transform was applied.

Multivariate GCA. Multivariate GCA was performed in accordance with
the methods of Seth (2010). First, the mean time course from each ROI was
extracted for all subjects. Each time series was then detrended, and its tem-
poral mean was removed. GCA was performed to test for causal influences
between ROIs. The order of the vector autoregressive (VAR) model used for
computation of the influence measure was selected using the Akaike infor-
mation criterion. We proceeded to construct group-wise causal connectivity
graphs from these raw F values as described next. We performed statistical
inferencing on the causal connections using nonparametric analyses. Empir-
ical null distributions of influence terms (F values) and their differences were
estimated nonparametrically by generating surrogate datasets under the null
hypothesis that there are no causal interactions between the regions. To
generate an instance of surrogate data, Fourier transform was applied to each

regional time series, and the phase of the transformed signal was random-
ized. Inverse Fourier transform was then applied to generate one instance of
surrogate data. This procedure ensures that the magnitude spectrum of the
data is preserved while any causal interactions between various regions are
eliminated. Test statistics were then computed by fitting the VAR model to
the surrogate data. This procedure was repeated for several instances of sur-
rogate data (n � 500) to obtain the null distribution of F values and their
differences. Those directed connections whose mean (across subjects in the
group) was significantly different from the mean of the null (F value) distri-
bution were identified using statistical tests and a stringent threshold [p �
0.01, false discovery rate (FDR) corrected]. The stringent threshold was cho-
sen to avoid potentially spurious causal links introduced by the low temporal
resolution and hemodynamic blurring in the fMRI signal. In addition, a
difference of influence (doi) term, (Fx3y � Fy3x), was used to assess links
that showed a dominant direction of influence; the difference term further
limits potentially spurious links caused by hemodynamic blurring (Roe-
broeck et al., 2005). Again, these dominant links were those wherein the
mean of the doi term significantly differed from the empirically constructed
null distribution (p � 0.01, FDR corrected for multiple comparisons).
Between-group differences in the causal connectivity graphs were deter-
mined as follows. Differences in doi terms between the two groups were
computed, for each link. The links that showed between-group changes in
the strength of causal influence were those whose mean difference in the doi

Figure 1. Identifying nodes of neurocognitive networks. SN, right CEN, and DMN identified from ICA of resting-state fMRI data.
Network maps were derived by performing a combined group (adult � children) one-sample t test on individual best-fit network
components. Network nodes for subsequent analyses were based on 8-mm-radius spheres created around peak voxels defined
from this analysis.

Table 2. Coordinates of SN, CEN, and DMN regions derived from ICA of resting-state
fMRI data

Network Region BA Peak MNI coordinates (mm) z-score

SN rFIC 47 39, 23, �4 11.66
lFIC 47 �34, 20, �8 7.99
ACC 24 6, 24, 32 13.16

CEN rDLPFC 9 46, 20, 44 14.47
lDLPFC 9 �46, 20, 44 7.77
rPPC 40 52, �52, 50 11.06
lPPC 40 �40, �56, 44 11.12

DMN VMPFC 11 �2, 38, �12 10.08
PCC 23/30 �6, �44, 34 10.36
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term significantly differed from empirically constructed null distributions of
difference of doi terms (p � 0.01, FDR corrected).

Network analysis. We calculated the following metrics to further
characterize the networks in children and adults: (1) out-degree,
number of causal outflow connections from a node in the network to
any other node; (2) in-degree, number of causal in-flow connections
to a node in the network from any other node; and (3) (out–in)
degree, difference between out degree and in degree, a measure of the
net causal outflow from a node.

Replication analyses. We identified from the publicly available Nathan
Kline Institute dataset (http://fcon_1000.projects.nitrc.org/indi/pro/nki.
html) a group of 22 adult participants in the age range of 19–22 years who
did not differ in mean age, gender distribution, or IQ from our adult dataset.
Because there were not a sufficient number of 7- to 9-year-old participants
available from the Nathan Kline Institute dataset, we identified from our
own database an independent group of 23 children matched on age, gender,
and IQ to the original sample. Using these new datasets for independent
verification, we conducted identical functional and effective connectivity
analyses as in the original dataset.

DTI
DTI data were preprocessed using a custom program based on normal-
ized mutual information that removed eddy current distortion effects
and determined a constrained nonrigid image registration of all the dif-
fusion images (Bammer et al., 2002). The six elements of the diffusion
tensor were determined by multivariate regression (Basser, 1995; Basser
and Pierpaoli, 1996). For each subject, the non-diffusion-weighted (b �
0) images were coregistered to the T1-weighted 3D SPGR anatomical
images using a mutual information 3D rigid-body coregistration algo-
rithm from SPM5. Several anatomical landmarks, including the AC, the
PC, and the midsagittal plane, were identified by hand on the T1 images.
With these landmarks, we computed a rigid-body transform from the
native image space to the conventional AC–PC-aligned space. The DTI

data were then resampled to this AC–PC-aligned space with 2 mm iso-
tropic voxels using a spline-based tensor interpolation algorithm (Pa-
jevic et al., 2002), taking care to rotate the tensors to preserve their
orientation with respect to the anatomy (Alexander et al., 2001). The T1
images were resampled to AC–PC-aligned space with 1 mm isotropic
voxels. We confirmed by visual inspection of each dataset that this coreg-
istration technique aligns the DTI and T1 images to within 1–2 mm in the
brain ROIs.

Tractography. Using custom DTI analysis software (available for down-
load at http://sirl.stanford.edu/software/), the tractography procedure was
initiated by whole-brain fiber tracking in native space that produced many
fiber paths. To ensure that we had obtained high-quality data suitable for
tractography from each participant, we validated our data by following a
procedure recommended by Wakana et al. (2007) for identifying major fiber
tracts. Only participants with high-quality data as determined by this valida-
tion procedure were included in subsequent analyses.

First, for each participant, we computed the total number of streamlines
by creating subject-specific white matter masks. For each voxel in a white
matter mask, fiber tracking was initiated using the voxel as the seed. Starting
from the initial seed, fiber paths were traced using a streamline algorithm in
both directions along the principal diffusion axis. Path tracing proceeded
until fractional anisotropy (FA) fell below 0.15 or until the minimum angle
between the current and previous path segments was �30°. We report the
number of successful streamlines (fiber paths) across the whole brain for
both child and adult groups and acknowledge that the changes in structural
connectivity we report along tracts of interest may be influenced by more
global changes with development.

We used ROIs defined from the Automated Anatomical Labeling
(AAL) atlas as sources and targets for these analyses to ensure that the
regions were sufficiently large to enable reliable tractography estimates
(Jones and Cercignani, 2010). In principle, it would be desirable to con-
duct both functional and structural connectivity analyses using the same

Figure 2. Functional connectivity between nodes of neurocognitive networks. A, Instantaneous (undirected) functional connectivity, as measured by partial correlation, of the six key nodes of the
SN (blue), CEN (green), and DMN (yellow) in adults and children and results of a two-sample t test contrasting the functional connectivity in children versus adults ( p � 0.01, FDR corrected). B,
Results from analysis of left-hemisphere ROIs.
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ROIs. However, the ROIs we used for the resting-state fMRI analyses
were relatively small (8 mm radius). This was to ensure anatomical spec-
ificity and to avoid potentially including information from the time series
of the neighboring regions (Smith et al., 2011). For the tractography,
however, we have found both in the current study and in previous work
(Supekar et al., 2010; Uddin et al., 2010b) that larger ROIs are necessary
when examining structural connections. Jones also reports that use of
small ROIs and subtle differences in ROI placement can have a large
effect on the mean structural connectivity values derived from the ROI
because of the rapidly changing values in FA maps between neighboring
tissues and suggests that the best strategy for positioning ROIs varies
depending on the shape, the size, and the location of the region (Jones
and Cercignani, 2010). We therefore chose to use larger, anatomically
defined ROIs as provided by the AAL atlas for the structural connectivity
analyses to avoid these issues. Furthermore, the primary aim of the cur-
rent study was not to link the statistical relations between functional and
structural connectivity across large numbers of ROIs (as in the study by
Hagmann et al., 2010) but rather to examine developmental differences
in the configuration and connectivity of core neurocognitive networks.
Our structural connectivity analyses were conducted as follow-up anal-
yses to explore whether and to what extent the observed functional con-
nectivity differences were related to structural connectivity differences.
Importantly, our approach allows us to provide more detailed informa-
tion about localization and integrity of white matter pathways associated
with the rFIC.

The spatially normalized insula, ACC, and DLPFC ROIs obtained from
the AAL atlas (Tzourio-Mazoyer et al., 2002) were warped back to each
individual brain to be used for DTI tractography analyses. This was done by
applying the inverse of the spatial normalization transformation. Because
fiber tracking becomes unreliable in gray matter, we ensured that our ROIs
extended 2–3 mm into the white matter. Tracts that did not end in or pass
through both ROIs were discarded. Each fiber tract was estimated using a
deterministic streamline tracking algorithm (Conturo et al., 1999; Mori et
al., 1999; Basser et al., 2000) with a fourth-order Runge–Kutta path integra-

tion method (Press, 2002) and 1 mm fixed step size. A continuous tensor
field was estimated using trilinear interpolation of the tensor elements. Start-
ing from the initial seed point, fiber paths were traced in both directions
along the principal diffusion axis. Path tracing proceeded until the FA fell
below 0.15 or until the minimum angle between the current and previous
path segments was �30°. To limit the number of false positives, fibers
that were anatomically implausible were identified visually and removed
for the rFIC–ACC connections. The rFIC–rDLPFC tracts were further
constrained by those labeled as belonging to the fronto-occipital fasciculus
using the Johns Hopkins University white matter tractography atlas
(http://www.fmrib.ox.ac.uk/fsl/data/atlas-descriptions.html).

Structural connectivity. For each subject, the mean FA and fiber density
connecting the rFIC to the ACC and the rFIC to the rDLPFC were mea-
sured, in native space. The mean FA was computed by averaging FA
values along the fiber tracts of interest. FA is a measure of organiza-
tion of the underlying white matter (Beaulieu, 2002). Fiber density is
the number of fibers per unit surface and approximates the axonal
number interconnecting the ROIs. Both FA and fiber density have
been used previously to quantify structural connectivity, particularly
to characterize white matter integrity (Hagmann et al., 2008; van den
Heuvel et al., 2008). In this study, we used mean FA and fiber density
as measures of the integrity of the fiber tracts of interest. For each
subject, the density of the fibers connecting each source to target ROI
pair was measured. The density of fibers connecting two regions u and
v was computed as follows:

Fiber density(u,v) �
2

Su � Sv �f�F(u,v)

1

l(f)
(1)

where F(u,v) is a set of all the fibers f connecting u and v, l( f ) is the length
of the individual fiber, and Su and Sv are sizes of the ROIs (Hagmann et
al., 2008).

Figure 3. Effective connectivity between nodes of neurocognitive networks. A, GCA of the six key nodes of the SN (blue), CEN (green), and DMN (yellow) in adults and children and results of a
two-sample t test contrasting directed causal network interactions in children versus adults ( p � 0.01, FDR corrected). B, Results from analysis of left-hemisphere ROIs.
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Results
Comparison of functional connectivity between network
nodes in children versus adults
To assess developmental effects on the strength of functional
coupling between the network nodes, we computed instanta-
neous partial correlations between pairs of ROIs (Fig. 1). We
found that rFIC connectivity with ACC, rDLPFC, and PCC was
stronger in adults compared with children. In addition, con-
nectivity between PCC and VMPFC was stronger in adults com-
pared with children (p � 0.01, FDR corrected) (Fig. 2A), as reported
previously (Supekar et al., 2010). Thus, both within-network (rFIC–
ACC, PCC–VMPFC) and between-network (rFIC–rDLPFC, rFIC–
PCC) connectivity patterns were stronger in the older cohort. No

ROIs showed greater functional connectiv-
ity in children compared with adults (p �
0.01, FDR corrected). These group differ-
ences in functional connectivity were en-
tirely replicated when we conducted this
analysis on an independent matched dataset
of children and adults (downloaded from
http://fcon_1000.projects.nitrc.org/indi/
pro/nki.html) (see Fig. 4A).

Examining the left-hemisphere coun-
terparts of these network nodes, we found
that the only link showing a group differ-
ence in partial correlation (adult � chil-
dren) was the left FIC (lFIC)–ACC
connection (p � 0.01, FDR corrected)
(Fig. 2B).

Comparison of effective connectivity between network nodes
in children versus adults
We used multivariate GCA to investigate causal interactions be-
tween the six network nodes. GCA detects causal interactions
between brain regions by assessing the predictability of signal
changes in one brain region based on the time course of responses
in another brain region (Goebel et al., 2003). Although there are
some concerns that systematic differences across brain regions in
hemodynamic lag can potentially lead to spurious estimations of
causality (Smith et al., 2011), recent analyses suggest that, when
applied at the group level, GCA has good control over spurious
results (Roebroeck et al., 2011; Schippers et al., 2011). Our de-
tailed simulations (Ryali et al., 2011) suggest that GCA is able to

Figure 4. Replication analysis of functional and effective connectivity between nodes of neurocognitive networks. Using data from the publicly available NKI dataset (http://
fcon_1000.projects.nitrc.org/indi/pro/nki.html), functional and effective connectivity analyses were conducted, replicating the original findings. A, Functional connectivity (partial correlation)
between network nodes in children and adults. B, Effective connectivity (GCA) between network nodes in children and adults.

Figure 5. Net outflow of effective connectivity between nodes of neurocognitive networks. Net causal outflow (out–in degree)
in the key nodes of the SN (blue), DMN (yellow), and CEN (green) are shown for adults (A) and children (B). In both groups, the rFIC
had significantly higher net causal outflow than the ACC, PCC, VMPFC, rDLPFC, and rPPC ( p � 0.01, FDR corrected).
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recover causal network structure despite
the presence of HRF delay confounds. Be-
cause other definitions and models of cau-
sality exist in the literature (Friston,
2009), we specify that our effective con-
nectivity results should be interpreted as
Granger causality results.

We performed GCA using a multivar-
iate model on the time courses extracted
from each of the ROIs. In adults, GCA
revealed significant direct causal influ-
ences from the rFIC to the ACC, rDLPFC,
rPPC, and PCC. In children, GCA re-
vealed causal influences from the rFIC to
these same regions except the PCC. Quan-
titative comparison of group differences
in the strength of causal influences re-
vealed that the strength of interactions
from the rFIC to the ACC and from the
rFIC to the rDLPFC was significantly
greater in adults compared with children
(p � 0.01, FDR corrected), as shown in
Figure 3A. Thus, both within-network
(rFIC–ACC) and between-network
(rFIC–rDLPFC) causal influences were
stronger in the older cohort. No links
showed greater causal influence in chil-
dren compared with adults.

These group differences in effective con-
nectivity were entirely replicated when we
conducted this analysis again on an inde-
pendent matched dataset of children and adults, with the exception
that an additional group difference emerged in the replication data-
set (adult � children VMPFC–PCC causal influence) (Fig. 4B).

Examining the left-hemisphere counterparts of these network
nodes, we found that the only link showing a group difference in
GCA (adult � children) was the lFIC–ACC connection (p �
0.01, FDR corrected) (Fig. 3B). Thus, the lFIC is not as strong a
driver of network dynamics as is the rFIC, as reported previously
(Sridharan et al., 2008).

We calculated the net outflow of causal interactions in both
groups to replicate previous findings suggesting that the rFIC acts
as a causal outflow hub and to explore for the first time whether
this holds true in children. Figure 5 depicts the results of a net-
work analysis computing the out–in degree for each node of the
SN, DMN, and CEN. In both children and adults, the rFIC had
significantly higher net causal outflow than the ACC, PCC,
VMPFC, rDLPFC, and rPPC ( p � 0.01, FDR corrected).

Comparison of structural connectivity between network
nodes in children versus adults
We used deterministic tractography to examine potential differ-
ences in structural connectivity between children and adults. For
children, the mean number of streamlines was 55,768 � 5263, and,
for adults, the mean was 63,609 � 6114. Thus, adults had a signifi-
cantly higher number of whole-brain streamlines (structural con-
nectivity) compared with children (p � 0.001). This finding of
generally increased whole-brain structural connectivity with age is
consistent with previous literature (Barnea-Goraly et al., 2005; Su-
pekar et al., 2009).

To further explore potential factors underlying the functional
and effective connectivity results, we examined structural con-
nectivity between the nodes that showed both differential func-

tional and effective connectivity between children and adults.
White matter tracts along the uncinate fasciculus connecting
rFIC to ACC were detected in 11 of 15 adults (73%) and 9 of 18
children (50%) examined. A one-tailed Mann–Whitney non-
parametric test was conducted to evaluate the hypothesis that
adults would show greater structural connectivity than children.
We found that, compared with adults, children showed lower
mean fiber density in the rFIC–ACC tracts (effect size, 0.63; p �
0.05). This group difference was present even after correcting for
global structural connectivity differences between children and
adults. The FA measure showed a similar trend, although the
group difference was not significant (effect size, 0.46; p � 0.1)
(Figs. 6, 7).

Tracts between the rFIC and rDLPFC were detected in 14 of 15
adults (93%) and 12 of 18 (67%) children examined. The mean
fiber density along the fronto-occipital fasciculus connecting rFIC–
rDLPFC showed a strong trend toward being lower in children
compared with adults (effect size, 0.33; p � 0.07), an effect that
again was still present after correcting for global structural
connectivity differences between children and adults. The FA
measure showed significant group differences (effect size,
0.82; p � 0.01) (Figs. 8, 9). Thus, pathways showing both reduced
functional and effective connectivity in children compared with
adults also showed absent or reduced structural connectivity as
measured with DTI.

To explore relationships between functional and structural
connectivity, we computed correlations between functional con-
nectivity (as measured by normalized partial correlation) and
structural connectivity (as measured by FA) in both the child and
adult groups for both the rFIC–ACC and rFIC–rDLPFC links.
For the rFIC–rDLPFC link, we found a significant correlation
between functional connectivity and structural connectivity in

Figure 6. Structural connectivity between nodes of SN: rFIC–ACC. DTI tractography identified white matter tracts along the
uncinate fasciculus connecting the rFIC and ACC nodes of the SN. Fibers (blue) connecting rFIC (red) and ACC (green) in one
representative individual child (A) and adult (B). C, Group differences in FA between rFIC–ACC (effect size, 0.46; p � 0.1). D, Group
differences in fiber density between rFIC–ACC (effect size, 0.63; *p � 0.05).
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the adult group (r � 0.81, p � 0.0004) but not in the child group
(r � �0.18, p � 0.58) (Fig. 10). No significant correlations were
found between functional and structural connectivity for the
adult group or the child group for the rFIC–ACC link.

Discussion
The human brain undergoes dramatic maturational changes
from childhood to adulthood, enabling increasingly sophisti-
cated cognitive abilities. Recent approaches seek to investigate
this maturation in the context of interconnected networks
(Somerville and Casey, 2010; Uddin et al., 2010a). Here we exam-
ined developmental changes of core neurocognitive networks in-
volved in salience detection (SN), externally oriented attention
(CEN), and internally oriented cognition (DMN) using func-
tional, effective, and structural connectivity measures. Func-
tional connectivity between several pairs of nodes, both within
and between networks, was significantly greater in adults com-
pared with children. Specifically, rFIC–ACC and PCC–VMPFC
(within-network) and rFIC–rDLPFC and rFIC–PCC (between-
network) coupling was greater in adults compared with children.
The strength of directed interactions for a subset of these node
pairs (rFIC–ACC and rFIC–rDLPFC) was greater in adults com-
pared with children, a finding confirmed in an independent da-
taset. Thus, the causal influence of the rFIC on other brain areas
becomes stronger with development, even though the rFIC can
already be identified as a causal outflow hub in children. Struc-
tural connectivity along both rFIC–rDLPFC and rFIC–ACC
tracts was lower in children compared with adults.

Development of functional and effective connectivity across
core neurocognitive brain networks
Although global functional brain organization is similar in chil-
dren and adults, at the subnetwork level, connectivity undergoes
significant reorganization with development (Fair et al., 2009;
Supekar et al., 2009). Adults have weaker short-range functional
connectivity and stronger long-range functional connectivity
than children (Kelly et al., 2009), and the organization of func-
tional brain networks shifts from local connectivity to a more
distributed architecture with development (Fair et al., 2007; Su-
pekar et al., 2009). Here we show, for the first time, regional
specificity in the development of strengthened within- and
between-network relationships. Critically, rFIC connectivity dis-
played the most dramatic developmental effects. lFIC connectiv-
ity patterns, although similar, were weaker and less robust. We
have recently proposed that the rFIC is in a unique position to
facilitate bottom-up access to the attentional and working
memory resources of the brain, functioning to detect salient
environmental or endogenous events and initiate switching
between the DMN and CEN (Menon and Uddin, 2010). The
rFIC is situated at the interface of the cognitive, homeostatic,
and affective systems of the brain, providing a link between
stimulus-driven processing and regions involved in monitor-
ing the internal milieu (Craig, 2009). The fact that this region
shows both increased integration with other components of
the SN (ACC) and increased causal outflow to other control
network nodes (DLPFC) suggests that it may play a critical
role in the development of functions attributed to the SN,

Figure 7. Structural connectivity between nodes of SN: rFIC–ACC in eight individuals. DTI tractography results show that tracts along the uncinate fasciculus can be reliably identified in individual
subjects. Tracts were detected in 11 of 15 adults (73%) and 9 of 18 children (50%). Four children and adults are shown. The first row shows a sagittal slice viewed from the right, whereas the second
row shows a coronal slice viewed anteriorly.
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including attention allocation and cog-
nitive control (Menon and Uddin,
2010). While a previous study demon-
strated age-related increases in the
strength of functional connectivity be-
tween rFIC–ACC (Fair et al., 2007),
there have been no previous investiga-
tions of the development of effective
and structural connectivity along this
pathway. Strikingly, the rFIC was the
only node that underwent within- and
between-network functional and effec-
tive connectivity changes across the age
groups examined. This finding was en-
tirely replicated in an independent dataset
of matched adults and children, despite dif-
ferences in scanner model and acquisition
parameters.

Previous studies have shown devel-
opmental changes in the strength of
functional connectivity along the ante-
rior and posterior nodes of the DMN
(Supekar et al., 2010; Gordon et al.,
2011). The current study addresses the
complex issue of how connections both
within and between key networks ma-
ture with development in ways that can
produce flexible and adaptive behavior.

Traditionally, ventrolateral prefrontal
cortex has been associated with cognitive
control (Petrides, 2005). However, recent
work has shown a primary and critical
role for the rFIC in control processes. A meta-analysis of neuro-
imaging studies of motor inhibition and reflexive reorienting
found that the right anterior insula/frontal operculum was the
most active region across studies (Levy and Wagner, 2011).
Transcranial magnetic stimulation evidence suggests that the
frontal operculum causally exerts influence over posterior areas
in the context of selective attention (Higo et al., 2011). Causal
links from the rFIC to dorsal attention and DMNs across exper-
imental states (Gao and Lin, 2011), as well as causal links ema-
nating from the rFIC during resting states (Deshpande et al.,
2011) have also been reported, supporting the idea that rFIC
regulates other networks for effective resource allocation and
maintenance of appropriate task-relevant behavioral states.
What we have termed the salience network is also referred to as
the cingulo-opercular network (Dosenbach et al., 2007), but it is
generally agreed on that an independent network comprising
nodes in the rFIC and ACC can be identified across both resting
(Seeley et al., 2007) and task states (Medford and Critchley,
2010).

In a previous study using ICA and “causal density” estimates
to characterize functional networks in participants ranging in age
from 12 to 30 years, Stevens et al. (2009) reported that mutual
influences among networks decreased with age, reflecting
stronger within-network connectivity and more efficient
between-network influences with development. They also found
age-related reductions in the strength of interaction between ex-
ecutive control circuits and the DMN and suggest that more seg-
regated functioning of these networks may allow greater
processing flexibility (Stevens et al., 2009). The current work ex-
amines causal interactions between network nodes rather than

entire networks (Smith et al., 2011), providing insight into mat-
uration of specific connections with development.

Development of structural connectivity across core
neurocognitive brain networks
To explore structural changes related to the observed functional
changes, we conducted targeted DTI tractography analyses. The
strength of functional connectivity between two nodes is posi-
tively correlated with structural connectivity (Hagmann et al.,
2010), although functional connectivity can exist independent of
structural connectivity (Uddin et al., 2008; Honey et al., 2009).
Although there have been reports combining tractography and
functional connectivity to study development (Supekar et al.,
2009; Hagmann et al., 2010), no previous studies have used fiber
tracking to examine the trajectory and integrity of rFIC-related
tracts as they develop between childhood and adulthood. Tracts
connecting the rFIC to rDLPFC run along the fronto-occipital
fasciculus, involved in visuospatial processing and attention,
whereas those connecting the rFIC to ACC run along the unci-
nate fasciculus, a ventral limbic pathway critical for processing
novel information and enabling emotion– cognition interaction
(Schmahmann et al., 2007; Mori et al., 2009). For both rFIC–
rDLPFC and rFIC–ACC pathways, functional connectivity in-
creases were paralleled by structural connectivity increases with
development. Although it is unlikely that new axonal fiber tracts
are created between the ages examined, it is known that structural
maturation of white matter continues during adolescence (Paus,
2010). Increased fiber density and FA may reflect increased my-
elination (Rademacher et al., 1999), changes in axonal diameter,
and the relative alignment of individual axons and their packing
density (Paus, 2010).

Figure 8. Structural connectivity between nodes of SN and CEN: rFIC–rDLPFC. DTI tractography identified white matter tracts
along the fronto-occipital fasciculus connecting rFIC and rDLPFC. Fibers (yellow) connecting rFIC (red) and rDLPFC (blue) in one
representative individual child (A) and adult (B). C, Group differences in FA between rFIC–rDLPFC (effect size, 0.82; *p � 0.01). D,
Group differences in fiber density between rFIC–rDLPFC (effect size, 0.33; p � 0.07).
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To our knowledge, no previous study has examined structural
connectivity of the rFIC–rDLPFC pathway. We found a signifi-
cant correlation between functional and structural connectivity
in this pathway in adults but not in children. This finding is in line
with a small but growing body of literature showing that struc-

ture–function relationships become more stable and strengthen
with development (Hagmann et al., 2010; Supekar et al., 2010;
Gordon et al., 2011). We did not observe a similar dissociation for
the rFIC–ACC tract, raising the possibility that the development
of specific structural and functional connections of the rFIC may
follow independent developmental trajectories.

Only one previous study examined both structural and func-
tional connectivity of the rFIC–ACC pathway, reporting that
structural links are detectable in some (38%) adults who demon-
strate functional connectivity between these regions (van den
Heuvel et al., 2009). Our study is the first to identify the ventral
uncinate fasciculus pathway linking the rFIC–ACC nodes of the
SN and to demonstrate it is relatively immature in 7- to 9-year-
old children.

Implications for neurodevelopmental disorders of
connectivity
The rFIC pathways identified here are of particular interest in
neurodevelopmental disorders involving disrupted connectivity,
such as autism spectrum disorders (ASDs) (Geschwind and Lev-
itt, 2007). In neurotypical adults, functional connectivity be-
tween the anterior insula and ACC is related to scores on a
measure of social responsiveness (Di Martino et al., 2009). Par-
ticipants with ASD show decreased functional connectivity be-
tween the rFIC and ACC (Ebisch et al., 2011). Thus, atypical
development of this critical pathway may contribute to altered
social attentional processes associated with autism, an open ques-
tion for future research (Uddin and Menon, 2009).

Figure 9. Structural connectivity between nodes of SN and CEN: rFIC–rDLPFC in eight individuals. DTI tractography results show that tracts along the fronto-occipital fasciculus can be reliably
identified in individual subjects. Tracts were detected in 14 of 15 adults (93%) and 12 of 18 (67%) children. Four children and adults are shown. The first row shows a sagittal slice viewed from the
right, whereas the second row show a sagittal slice viewed dorsally.

Figure 10. Relationship between functional connectivity and structural connectivity. In
adults, there was a significant correlation between functional connectivity (as measured by
normalized partial correlation) and structural connectivity (as measured by FA) for the rFIC–
rDLPFC link (r � 0.81, p � 0.0004). There were no other significant correlations between
functional and structural connectivity in the adults or children.
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Conclusions
The rFIC has been shown to play a causal role in switching be-
tween the CEN and the DMN in adults (Sridharan et al., 2008).
This process is likely involved in switching attention to salient
exogenous and endogenous events to produce appropriate be-
havioral responses. We found that, in 7- to 9-year-old children,
the influence of the rFIC on nodes within the SN and CEN is
weaker than in adults, possibly as a result of immature anatomical
connectivity between the rFIC and other network nodes. Nota-
bly, these findings were also observed in an independent dataset
of matched children and adults.

In the current study, we conducted a hypothesis-driven anal-
ysis of three specific neurocognitive networks. However, ICA of
resting-state fMRI data often reveal multiple functional net-
works, including the three examined in the current study and
several others associated with sensory, motor, and other systems
(De Luca et al., 2006; Stevens et al., 2009). Future work examining
all of these networks may reveal an even more detailed picture of
changes in network configuration and rFIC connectivity during
development. Our findings have important implications for un-
derstanding the development of increasingly sophisticated cog-
nitive control abilities subserved by this dynamic multi-network
system (Menon and Uddin, 2010) and point to potential loci of
dysfunction that may be targeted for additional investigation in
studies of neurodevelopmental disorders involving the rFIC, in-
cluding autism.
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