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Abstract Defining “forest land” is a complex is-
sue and has been discussed for decades. Today, a
confusing multitude of definitions of forest land
are in use making comparison of forest area
figures difficult. But currently, comparability is
receiving much attention when it comes to install
market mechanisms for ecosystem services. Min-
imum crown cover is among the most frequently
employed criteria of forest definitions. However,
the size of the reference area on which the crown
cover percent is to be measured is usually not
defined. But how does a change of the size of
the reference area affect the derived forest cover?
In this study, we analyze the interactions of the
crown cover threshold and the size of the refer-
ence area. We start with analyzing the interac-
tions using a simple geometric model of the forest
edge. Then, we extend the analysis by simulating
artificial landscapes where we study how the in-
teraction is affected by different degrees of for-
est fragmentation, crown cover proportion, and
spatial resolution of the data source used. The
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simulation showed that large differences in for-
est cover (>50 %) may result for a fixed crown
cover threshold value, just by changing the size of
the reference area, where the magnitude of this
effect is a function of the chosen threshold value
and the spatial configuration of the crowns. As
a consequence of the findings, we see an urgent
need to complete forest definitions by defining a
reference area in order to reduce uncertainties of
forest cover estimates.
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Introduction
Background

Forests are receiving much attention in various
functions; among them are their role as carbon
sinks and sources, as home to the greatest terres-
trial biodiversity, and as a basis for the livelihood
of many rural dwellers. Forests are in the core of
international policy processes where reliable data
and information become a crucial issue for policy
formulation and decision making. For example,
the United Nations Framework Convention on
Climate Change (UN-FCCC) requires signatory
nations to trace and report their greenhouse gas
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emissions which include the forestry sector where
monitoring of the area of forest lands and its
changes is a major concern. Currently, the Con-
ference of the Parties to UN-FCCC is requesting
the Subsidiary Body for Scientific and Techno-
logical Advice to develop necessary modalities
for measuring, reporting, and verifying (MRV)
anthropogenic forest-related emissions including
forest area changes (UNFCCC 2010). Changes in
the area of forest land can only be determined and
monitored when robust, transparent, replicable,
and long-term national forest monitoring systems
are in place (Holmgren et al. 2008). Here, the
seemingly simple question of the definition of for-
est land becomes crucial: how can “forest land” be
defined in an operational and meaningful manner,
such that forest and non-forest land can efficiently
be distinguished and that the corresponding ar-
eas can be delineated unambiguously (see Colson
et al. 2009; Kleinn et al. 2002; Mathys et al. 2006)?
For clarity, throughout this paper, we make the
distinction between “forest” (being a set of trees
in a certain number, density, and spatial arrange-
ment) and “forest land” (the land where the set
of trees that constitute a forest is located). To
simplify matters, we use the term “forest cover”
equivalent to “forest land cover.”

For many decades, forest politicians, forest
ecologists, forest monitoring experts, silviculture
experts, and probably other experts have come up
with a multitude of forest definitions for different
purposes: legal definitions for issues such as land
allocation and tax assessment, ecological defini-
tions for habitat studies, silvicultural definitions for
management and stand treatment purposes, as well
as definitions for inventory and mapping for both
ecological and production management purposes.
The most comprehensive list of definitions of forest
land of all kinds is probably that by Lund (2011).

In the current discussion on instruments to
monitor changes in forest lands and to foster car-
bon sequestration on forest lands, the issue of
defining forest has gained new momentum. Ac-
cording to the IPCC guidelines (Penman et al.
2003), forest carbon balances are derived from
two major inputs: (1) emission factors (e.g., car-
bon per unit area) and (2) activity data (e.g., forest
area changes). As a consequence, the assessment
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of the area of forest land is considered an essential
prerequisite for quantifying forest carbon dynam-
ics, where a meaningful further subdivision into
different forest types would be a next step. This
is especially relevant when it comes to payment
schemes and to the establishment of market mech-
anisms as the definition of forest land will deter-
mine the countervalue of the traded certificates.

Elements of forest definitions

Criteria used in forest definitions can be broken
down to quantitative and qualitative ones (Kleinn
1991, 1992, 2001; Lund 2002; Vidal et al. 2008)
which refer to both characteristics of forest and
of forest land. Usually, a comprehensive forest
definition includes threshold values for the fol-
lowing quantitative variables: (1) minimum area,
(2) minimum crown cover percent, (3) minimum
tree height, and (4) minimum width. Qualitative
criteria specify, for example, how to deal with
special features such as roads, creeks, and clear-
cuts within otherwise tree-covered areas; whether
plantation forests and/or plantations of “non-
forest” trees (e.g., fruit trees, rubber trees) are to
be included; whether palm and bamboo vegeta-
tion should count as forest land; and how to deal
with tree cover in the presence of other land uses.

Here, we focus on the criterion crown cover
percent, which is the proportion of the land cov-
ered by the vertical projection of tree crowns,
overlaps not counted (Geschwantner et al. 2009;
Jennings et al. 1999). It is one of the most com-
monly used criteria in national and international
forest definitions with threshold values ranging
from 10 to 100 % (see Lund 2011). To observe the
variable crown cover percent, two data sources
are commonly employed, either individually or
combined: (1) field observations and (2) remotely
sensed observations. These two data sources are
briefly discussed below.

Two major data sources to quantify crown cover:
(1) field observations and (2) remotely sensed
observations

Sample-based field inventories are a common ap-
proach to directly observe tree and forest vari-
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ables. Wherever possible, the forest/non-forest
decision is made before going to the field in or-
der to save resources. However, if such a deci-
sion cannot be made a priori, the criteria of the
forest definition need to be applied in the field;
this includes the observation of crown cover at
the sample location. Determining crown cover
percent in the field, however, is difficult. There
are numerous, time-consuming field-based tech-
niques including line transect sampling (Gregoire
and Valentine 2008; Ko et al. 2009), sighting
tubes (Korhonen et al. 2006), spherical densit-
ometers (Lemmon 1956), and direct measure-
ment of tree crown dimensions. Terrestrial remote
sensing is also applied, either from hemispherical
photographs (Korhonen and Heikkinen 2009) or
from terrestrial laser scans (Korhonen et al. 2010).
However, given the geometrical properties (the
central perspective) of these techniques, canopy
closure is observed rather than canopy cover as
pointed out by Jennings et al. (1999).

From optical remote sensing, only a lim-
ited number of variables can directly be ob-
served, namely, the wavelength and intensity
of reflected electromagnetic radiation integrated
over a defined area on the ground (the so-called
IFOV = the ground-projected “instantaneous
field of view” = the ground area covered by one
pixel) for a defined number of spectral ranges, and
the relative position of that pixel. All other vari-
ables, including crown cover, are not directly ob-
served but modeled on the basis of these observa-
tions, their variability, and spatial characteristics.
These characteristics depend on the spatial reso-
lution of the sensor used, among other criteria.
Strahler et al. (1986) distinguished two different
qualities of spatial resolutions when observing
specific objects of interest (e.g., tree crowns): low
resolution (L-resolution) where the pixel size is
larger than the objects of interest and high reso-
lution (H-resolution) where pixel size is smaller.
Many remote sensing systems used for large-
area forest cover monitoring on a wall-to-wall
basis are in the L-resolution domain, including
the 1-km resolution data of Advanced Very High
Resolution Radiometer (DeFries et al. 2000),
the 250- and 500-m resolution data of Moderate
Resolution Imaging Spectroradiometer (Hansen

et al. 2002, 2003), the 300-m resolution data
of Envisat’s Medium Resolution Imaging Spec-
trometer (Berberoglu et al. 2009), or the 30-m
resolution data of Landsat (McRoberts 2006).
Individual tree crowns cannot be identified in
these images nor can the ratio between ground
and crown pixels be directly observed. Here, the
crown cover percent for a pixel is inferred from
the intensity of vegetation response over the pixel
area. The potential of analyzing individual tree
crowns for large areas arises from a new gener-
ation of H-resolution satellite sensors with pixel
sizes in the meter (e.g., RapidEye, Ikonos, SPOT
5, TerraSAR-X, Radarsat) and submeter (e.g.,
Worldview 1&I1, Quickbird, Ikonos) range. Using
H-resolution sensors, individual tree crowns can
be identified and crown cover measured; this is
contrary to the application of L-resolution sen-
sors. Therefore, when changing from L- to H-
resolution imagery for forest mapping, not only
the spatial resolution is relevant but also a sec-
ond scale component needs to be considered: the
reference area which will be elaborated in the
following section.

The reference area—a critical scale issue
for measuring crown cover percent

A dimensionless sample point is either covered by
a tree crown or not. To determine a ratio (crown
cover percent), it is necessary to define a refer-
ence area around that point. The area around a
point on which a value of a variable is determined
is known from geo-statistics as the support area
(Matheron 1984) and such a variable is called a
regionalized variable. It is well established that the
size of the support area determines the distribu-
tion statistics of that variable (Myers 1994). The
crown cover is such a regionalized variable and its
support area is the reference area on which the
crown cover is measured. But how is the reference
area defined in a forest inventory?

The size and shape of the reference area are im-
plicitly determined when measuring crown cover
percent: if it is measured in the field using a dot
grid, the plot size on which the dot grid is laid
out determines the reference area (see Korhonen
et al. 2006). If terrestrial remote sensing is used,
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e.g., hemispheric photographs, view angle of the
devices and stand height define the reference
area (see Korhonen and Heikkinen 2009). In L-
resolution remote sensing imagery, the pixel size
is larger than a tree crown. Thus, the spectral
response represents a mixture of tree crowns
and other land cover classes and therefore crown
cover cannot be measured. A common approach
to estimate crown cover in L-resolution data is
to build a model which predicts crown cover per-
centage for each pixel on the basis of the spec-
tral signature (e.g., Hansen et al. 2002). Using
such a model approach, the size of the pixel it-
self defines the reference area for crown cover
estimation. In H-resolution imagery, the pixel size
is smaller than the tree crowns. Thus, a pixel is
either covered by tree crowns or not which results
in a binary classification. For simplification, we
neglect here the confounding effect from mixed
pixels at the edge of tree crowns. Therefore, a
reference area larger than one pixel, usually a
square window of pixels, needs to be defined. That
means that, in H-resolution data, the reference
area is different from the spatial resolution and in-
troduces a second scale component which needs to
be considered and defined when observing crown
cover percent.

The effect of spatial resolution on image inter-
pretation in the L-resolution domain has been a
subject of numerous studies in the context of land
cover mapping (Atkinson and Curran 1995; Nel-
son et al. 2009; Zheng et al. 2009; Woodcock and
Strahler 1987). Mareceau and Geoffrey (1999)
give a detailed literature overview of the effect
of changing the support to which they refer to as
“modifiable area unit problem” MAUP. Never-
theless, an analysis of the effect of the reference
area size in H-resolution data when determining
a crown cover percent appears not to have been
the subject of specific research. The only studies
in the forestry context so far appear to be those
of Kleinn (1991, 2001) who observed on simple
examples how a variation in the reference area
size affects the resulting forest cover estimate. He
found an interesting and potentially substantial
impact of the reference area that interacted with
the threshold value for minimum crown cover and
with forest spatial pattern.
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Objectives

Over the past decade, there have been intensive
discussions concerning the compatibility of forest
definitions (Lawrence et al. 2010; McRoberts et al.
2010; Vidal et al. 2008). While much attention is
given to the definition of threshold values for the
quantitative criteria in forest definitions (Neeff
et al. 2006; Nelson et al. 2009; Sasaki and Putz
2009; Verchot et al. 2007; Zomer et al. 2008), there
is hardly any description nor definition of the
corresponding measurement rules, which usually
is an integral part of a definition when used in an
inventory protocol.

In the present study, we analyze such a mea-
surement rule for the commonly used criterion
“minimum crown cover” which is the size of the
reference area. We perform an in-depth analysis
of the relations between minimum crown cover
and the size of the reference area. We are inter-
ested in the measurement process of these vari-
ables from a remote sensing perspective with the
following specific research questions:

1. How do the variables “crown cover percent”
and “size of the reference area” interact
when forest cover is estimated in H-resolution
images?

2. Is this interaction influenced by (a) the com-
position of the landscape, (b) the fragmenta-
tion status of the landscape, and (c) the spatial
resolution at which the landscape is observed?

3. Can the interaction effects from crown cover
percent and size of the reference area be
modeled in order to predict changes in the
estimated forest cover if the values of one or
both criteria are changed?

We structured the text as follows: First, we
illustrate the interaction of the size of the ref-
erence area with a simple geometrical model.
Then, we use artificially generated tree crown
cover maps with different total amount of crown
cover, fragmentation patterns, and spatial reso-
lutions to study potential impacts on the inter-
action of crown cover threshold and size of the
reference area. In a last step, we build linear
models to predict differences in forest cover as a
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function of the reference area size and crown
cover threshold.

Methods
Generating neutral landscapes for simulation

To study the effects of changes in reference area
size on forest land figures in complex landscapes,
we use artificial maps with only two classes: crown
and non-crown. Three factors are systematically
varied which constitute major map properties: (1)
the proportion of crown pixels (p), (2) the spatial
pattern of crown pixels («), and (3) the spatial
resolution.

Gaussian random fields are a convenient start-
ing point for spatial models of binary data as spa-
tial dependencies can easily be modified through
the covariance model, and simulation algorithms
are available in the statistical software package R
(Schlather 2001). To vary the spatial distribution
of the tree crowns, we generated landscapes with

Fig. 1 Examples of the
four binary landscape
types used in the
simulations (black =
crown pixel, white =
non-crown pixel) with
two levels of overall
crown cover (p) and two
types of spatial pattern
(characterized by «): 1,
compact with large
proportion of crown
pixels [« = 1.4, p = 0.7];
2, compact with small
proportion of crown
pixels [ = 1.4, p = 0.3];
3, highly fragmented with
large proportion of crown
pixels [« = 0.7, p = 0.7];
and 4, highly fragmented
with small proportion of
crown pixel

[ =0.7, p=0.3]

a=1.4

a=0.7

70% Crown Pixel

distinctly parameterized covariance models. For
all landscapes, we used a one-parametric form of
the generalized Cauchy model as the covariance
model (Eq. 1). We selected the Cauchy model,
as it leads to realistic-looking crown cover maps
(see Fig. 1) and allows to control the degree of
fragmentation using one parameter only.

C(h) = (1 + |h|*) "« (1)

This model describes the covariance C(h) of two
observations at distance £, where o defines the
fractal dimension D according to the Hausdorff
dimension (Gneiting and Schlather 2004). The
fractal dimension of the graph of the corre-
sponding Gaussian random field equals 3 — «/2
(Gneiting and Schlather 2004). It is a measure of
patch complexity and an indicator for the frag-
mentation status of the landscape. Using low «-
value results in more fragmented and scattered
landscapes, high « values produce more compact
shapes with larger patch sizes and smoother edges.
In this study, we include “highly fragmented land-

30% Crown Pixel
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scapes” with an « value of 0.7 and “compact land-
scapes” with an « value of 1.4.

For simulating different total numbers of crown
pixels p in the landscape, the continuous Gaussian
random fields were transformed into binary im-
ages (crown/non-crown), using the 0.3 and 0.7
quantile of the normal distribution, resulting in
landscapes with 30 and 70 % crown pixels, re-
spectively. In total, a number of n = 100 different
maps (also called “repetitions” in what follows)
were generated for each of four basic landscape
types (see Fig. 1).

To analyze the effects of different spatial res-
olutions, we artificially degraded the resolution
in three steps by aggregating the crown maps
using a majority rule within a 3 x 3 window. We
started with maps of 2,700 x 2,700 pixels (high
resolution) and degraded them to 900 x 900 pixels
(medium resolution) and 300 x 300 pixels (low
resolution). However, we are aware that changing
the spatial resolution of a true sensor would also
result in a different spectral pattern. A simple
aggregation as in the simulation will, therefore,
not fully mimic the effects of changes in the spa-
tial resolution of sensors and the corresponding
results need to be interpreted with care.

Workflow for the forest/non-forest distinction

Figure 2 illustrates the image processing workflow
for generating forest cover figures from simulated
binary crown maps applying the minimum crown
cover criterion. We started with the binary crown/
non-crown image assuming that the maps are an
error-free classification into tree crown and non-
tree crown pixels. We are aware that, in practice,
image classification issues make that procedure
more difficult, and more criteria would need to
be considered than only minimum crown cover.
However, for this study, we aim to analyze the
impact of minimum crown cover on forest cover
estimates in an isolated manner.

From the binary crown maps, a decision has
to be made for every pixel whether it is forest
or non-forest, which is done in two steps. In the
first step, the crown cover percent is determined
in a reference area of a defined number of pixels
around the pixel in question. The crown cover
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percent is the ratio of crown pixels to total number
of pixels in that area. This proportion is assigned
to the pixel in question, and the same procedure
is applied to all pixels using a moving-window
operator. The result is a map of proportions in a
first step, which we refer to as crown cover density
(CCD) maps. Pixels with reference areas that are
not completely within the image boundaries were
excluded from further analysis here. As different
map sizes can influence the results, we clipped all
density maps using the largest reference area size
so that all forest maps had the same extent.

Ten square reference areas with a side length
of 3,7,11, 15,19, 23,27, 31, 35, and 39 pixels were
used. This size refers to the low-resolution maps
(300 x 300 pixels) and was then adapted to the
higher resolution levels so that it represented the
same original extent in each crown map: for ex-
ample, the reference area size of 3 x 3 =9 pixels
in the low resolution was increased to 9 x 9 = 81
pixels for medium resolution and to 27 x 27 = 729
pixels for high-resolution maps.

The second step was assigning a threshold to
the CCD maps, so that the minimum crown cover
criterion can easily be applied to decide whether
a pixel qualifies as forest or not. The forest edge

Binary Crown / non-
Crown Image

Moving Window
Operator

Crown Cover Density
\ETH

Forest Definition

Minimum Crown

Reference Area
Cover

Thresho—lding/

Forest cover %

Forest Cover Map

I

Fig. 2 Workflow for classifying forest/non-forest based on
the minimum crown cover criterion when analyzing binary
crown cover maps
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then follows the line where crown cover per-
cent falls below the threshold given by the for-
est definition. To analyze interactions between
the threshold value and the size of the reference
area, we produced binary forest maps using ten
different minimum crown cover thresholds ¢ (0.1,
0.2,...,1).

In the end, the simulations included n = 100
random repetitions of binary crown maps for each
of the four landscape types that were observed
at three resolution levels and were classified uti-
lizing 10 sizes of reference areas. This resulted
in 12,000 CCD maps (100 repetitions x four
landscape types x three resolutions x 10 sizes
of the reference area). From these CCD maps,
forest maps with 10 different minimum crown
cover threshold values were generated resulting
in 120,000 forest maps in which the target vari-
able forest cover was observed. Analyzing large
raster datasets with moving-windows techniques
is computationally extremely demanding as the
neighborhood of each pixel in a raster needs to
be analyzed separately. The number of n = 100
repetitions as used here is a compromise between
accuracy and available resources. All simulations
and the analysis were done using the open source
software R (R Development Core Team 2011)
and GRASS (GRASS Development Team 2011).

Predicting effects based on changes
in the reference area size

Previous studies from Kleinn (2001) indicated sys-
tematic effects of crown cover threshold values
and corresponding reference area sizes on forest
cover estimates. In addition to describing these
effects, we were interested whether they can be
modeled and how a model would perform for
different landscape patterns. As a starting point,
we randomly selected one of the n = 100 maps
and fitted a simple linear model with the threshold
value ¢ as the only predictor (see Eq. 2). We
repeated this for each of the 10 sizes of reference
areas and for each of the four landscape types (as
described in Fig. 1). In total, 40 linear models were
fitted by least squares regression.

y=pB+p xt+e 2)

The basic geometric simulation (see Section
“Basic geometric simulations of the forest edge”)
showed that the size of the reference area interacts
with the value of t. For straight forest edges and
t = 0.5, no effects of the reference area size are
expected, whereas for r # 0.5, the effect of the
reference area size is increasing with increasing
values of |t — 0.5]. Based on this observation, we
extended the previous model by including the size
of the reference area using a term which reflects
the observed interaction. Equation 3 gives such a
model where y;, the forest cover in landscape i, is
a function of the crown cover threshold ¢ and the
reference area size r. fy, B1, and B, are regression
coefficients and ¢; is the residual error.

Yi=Bo+ B xt+ B xr(05—1)+¢ 3)

To compare the extended model (Eq. 3) to the
basic model (Eq. 2), we fitted it to the same land-
scape and evaluated the quality of both models
based on residual plots and the coefficient of de-
termination. In the second step, we analyzed the
predictive power of the extended model (Eq. 3).
Therefore, we pooled all landscapes of one type
and fitted one global model where we evaluated
the goodness of fit using the coefficient of deter-
mination.

Results
Basic geometric simulations of the forest edge

To examine the effects of implementing a forest
definition with different sizes of reference areas,
we studied two simple spatial configurations of
a forest edge as shown in Fig. 3. On the left-
hand side, a straight line separates crown covered
(dark) from non-crown covered land (light). On
the right-hand side, there is an irregular boundary
separating crowns from open land. We now ap-
plied different reference areas (moving windows)
to these situations, moving them along the tran-
sect as shown in Fig. 3 from crown covered to
the open area. The crown cover percentage in
the reference areas gradually change from 100
to 0 %, and this change is different for varying
sizes of reference areas and for both shapes of the
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boundary as depicted by the gradient lines in Fig. 3
(bottom).

For the straight forest edge, all gradient lines
intersect at a crown cover threshold ¢ = 0.5. With
the approach presented here, a pixel qualifies as
forest if the surrounding reference area complies
with the minimum crown cover criterion; for ¢ >
0.5, the forest edge “moves into” the crown cov-
ered land, and for ¢ < 0.5, it is shifted outside
the crown covered land. The displacement of the
forest edge is in this case a linear function of
the size of the reference area. For an irregular
forest edge, as shown in the right-hand side of
Fig. 3, the relation between ¢ and the reference
area follows an inversely S-shaped curve; the lines
for the different reference areas do not intersect at
t = 0.5 and they do not have one single common
intersection.

Fig. 3 Schematic plot of a
straight (left) and
irregular (right) forest
edges in a map (fop) and
crown cover gradient at
the marked transects for
three different square
reference areas (bottom).
The fine dotted lines give
an example of how to
read this graph: for a
minimum crown cover of
0.1 and a reference area
of 5 x 5 units, the vertical
fine dotted line points to

Crown Map

This basic geometric model illustrates the effect
of the size of the reference area and points to
landscape spatial configuration as an important
factor when defining forest by a minimum crown
cover threshold.

Edge effects in artificial crown maps

The simulations on artificial crown maps
confirmed what has been observed in the simple
geometrical model and allows a more detailed
insight into the effects of relevant factors. The
CCD and forest/non-forest maps shown in Fig. 4
were produced from the same crown map using
two different reference area sizes, but identical
t =0.1. Figure 4 shows that both forest cover
and spatial pattern are affected. As expected,
we observed that, for large reference areas, the

Crown Map
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Fig. 4 Results of forest
cover mapping for a
highly fragmented
landscape (¢ = 0.7) with
30 % crown pixels and a
minimum crown cover
threshold of t = 0.1

Fig. 5 Box-whisker plots
of forest cover for
different reference areas
and crown cover
thresholds for a highly
fragmented landscape

(¢ =0.7,top row) and a
compact landscape

(o = 1.4, bottom row).
The horizontal line marks
the average proportion of
crown pixels in the crown
maps. The box marks the
upper and lower quartile
with whiskers extending
to the most extreme data
points but no more than
1.5 times the interquartile
range
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number of patches was significantly lower as an
increasing size of the reference area leads to a
generalization of the forest cover maps.

Figure 5 gives the results more explicitly by
summarizing the simulation results for n = 100
landscapes. For low threshold values (1 =0.1),
forest cover increases with increasing reference
size. For high threshold values (1 = 1.0), the op-
posite trend is observed. These trends were also
described by Kleinn (1991, 2001) in general terms.
For the threshold value of t = 0.5, the forest cover
approximates the true proportion of crown pixels.
It has to be mentioned that due to the clipping
of the CCD maps as described in section “Work-
flow for the forest/non-forest distinction”, there
is a difference between the true proportion of
crown pixel in the studied crown maps and in the
simulated random fields (30 and 70 %). The true
proportion of crown pixel in the crown maps is
74.6 % when averaged over all landscapes. For
t = 0.5, changes in the size of the reference area
resulted in only minor changes of forest cover
values. Similar trends can be observed for maps
with a lower crown cover of 30 % (results not
given here).
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Fig. 6 Differences of forest cover resulting from sub-
tracting low-resolution results from high-resolution results.
Left: For highly fragmented landscapes. Right: For compact
landscapes. Obs.: Due to the very small overall differences,
the y-axes have been stretched considerably
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Fig. 7 Fitted linear models (Eq. 2) for each of the 10 sizes
of reference are plotted for landscapes with 30 % crown
cover (bold lines) and 70 % crown cover (dashed lines) with
a highly fragmented spatial pattern (left) and a compact
pattern (right). The order of the regression lines is given
at the right margin, where the size of the reference area
refers to the side length of a squared reference area given
in number of pixels

Comparing fragmented (top row) and compact
(bottom row) landscapes in Fig. 5, the following
effects of spatial configuration are observed: (1)
the effect of the crown cover threshold on forest
cover is greater in highly fragmented maps than
in compact maps, (2) the effect of the size of the
reference area on forest cover is greater in highly
fragmented landscapes than in compact ones, and
(3) the effect of the size of the reference area
follows a curve shape for the fragmented maps
and a close to straight line for the compact maps.

Effect of spatial resolution

To analyze the effects of spatial resolution, we
compared the forest cover resulting from low-
and high-resolution crown maps. Only minor
differences were observed in total forest cover,
with a mean difference of 0.7 % for all forest
maps. A maximum difference of 26.1 % was
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found for t = 1.0 (not presented in Fig. 6) and
a minimum of 0 %. The box—whisker plots in
Fig. 6 give the distribution of the differences in
forest cover as a function of ¢ indicating that the
effect of the resolution depends on the threshold
value and on the degree of fragmentation. For
compact landscapes (Fig. 6, right), no differences
are observed. Even though the differences are
small for highly fragmented landscapes, a trend is
evident (Fig. 6, left). For ¢ < 0.5, differences are
positive, indicating that more pixels are classified
as forest in the high-resolution images than for
low-resolution images. For ¢ > 0.5, the contrary is
observed. Interestingly, t = 0.5 again indicates a
turning point, here for the spatial resolution, with
no significant differences between forest covers
estimates.

Predicting effects based on changes of reference
area size

Predicting differences in forest cover as a func-
tion of the crown cover threshold value and the

reference area size may be an important tool for
making forest cover figures comparable and to
illustrate the relevance of this topic. Motivated
by the findings from the geometric model and
the analysis of artificial crown maps, we were
interested to analyze whether such a prediction
can be done by a simple model. In the first step
to build a prediction model, we fitted 40 simple
linear models (Eq. 2) using the simulation results
of one randomly selected crown map.

The regression lines in Fig. 7 show that an
increase in ¢ leads to a decrease of the forest cover
for all studied situations. This effect, indicated by
the slope of the regression line, is highest for large
reference areas and for highly fragmented crown
maps. For all models, both regression coefficients
were significant at a p level of 5 %.

All regression lines intersect at a ¢ value of
approximately 0.5 which indicates a small effect
of the reference area size for t = 0.5 but increasing
effects for values departing this intersection point.

The effect which was already observed in the
simple geometric model is also present in the

Fig. 8 Residual plots of Alpha 0.7 Alpha 1.4
the fitted basic model o 8
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empirical spatial analysis. In the second step to-
wards formulating a prediction model, we used
this observation and extended the basic model
(Eq. 2) by a term which incorporates this specific
interaction between the reference area and the
crown cover threshold (Eq. 3). To evaluate the
model quality, we analyzed the residuals as shown
in Fig. 8, where the residuals of both models
(Egs. 2 and 3) are compared for compact (right)
and highly fragmented (left) landscapes. A clear
horizontal pattern of the residuals from the basic
model (Eq. 2) can be observed, which reflects the
missing term for the size of the reference area. For
the residuals from the extended model (Eq. 3),
a curved pattern indicates that the linear model
used is not appropriate as the residuals are cor-
related. Although both models show correlated
residuals, a better performance is observed for the
compact landscapes which show a reasonable fit
(R? = 0.98). Again, these differences reflect the
findings of the simple geometric model, which
indicated that a linear model is only appropriate
for straight forest edges. The irregularities of the
forest edge are less for compact crown maps, and
thus we restricted the further analysis to those
maps.

In practice, only one forest map is usually avail-
able for a given study area. Fitting the model
based on multiple forest maps, as we have done
with the simulation, is impossible under those
circumstances. We therefore tested if a general
model can be applied to various forest maps. One
extended model (Eq. 3) was fitted to the pooled
results of n = 100 compact crown maps (o = 1.4)
with 30 and 70 % crown pixels; the results are
given in Table 1.

Table 1 Estimated model parameters of the extended
model (Eq. 3) fitted to the pooled dataset of n = 100
compact landscapes (o = 1.4)

Crown Parameter Estimate Standard  p value
cover error
30 % Bo 0.312 0.002591 <2e 10
Bi —0.0333 0.004881 8.94¢ 12
B2 —0.000763  0.000022 <2e~ !0
70 % Bo 0.75 0.002429  <2e16
Bi —0.0208 0.004576 5.61e™12
B2 —0.000683  0.000021 <2e~16
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The intercepts (By) are close to the true propor-
tion of the crown pixel within the landscape. Com-
pared to the high quality of the fit for individual
crown maps, the coefficients of determination for
the general model are low (R? = 0.39 for 30 %,
R? =0.36 for 70 % crown cover) indicating that
a considerable proportion of the variance of the
different forest maps cannot be explained by the
model.

Discussion and conclusions

Classification of land cover and/or land use is
a standard task in geography and cartography.
It essentially serves to depict and report com-
plex spatial patterns and also produce simplified
illustration. The concept of land cover classes,
however, is inherently vague, and this vagueness
tends to persist even when steps are taken to
precisely define those land cover classes (Bennett
2001). Defining forest land is such a problem and
has been discussed for decades. Here, vagueness
does little harm as long as the produced maps
are used for illustrative purposes or for a general
overview. However, if maps are analyzed quanti-
tatively, such vagueness is difficult to handle, and
in cases where forest area is directly linked to high
economic values, as it is the case for example in
the Reducing Emissions from Deforestation and
Forest Degradation (REDD) Program, vagueness
is hardly acceptable as an element of a method-
ological approach.

In this study, we demonstrated and illustrated
that the common approach to define forest land,
by specifying threshold values only, is incomplete
as long as measurement rules are not defined. We
study the case of minimum crown cover and show
that—even when a threshold value for crown
cover percent is given and crown cover is perfectly
mapped—forest cover figures vary considerably
as a function of the size of the reference area,
which in turn interacts with the degree of frag-
mentation of the studied landscape. Crown cover
percent is in general a meaningful criterion for the
definition of forest land as it is directly related to
various forest variables, e.g., productivity, micro-
climate, and carbon storage. But it is an obvious
conclusion from this study that if minimum crown
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cover is among the criteria of a forest definition, it
needs to be complemented by a clear definition of
how crown cover percent is measured. That refers
in particular to the definition of the reference area.

Spatial resolution plays, according to the
findings of this study, only a minor role. For crown
cover thresholds <1 differences in forest cover
due to changes of the spatial resolution, simulated
by spatial aggregation of pixels, were <10 %, an
order of magnitude also reported by Nelson et al.
(2009) for majority-based aggregation of Land-
sat images. The minor resolution effect can be
highly relevant for remote sensing-based forest
monitoring where information from sensors with
different resolutions is combined. Such situations
are currently prominent in the REDD context
where time series are compiled by combining his-
toric lower resolution data (e.g., Landsat) with
current high-resolution data. Even though aggre-
gating binary maps is not fully comparable to
aggregating spectral information, as it would be
the case for real images, the simulation gave an
indication that uncertainties caused by the forest
definition, including the corresponding reference
areas, can exceed those from changes in the spatial
resolution even though both can affect the forest
cover estimates.

Another major issue that requires closer in-
vestigation is the compatibility of forest land
definitions when assessed in remotely sensed
imagery versus field inventories. This question,
although omnipresent, is only rarely addressed
explicitly (e.g., Blackard et al. 2008; Wulder et al.
2008). The two data sources are so different with
respect to all major characteristics that ensuring
compatibility of definitions is a challenge and hard
to verify. Two points are noteworthy: First, the
definition of the reference area will determine
the area that needs to be observed to make the
forest/non-forest decision. Using image process-
ing techniques, almost any reference area can be
implemented. For terrestrial surveys, reference
areas corresponding to commonly used field plot
designs are preferable. Second, the definition of
forest edge needs to be compatible for both data
sources. Implementation of forest edge definitions
in forest mapping is an issue which appears not
to have been discussed much in the context of
forest definitions. In this study, we presented a

forest edge definition which combines the concept
of minimum crown cover percent with a fixed
reference area. This resulted in an operational
forest edge definition which could easily be im-
plemented in remotely sensed data using moving
window techniques. However, applying this con-
cept in a terrestrial survey is challenging as the
point where crown cover percent falls below the
minimum threshold can hardly be determined in
field. Other forest edge concepts are in use (e.g.,
Zingg and Bachofen 1988; Traub et al. 2000) but
it appears that the measurement rules where to
exactly draw the forest boundary line are largely
neglected. Kleinn et al. (2011) research such mea-
surement rules for forest boundary and their
effects on forest edge length estimation. A novel
approach was presented by Eysn et al. (2012)
who defined the reference area for crown cover
measurements using a triangulation concept. In
this approach, no size of the reference area has
to be selected as it is determined by the position
of the trees. However, the implementation of the
triangulation concept in terrestrial surveys seems
to be challenging and less compatible with existing
forest inventory schemes.

Considering the overall goal of the UN-FCCC
and related programs, to reduce atmospheric
concentrations of greenhouse gases, a land cover
classification is not mandatory for monitoring car-
bon stocks and their dynamics. It must rather be
seen as an instrument: from a scientific point of
view, monitoring of the carbon dynamics could be
done in a consistent manner over all lands with-
out an a priori breakdown into artificial classes
(such as “forest land,” “grassland,” etc.). From a
REDD implementation point of view, however,
land cover classes are probably an essential in-
strument. MRV is most easily done and best un-
derstood when referring to classes which define
geographical units at the same time. For interna-
tional forest policy that aims to implement trading
schemes, a further harmonization of the definition
of these classes is required.

It is unlikely that all nations will agree upon
one unique global forest definition, as manifold
forest types exist which can hardly be covered by
one definition. More likely, a range of values for
specific criteria will be accepted as it is already
the case under the clean development mechanism
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scheme where crown cover thresholds between 10
and 30 % are accepted (UNFCC 2002). Then, a
model that predicts forest area as a function of the
crown cover percent and the corresponding refer-
ence area is needed for harmonization of forest
area statistics that were compiled from different
threshold values and reference areas. The COST
EA43 initiative planned to establish such models,
referred to as bridges (Vidal et al. 2008), on the
European level. Our results indicate that building
such a bridge as a linear model is critical as the
effects are nonlinear, although a high coefficient
of determination was observed for compact land-
scapes. Further, we found that more factors than
the studied landscape properties (e.g., fragmen-
tation, crown proportion) influence the relation-
ship between crown cover, reference area, and
forest cover. Landscape metrics, which describe
the landscape spatial pattern, could be a starting
point for further research.

It is fully acknowledged that the forest
definition issue is much more complex than only
using the minimum crown cover criterion as in this
study which is in agreement to Putz and Redford
(2010) and Lund (2002). Various other criteria
need to be applied simultaneously, as pointed out
in the introductory sections; any conflicts emerg-
ing from contradictions of these criteria need
then to be clarified in order to achieve an un-
ambiguous definition. At the end, the question
remains whether natural sciences can provide a
forest definition which is perfectly unambiguous,
independently of the data source used and which
is applicable also in practice. Using crown cover
percent as a criterion to define forest land is a
pragmatic approach with uncertainties especially
when threshold values significantly differ from
50 %, a common situation in internationally used
forest definitions. Defining a reference area for
crown cover percent measurement could reduce
these uncertainties even though some vagueness
remains.
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