
Obesity, Energy Balance and Cancer: New Opportunities for
Prevention

Stephen D. Hursting1, John DiGiovanni1, Andrew J. Dannenberg2, Maria Azrad3, Derek
LeRoith4, Wendy Demark-Wahnefried3, Madhuri Kakarala5, Angela Brodie6, and Nathan A.
Berger7

1Department of Nutritional Sciences, University of Texas, Austin, Texas 78712, USA
2Weill Cornell Cancer Center, Weill Cornell Medical College, New York, NY10065, USA
3Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
USA
4Metabolism Institute, Division of Endocrinology, Diabetes and Bone Disease, Mt Sinai School of
Medicine, New York, NY 10029 USA
5Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
6Department of Pharmacology and Experimental Therapeutics, University of Maryland, Baltimore,
Maryland 21201 USA
7Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
USA

Abstract
Obesity is associated with increased risk and poor prognosis for many types of cancer. The
mechanisms underlying the obesity-cancer link are becoming increasingly clear and provide
multiple opportunities for primary to tertiary prevention. Several obesity-related host factors can
influence tumor initiation, progression and/or response to therapy, and these have been implicated
as key contributors to the complex effects of obesity on cancer incidence and outcomes. These
host factors include insulin, insulin-like growth factor-1, leptin, adiponectin, steroid hormones,
cytokines, and inflammation-related molecules. Each of these host factors is considered in the
context of energy balance and as potential targets for cancer prevention. The possibility of
prevention at the systems level, including energy restriction, dietary composition and exercise is
considered as is the importance of the newly-emerging field of stem cell research as a model for
studying energy balance and cancer prevention.
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Introduction
The prevalence of obesity has doubled globally, reaching pandemic proportions over the
past 30 years. Today, 65% of the world’s population lives in countries where obesity kills
far more people than underweight (1). Obesity increases the risk for colon, endometrial,
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esophageal, renal, pancreatic and post-menopausal breast cancer, and the list continues to
grow (2). More recent epidemiologic studies confirm the associations indicated above and
provide probable evidence for associations of obesity with gallbladder and hepatocellular
carcinomas (3,4), as well as suggestive evidence for associations with ovarian and thyroid
cancers. Obesity is also associated with increased risk for several hematologic malignancies
including plasma cell myeloma, Hodgkin and non-Hodgkin Lymphoma and leukemia (5, 6).
Moreover, obesity at the time of diagnosis is acknowledged to be a poor prognostic factor
for several tumor types (7). Although difficult to investigate or implement in humans,
caloric restriction (CR) studies in multiple organisms have provided significant insights into
the mechanistic links between energy balance and cancer and suggest novel approaches for
interventional targets (8).

Many energy balance-related physiologic processes, including appetite, energy expenditure,
body temperature control, and nutrient and energy metabolism are regulated by hormones,
cytokines and other host factors. There is increasing evidence that alterations in, and cross-
talk between cytokines and growth and inflammatory factors, e.g., insulin, insulin-like
growth factor (IGF)-1, leptin, and adiponectin, mediate many of the antiproliferative,
proapoptotic, and anticancer effects of CR or negative energy balance (8, 9). Given the
universal need for energy, multiple pathways with ample crosstalk and redundancies have
evolved to assure cell survival, regardless of whether cells are healthy, transformed, or
cancerous. These pathways may be even more highly evolved in the preneoplastic or
neoplastic cell to support increased energy needs for enhanced proliferation and
uncontrolled cell growth (10).

Select proposed mechanisms that undergird energy balance effects on cancer were addressed
by experts in a recent workshop, entitled “The Role of Obesity in Cancer Survival and
Recurrence,” convened by the Institute of Medicine’s (IOM) National Cancer Policy Forum
in Washington, DC (October 31-November 1, 2011. This article provides a summary of the
mechanisms that were addressed and reframes this information to address their potential to
serve as targets for cancer prevention; a transcript of this original workshop and
accompanying slides are available online (11).

While controversy remains, the preponderance of clinical evidence supports a role for
obesity’s influence on the incidence and course of many cancers (2–6) with strong support
for potential mediators derived from preclinical mechanism-based studies which are further
supported by clinical-epidemiologic observations. These preclinical, mechanistic studies are
the major focus of this report with related clinical – epidemiologic research noted to provide
translational relevance.

Overview
Figures 1 and 2 provide a systems overview of the multitude of extracellular and
downstream intracellular pathways by which energy balance modulates cell growth,
carcinogenesis and tumor promotion (12). Note that these multiple factors interact at
numerous levels and share extensive cross-talk. Thus, attempts to block a pathway with a
specific inhibitor may be undermined by collateral effects on alternate pathways. Therefore,
targeting multiple pathways is likely to be necessary to develop prevention and control
regimens that can effectively exploit the obesity-cancer linkage.
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Hormones, Growth Factors and Intracellular Downstream Targets
Insulin

Clinical and epidemiologic evidence suggests that elevated levels of circulating insulin or C-
peptide (cleavage product of proinsulin), are associated with increased risk and/or poor
prognosis of endometrial, pancreatic, renal, prostatic, colon, and pre and postmenopausal
breast cancers (9,12,13). Insulin exerts tumor-enhancing effects directly via the insulin
receptor (IR) or hybrid IR/IGF-1R’s on preneoplastic and neoplastic cells. High circulating
levels of insulin also upregulate hepatic synthesis of IGF-1 and downregulate IGF binding
protein (BP) production (13). The binding of insulin or IGF-1 to cell surface receptors
activates the phosphatidyl inositol-3 kinase (PI3K)/Akt pathway (leading to downstream
activation of the mammalian target of rapamycin [mTOR] complex), and/or the mitogen-
activated protein kinase (MAPK) pathway; both pathways are central regulators of cell
growth and mitogenesis (9,12)

In a mouse model of hyperinsulinemia, mammary tumor growth and metastasis is enhanced
by endogenous hyperinsulinemia activating the IR/IGF-1Rs on tumor cells. Reducing
hyperinsulinemia and blocking IR/IGF-1R activation with a specific tyrosine kinase
inhibitor, decreases tumor burden (14, 15). These data strongly suggest that endogenous
hyperinsulinemia may be one obesity-related factor enhancing cancer growth and
metastases. Moreover, in women with breast cancers, a worse prognosis was noted in those
with higher circulating insulin level as well as those with increased insulin receptor
expression in tumor tissue (16).

The effect of insulin on cancer cells has furthermore been shown to activate an IR subtype
(IR-A) that is expressed by fetal tissues and cancer cells. IR-A mediates insulin’s metabolic
functions and is more mitogenic than the other splice variant, IR-B, expressed in muscle, fat
and liver (17).

The presence of IR-A on tumor cells may provide a specific target to block insulin
stimulation of cancer cell growth without interfering with its normal role in energy
metabolism. Targeting the intracellular PI3K-Akt pathway, downstream of the insulin
receptor, also may provide an alternative approach to specifically interrupt the growth
promoting activities of insulin associated with hyperinsulinemia and insulin resistance.

Insulin-like Growth Factor–1 (IGF-1)
IGF-1 is a major endocrine and paracrine regulator of tissue growth and metabolism since it
both suppresses apoptosis and initiates cell cycle progression from G1 to S phase by
activating PI3K/Akt and MAPK signal transduction pathways and modulating cyclin-
dependent kinases (13). Epidemiologic evidence also supports the hypothesis that increased
circulating IGF-1 is associated with increased risk and/or worse prognosis for several types
of human cancers (8, 18). IGF-1 may act either directly on cells via IGF-1Rs or IRs (or even
IGF/IR hybrid receptors), or indirectly through interaction with other cancer-related
molecules, e.g., the tumor suppressor, p53 (13). In numerous animal models, obesity
increases, while CR decreases circulating IGF-1 and tumor development and progression (8,
9, 19) whereas exogenous IGF-1 infusion rescues tumor growth in CR mice (8, 18). Similar
to CR, genetic reduction of circulating IGF-1 in liver-specific IGF-1 deficient mice
decreases tumor progression in models of colon, skin, mammary and pancreatic cancer
(20,21). Interestingly, IGF-1 deficient mice, which are resistant to growth of several tumor
types, have markedly elevated insulin and adipokine levels, but a 65% reduction in IGF-1
(22), suggesting that IGF-1 may be a central determinant of energy balance modulation of
cancer in experimental models (8). However, the obesity-IGF-1 relationship is more
complex in humans, as total circulating IGF-1 levels are often not elevated in obese
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individuals (23, 24). The hyperinsulinemia associated with obesity can decrease production
of IGF binding proteins (particularly BP1 and 2), and thus increase the levels of biovailable
IGF-1 to enhance signaling through the IGF-1R (13). Agents that block the IGF-1R to
decrease IGF-1 signaling, and to some extent insulin signaling are under clinical
development and may serve as cancer prevention and control agents; however selectivity for
tumor cells and unwanted metabolic effects remain a challenge for these agents (25).

Vascular endothelial growth factor (VEGF)
VEGF is induced by insulin and IGF-1 (26), and mediates cancer cell proliferation and
tumor growth by inducing angiogenesis. Produced by both adipocytes and tumor cells,
higher circulating levels of VEGF are seen in obese animals (27) and humans (28), and
decrease upon weight loss (29). A recent and growing body of evidence in humans suggests
strong associations between VEGF levels and aggressive cancers (30,31). Several tyrosine
kinase inhibitors that interfere with VEGF activity have been developed and could play a
role in cancer prevention.

Steroid hormones
Estrogen

Estrogen is produced in large amounts by the ovary via conversion of androgens
(testosterone and androstenedione) in a reaction mediated by aromatase. After menopause
when the ovary ceases to function, estrogens continue to be produced by other tissues, with a
major contributor being adipose tissue. Multiple lines of evidence suggest a key role for
estrogen in explaining the increased risk of hormone receptor-positive breast cancer in obese
postmenopausal women. Estrogen has also been implicated in the pathogenesis of a subset
of endometrial cancers arising in obese women (32). Total and free estrogen levels are
increased in the plasma of obese compared to normal weight postmenopausal women (33).
Estrogen binds to estrogen receptor α and thereby stimulates cell proliferation and inhibits
apoptosis (34). Estrogens can also induce VEGF and angiogenesis (35). In addition to
driving tumor formation via estrogen receptor α-dependent effects, estrogen can be
metabolized into DNA reactive metabolites that potentially induce mutagenesis (34). There
is clear evidence of the growth promoting effects of estrogens from studies in animals (36).
The importance of targeting estrogen as a preventive intervention is underscored by clinical
data. Tamoxifen and raloxifene, functioning as selective estrogen receptor modulators, have
been shown to significantly reduce the development of postmenopausal breast cancer (37)
and these agents are effective secondary preventive agents in women who have undergone
primary treatment for breast cancer (38). Raloxifene has also been shown to have a
preventive effect on the development of uterine cancer (39). Recently, treatment with
Exemestane, an aromatase inhibitor, was found to decrease the relative risk of invasive
breast cancer by 65% (40). Notably, many of the women enrolled in this trial were
overweight or obese.

A major unanswered question concerns the relative importance of peripheral vs. breast
adipose tissue as the primary source of the estrogen that drives tumor formation and
progression in obese postmenopausal women. Until recently, it was assumed that the mildly
elevated levels of estrogen in venous blood of obese vs. lean postmenopausal women could
account, in part, for the observed increased risk of breast cancer. However, two recent
findings have challenged this explanation. First results from the Women’s Health Initiative
Estrogen-Alone Trial indicate that administration of estrogen only hormone replacement
therapy was associated with a lower incidence of invasive breast cancer in postmenopausal
women among those who have had previous hysterectomy(41). Second, as detailed below,
obesity was recently found to cause breast inflammation, elevated aromatase levels and
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activation of estrogen receptor-α-dependent gene expression (42, 43, 44). Collectively, these
recent findings highlight the complexity of estrogen biology but offer clues to the
development of future preventive strategies.

Testosterone and Other Androgens
The role of androgens in prostate cancer is significant since estimates indicate that 80–90%
of prostate cancer is dependent on circulating androgens for growth (45) and androgen
deprivation directly or through administration of LHRH antagonists, is a highly successful
mainstay of anti-prostate cancer therapy (46). However, it is difficult to describe how
obesity, androgen exposure and prostate cancer risk are inter-related since obesity is
associated with lower circulating levels of androgens in men (47), and there is no strong
association between obesity and prostate cancer risk overall (48). However, there is a
significant association between obesity and aggressive prostate cancer (49), which may
relate to the cross-talk between androgens and circulating cytokines (e.g., IL-6) and growth
factors (e.g., IGF-1 and EGF) which can activate the androgen receptor and stimulate JAK/
STAT and the PI3k/Akt/mTOR pathways, respectively (50), or the overexpression and loss
of specificity of the androgen receptor which then promiscuously binds ligands driving cell
survival and proliferation (50).

Adipokines
Leptin and adiponectin are pleiotropic adipocytokines produced and secreted by adipose
tissue. As body fat stores increase, circulating leptin concentrations increase whereas
adiponectin levels decrease. The obesity-driven imbalance in adiponectin and leptin are
considered key factors linking obesity and cancer. Both mediate energy intake by
functioning as neuroendocrine signaling hormones that regulate dietary intake (51,52),
metabolism, insulin sensitivity, and inflammation (53,54–55). Adiponectin and leptin have
direct tumor effects regulating both cell proliferation and apoptosis (56).

Leptin
Six leptin receptors have been identified (ObRa-ObRf); however, only ObRb has a
functioning intracellular signaling domain. In vitro studies have shown that activation of
ObRb by leptin stimulates cell proliferation and survival in colon (57,58), breast (59),
endometrial (60) and androgen-independent prostate cancer cells (61). Leptin signaling is
executed through activation of several pathways including JAK/STAT3, PI3k/Akt and ERK
1/2 (62) and these pathways all serve as potential targets for cancer prevention and control.
Leptin also transactivates the EGFR, Notch, and Survivin pathways, and stimulates tumor
invasion and migration (63). Leptin can modulate tumor growth by increasing expression of
VEGF, a key driver of angiogenesis (64). In animal models, leptin deficiency inhibits
mammary tumor growth (65), whereas higher levels are promotional (66). Using
azoxymethane to induce colon carcinogenesis in mice, Endo and colleagues showed that
leptin signaling through STAT3 resulted in significantly higher tumor proliferation and
growth, whereas leptin deficient mice had significantly lower proliferation and smaller
tumors despite being more obese (67). In contrast, Ribeiro et al. inoculated mice with RM-1
murine androgen independent prostate cancer cells and found that higher leptin
concentrations did not increase prostate cancer tumor growth (68). Thus, disparate effects
have been observed across cancer types.

In epidemiological studies, the link between leptin and cancer has also proven inconsistent.
In a nested case-control study in Japanese women, leptin was significantly associated with
colorectal cancer after adjusting for several risk factors including BMI (69). In contrast, a
case-control study in the US did not find an association between leptin and colorectal
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adenoma risk in women, but did observe a 3-fold increased risk among men when
comparing the highest tertile against the lowest (70). Gender differences in leptin-related
risk for colorectal cancer also have been observed (71). Likewise, the data on leptin and risk
for breast cancer are conflicting with one study reporting a positive association (72) whereas
others reported no association (73,74), or an inverse association (confined to premenopausal
breast cancer) (75). In endometrial cancer, a positive association with leptin was found for
two studies, though in one this relationship disappeared after adjusting for BMI (76,77). For
prostate cancer, leptin does not appear to increase overall risk (78,79, 80) however, it may
be linked with more aggressive disease (81). In addition, recent studies suggest that absolute
levels of leptin may not be the driving force behind neoplasia, but rather it is the ratio of
higher leptin in the presence of low adiponectin that confers risk (82).

Adiponectin
There are two receptors for adiponectin, AdipoR1 and AdipoR2, which are expressed
ubiquitously. Binding of adiponectin to its receptors stimulates phosphorylation of AMPK, a
nutrient-sensing enzyme which regulates several key pathways involved in cellular energy
metabolism and protein synthesis (83). In vitro, adiponectin induces apoptosis (84), and
inhibits growth and proliferation of breast (85,86,87), colon (88), endometrial (84), and
androgen dependent and independent prostate cancer (89). Adiponectin also sequesters
several circulating growth factors (90) and inhibits angiogenesis by inducing apoptosis of
endothelial cells (91). Studies using preneoplastic murine colon cells have shown that
adiponectin inhibits leptin and IL-6 induced cell proliferation by blocking activation of
NFkB and STAT3 (92). Similarly, in late stage colon cancer cells, adiponectin inhibits IL-6
induced cell proliferation (93). Many, but not all (94) studies using animal models have
shown that lower adiponectin results in increased colon tumor growth (95). Interestingly, in
the mouse mammary tumor virus (MMTV)-polyoma middle T antigen (PyMT) mammary
tumor model, adiponectin-deficient mice have reduced onset and size of mammary tumors
as a result of reduced angiogenesis compared to wild-type mice (96, 97).

Data from epidemiological investigations suggest a role for adiponectin in reducing the risk
of several cancers. Consistent with in vitro studies, but in contrast to animal models, a
consistent association between higher adiponectin concentrations and decreased risk for
postmenopausal breast cancer, as well as disease recurrence and mortality has been found
repeatedly (98,99,100,101,102). Most studies have also reported that higher adiponectin
levels are associated with lowered risk for endometrial cancer (102,103,104,105). A recent
meta-analysis of 13 studies examined the association between adiponectin and colorectal
cancer and adenomas and found a significant reduction in risk for men, but not for women
(106). For prostate cancer, the data are conflicting and may reflect discrepant associations in
aggressive vs. indolent disease (107,108).

Intracellular Pathways
PI3K/Akt/mTORC1

Rapamycin, a CR mimetic and potential chemopreventive agent, effectively blocks
mTORC1 complex formation, thus inhibiting mTORC1-mediated cellular growth and
proliferation (109,110), and has been shown to extend lifespan in mice (111). Furthermore,
rapamycin has been shown to suppress tumorigenesis in several animal models (112, 113,
114, 115,116), and inhibits tumor promotion by blocking mTORC1 signaling through
p70S6K, and cell cycle proteins PCNA and cyclin D1 (117). Rapamycin also exerts anti-
inflammatory effects, and reduces TPA-induced infiltration of several types of inflammatory
cells (118). Collectively, these findings suggest that rapamycin may function as a potent
compound in cancer prevention. EGFR activation likewise is modulated by caloric intake
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and may also influence Akt and mTORC1 signaling, and EGFR activation via IGF-1R/
EGFR cross-talk (119).

5′Adenosine Monophosphate – Activated Protein Kinase (AMPK)
Under conditions of CR, mTORC1 signaling is inhibited, leading to cell growth arrest,
inhibition of protein translation, and autophagy (119, 120). AMPK and the upstream kinase,
LKB1, function to repress mTORC1 in the presence of negative energy balance through
activation of TSC1/2. Low ATP/AMP ratios activate AMPK, and phosphorylation is
maintained by LKB1 (121). Activation of this pathway not only reduces cellular energy
expenditure, but it also protects against stress-induced apoptosis. Studies using in vivo
models provide evidence that the anti-diabetic drug, metformin which inhibits
gluconeogenesis through indirect activation of AMPK, can inhibit tumor formation.
Administration of metformin suppresses polyp formation in Apc/Min mice (122). Using
paired isogenic colon cancer cell lines (HCT116 p53+/+ or P53−/−), Buzzai et al (123) were
able to show that metformin inhibited the growth of xenograft tumors derived from the p53
null cell line. Also, daily exposure to metformin attenuated tumorigenesis (lymphoma;
intestinal polyps) in PTEN-deficient mice (124).

Epidemiological studies have suggested that diabetic patients receiving metformin have
significantly reduced cancer burden compared with diabetic patients receiving other
therapies (125). Recent studies have also suggested that metformin may be more effective in
overweight/obese individuals or in individuals with elevated insulin levels (12), and clinical
trials are now underway to evaluate the effect of metformin for the prevention of recurrence
of breast cancer.

Immune Cells and Inflammatory Factors
Macrophage infiltration

Chronic inflammation has long been associated with cancer development and progression
and increases the risk of multiple tumor types (9). Obesity leads to subclinical inflammation
in visceral and subcutaneous white adipose tissue (WAT), characterized by macrophages
surrounding necrotic adipocytes and forming crown-like structures (CLS) (126, 127, 128).
Increased numbers of CLS were demonstrated within the mammary glands of obese mice,
accompanied by activation of NFκB, increased levels of pro-inflammatory mediators, and
higher levels and activity of aromatase and its activity, thus driving the synthesis of estrogen
(and perhaps ER+ breast cancer) (42). These findings support the possibility that the
obesity→inflammation axis is important for breast carcinogenesis.

In women, CLS of the breast (CLS-B) were found in nearly 50% of patient samples (43).
The severity of breast inflammation, defined as the CLS-B index, correlated with BMI and
adipocyte size, and may serve as a biomarker of increased breast cancer risk or poor
prognosis. Consistent with the preclinical findings, increased NFκB binding activity,
increased levels of pro-inflammatory mediators, and elevated aromatase expression and
activity were found in the inflamed breast tissue of overweight and obese women (43, 44).
The discovery of the connection between obesity, breast inflammation and changes in the
expression of genes linked to breast cancer suggests the possibility that interventions which
reduce breast inflammation may decrease the increased risk of breast cancer in obese
postmenopausal women.

Cytokines
Increasing adiposity has been shown to be positively associated with inflammation in both
rodents and humans (129). The increased adipose tissue associated with obesity, especially
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WAT produces many inflammatory cytokines, including tumor necrosis factor alpha (TNF-
α), IL-6, IL-1β, monocyte chemoattractant (MCP-1), and C-reactive protein, which act both
locally (tissue level) and globally (circulating in serum) (130). Increased adipose-derived
cytokine production, particularly increased levels of MCP-1, enhances local macrophage
infiltration, leading to further increases in the levels of secreted inflammatory cytokines, as
well as heightened recruitment of other related immune cells (130,131,132). These
inflammatory cytokines modulate inflammation via increased intracellular signaling through
NFkB-, STAT3-, and JNK-related pathways (130,133), events which are inhibited by CR
(134). These findings suggest the possibility that diet induced changes in inflammation may
modulate tumor development and progression.

NFκB
At the intracellular level, inflammation is mediated through multiple pathways. NFkB is a
transcription factor activated in response to various stimuli including growth factors and
inflammatory molecules, and is responsible for inducing gene expression associated with
cell proliferation, apoptosis, angiogenesis and inflammation (135). Activation of NFκB has
been observed in many tumor types, and has emerged as an important target for cancer drug
development (136). Obesity and CR modulate NFkB activation, possibly through alterations
in growth factors and Akt signaling (135,137). Activation of NFκB by Akt can lead to the
translocation of the active NFκB subunit, p65, from the cytoplasm to the nucleus, inducing
multiple genes associated with inflammation and cancer, including IL-6, COX-2, and IL-1β
(135). Thus, NFkB represents an attractive drug target for attempting to reduce the risk or
progression of cancer.

Systems Level Considerations
Diet Composition

While there is a clear association between obesity and cancer in both humans and animal
models, it is frequently difficult to distinguish the consequences of diet composition from
those of obesity. Studies in humans, largely based on observational research, especially
those on international differences in dietary fat consumption and cancer incidence, as well
as, on a limited number of case control studies, are suggestive of an association between
dietary fat and increased risk of breast, colorectal and prostate cancers. However results of
these studies are mixed and confounded by body weight status (138,139, 140). In addition,
two large randomized control trials, The Women’s Healthy Eating and Living (WHEL)
Study (141) and The Women’s Intervention Nutrition Study (WINS) (142) evaluated the
effect of dietary modification on cancer recurrence and survival in women with early stage
breast cancer. The WINS study reported borderline significance for an association between
dietary fat and “breast cancer events”, whereas the WHEL study found no significant
association between fat and breast cancer recurrence, (141,142, 143). Comparison of these
studies is confounded by multiple differences, among which is the ability to separate the
reduction in dietary fat from weight loss (141,142,143).

To investigate the individual contribution and to bypass the confounding issues associated
with genetics, dietary fat and obesity experiments were conducted capitalizing on the
observation that C57BL/6 mice fed a high fat diet become obese, whereas A/J mice fed the
same diet remain lean. Taking advantage of these genetic differences, a series of crosses
were performed between the B6 and A/J mice to generate chromosome substitution strains
(CSSs) of mice in which each pair of homozygous A/J chromosomes were substituted on an
otherwise B6 genetic background (144). These CSSs provide a series of B6 strains that are
susceptible or resistant to diet-induced obesity based on a single pair of A/J chromosomes.
Further research has focused on separating the effect of dietary fat from obesity, using CSSs
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in combination with B6. ApcMin/+ mouse models of intestinal cancer were employed to
generate Congenic-Consomic Strains (C-CSs). Employing C-CSs that were susceptible to
ApcMin/+ intestinal tumors and were either susceptible or resistant to diet-induced obesity
depending on the substituted A/J chromosome, it was shown that a high-fat diet vs. low-fat
diet (58% vs. 10%) resulted in significant increases in intestinal polyp numbers, tumor
burden, and shorter survival time independent of obesity. Moreover, mice fed the high-fat
diets showed increases in inflammatory cytokines in the sera (IL-6, and IL-1β), and in
intestinal tissue (TNFα, Cox-2, IL-1β and IL-6). These studies clearly demonstrate that a
high-fat diet, independent of obesity, can upregulate intestinal and circulating inflammatory
mediators, and increase intestinal polyp growth and tumor burden leading to shorter survival
(145). These studies support the use of low fat diets as a cancer prevention strategy, at least
for some cancer types, and suggest that anti-inflammatory agents may also be useful in
preventing high fat diet induced carcinogenesis. In view of the WINS and WHEL trials,
these studies with mouse CSSs point to the need for randomized controlled trials of dietary
fat modification for primary prevention, especially since the WHI study showed that the
low-fat diet resulted in a reduction in primary breast cancer of borderline significance (146),
and significantly reduced ovarian cancer (147). Moreover, diet studies during critical
windows of susceptibility along the lifecourse are needed. In particular, studies occurring
during the critical periods associated with breast bud development in the early years of life
also are needed.

Exercise
As recently reviewed, exercise interventions have been associated with reduced risk of some
types of cancer in humans, with convincing evidence that the exercise-cancer link is
independent of body weight status for colon, breast and endometrial cancers; weak evidence
for prostate, lung and ovarian; and either null or insufficient data for other cancer types
(148). Studies examining the effects of exercise on carcinogenesis have used a variety of
animal models and many, but not all, studies report some evidence of a protective effect of
either voluntary or involuntary exercise on carcinogenesis. The strength and direction of the
association depend on cancer type, intensity of the exercise regimen and whether food intake
was held constant or provided ad libitum. Thompson and colleagues recently reported that
plasma markers with the greatest predictive value of the anticancer effects of both moderate
CR and moderate exercise in a carcinogen-induced rat mammary model were adiponectin,
bioavailable IGF-1, and leptin (149). In other models, exhaustive exercise has been linked to
increased reactive oxidative stress and inflammation, and increased tumor development
(150), while moderate exercise can often be anti-inflammatory (151). Given the inherent
links between exercise and energy balance, the effects of exercise per se, independent of
decreased energy balance, remain unclear. A study of gene expression profiles in normal
mammary tissues of 9 week old C57BL/6 mice that were randomized to caloric restriction
and/or exercise however suggests that pathways may differ considerably since caloric
restriction modified gene expression in 425 genes, whereas physical activity modified
expression in just 45, with overlap noted in only 3 genes (152). Results of recent clinical
trials in healthy volunteers suggest that weight loss may exert a more powerful effect on
biomarkers associated with inflammation and sex steroid pathways (153, 154). Recent
studies in mice demonstrate that exercise reduces systemic insulin resistance by an
autophagy-inducing process. The latter could provide a mechanism for exercise to reduce
tumor growth through a process of reduced levels of circulating insulin (155).

Cancer Stem Cells
Cancer stem cells, their role in carcinogenesis and progression, and their potential as targets
for cancer prevention and therapy, has become a major focus of cancer research. Moreover,
as described below, cancer stem cells may provide targets for some of the proliferation
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stimulating effects of adipocytokines elevated in obesity. Tissue stem cells are a population
of cells with the capacity to undergo self-renewal and multilineage differentiation into the
normal cell population that constitute tissues and organs. The cancer stem cell hypothesis
postulates that tumors originate through dysregulation of the normal self-renewal process
resulting in the aberrant replication and differentiation characteristic of a variety of tumors.
Clonal expansion of these aberrant cells has recently been confirmed by lineage tracing in
mouse intestinal adenomas (156) and is an early step in carcinogenesis. In addition to being
responsible for primary tumorigenesis, the cancer stem cells may be resistant to
chemotherapeutic agents and responsible for tumor recurrence and metastasis. Thus,
strategies aimed at limiting proliferation of these stem cells may be useful for both primary
and secondary cancer prevention.

A new linkage between obesity and tumor stem cells has recently been identified by Zheng
et al. (65) who showed that spontaneous tumors derived from murine mammary tumor virus-
Wnt-1 transgenic mice, when transplanted, were highly leptin-dependent for growth. Thus,
transplantation of these tumors into obese, leptin receptor deficient mice (db/db) with high
leptin concentrations, grew to 8 times the volume of those tumors transplanted into wild-
type mice, while in leptin-deficient (ob/ob mice) tumor growth and overall tumor burden
was reduced. The residual tumors in ob/ob mice were found to have fewer “stem cells” and
these cells were characterized by flow cytometry to express LepRb (65). When isolated by
LepRb expression, these cells exhibited stem cell properties of tumorsphere formation in
vitro, and their survival was regulated by leptin. Dunlap, et al report that M-Wnt mammary
tumor cells derived from Wnt-1 tumor profile with human claudin-low breast tumors, are
mesenchymal and stably enriched in breast cancer cell markers, and exhibit stem cell
properties (157). In addition, M-Wnt cells orthotopically injected into B6 mice rapidly form
claudin-low tumors that are highly responsive to the tumor enhancing effects of obesity, as
well as the anticancer effects of calorie restriction (157). Relationships between obesity,
adipose tissue cytokines, and stem cell biology also can be readily studied in vitro directly
from human breast tissue excised during elective reduction mammoplasty (158). However,
at present, human clinical trials specifically targeting stem cells are hampered by the need
for large volumes of breast tissue (e.g., from mammoplasty or mastectomy) for stem cell
isolation and dynamic assays such as in vitro tumor sphere formation as biomarker
endpoints (159). Therefore, current efforts are focused upon using core biopsy samples for
stem cell isolation and characterization using advanced in situ technologies, such as
multiplex imaging or profiling technologies.

Conclusions and Future Directions
While much current research focuses on selected signaling pathways, this review
emphasizes the numerous mediators and pathways by which obesity impacts cancer. Many
of the circulating signaling molecules bind to cell surface receptors where they activate
intracellular pathways which undergo cross-talk and activate intracellular downstream
pathways that both converge and diverge to promote cancer cell growth and metastasis.

These observations suggest several strategies for prevention and therapy of obesity mediated
cancer promotion including 1) prevention and treatment of obesity; 2) blocking synthesis
and release of the signaling molecules including hormones, cytokines and adipokines; 3)
blocking binding and activation of direct targets including cell surface and hormone
receptors; 4) blocking downstream intracellular pathways such as the P13K, Akt, mTOR
pathway; and 5) disrupting inflammatory pathways at both the cellular and systemic levels.
This list might suggest that it should be easy to prevent cancer by blocking one or several of
these pathways. However, Table 1 provides a partial list of 14 of the manifold obstacles to
prevention of obesity associated cancers. These obstacles are divided into two major
categories; the first being obstacles to disrupting obesity promotion of cancer, and the
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second being obstacles to obesity control. Most of the factors listed in the first group have
been discussed above in terms of defining their role in mediating the effect of obesity on
cancer. The plethora of pathways connecting obesity to cancer suggests that while targeting
any one of these pathways may provide potential interference with cancer cell growth, the
cancer cell has established alternative and redundant processes and pathways to evade
control and bypass road blocks at any one site. Thus, an important area for future research is
to determine how to control obesity, as well as its downstream effects. Innovative
approaches to these issues are imperative as are mechanistic studies and clinical trials on the
effects of caloric restriction, exercise and potential pharmacomimetics of these processes.

With regard to the second group, obesity control is obviously critically important to multiple
disorders, but a careful review of issues related to obesity prevention or reversal is beyond
the scope of this article. Nonetheless, several of the major obstacles involved in its
prevention and control are listed since they must be dealt with in any approach to disrupt the
linkage between obesity and cancer.

Just as prevention and control of diabetes, hypertension and cardiovascular disease require
multi-factor and multi-level approaches, including diet, physical activity, and behavioral
modification, as well as pharmacologic and surgical interventions for subsets of individuals,
so too it is likely that multipronged, transdisciplinary approaches will be required to disrupt
the obesity-cancer linkage. The recent estimate that the incidence of obesity in the US will
reach 42% by 2030 emphasizes the urgent need for this research (160).
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Figure 1.
Peptide Growth Factors, Adipokines, Nutrients and Other Putative Factors Involved in
Regulating Obesity Related Carcinogenesis. Adapted with permission from Nock and
Berger (12) and Cowley and Hardy (161). Factors denoted in bold red text are core features
of the Metabolic Syndrome. Factors denoted in bold blue text are additional features that
may also be components of the Metabolic Syndrome. Abbreviations used: CRP, C-reactive
protein; FFA, free fatty acids; IGF-1, insulin-like growth factor 1; IGFBP, insulin-like
growth factor-binding protein; IL-6, interleukin-6; IL-β, interleukin-1β; MAC, macrophage;
MCP-1, monocyte chemoattractant protein 1; Mito, mitochondria; PAI-1, plasminogen
activator inhibitor-1; ROS, reactive oxygen species; SHBG, steroid hormone-binding
globulin; TG, triglycerides; TNF-α, tumor necrosis factor α; VEGF, vascular endothelial
growth factor.
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Figure 2.
Intracellular Pathways Mediating Obesity, Energy Balance and Cancer
Intracellular Pathways of Growth Factors Involved in Obesity Associated Cancer Promotion
and Progression. Adapted with permission from Nock and Berger (12) and Moore et al
(119).
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Table 1

Obstacles to Prevention of Obesity Associated Cancers

Obstacles to Disrupting Obesity Promotion of Cancer

1 Multiplicity of obesity driven extracellular hormone and growth factors promoting tumor cell growth,e.g., insulin, IGF-1, leptin,
estradiol

2 Multiplicity of obesity driven extracellular inflammatory factors, e.g., IL-1β, IL-6, TNFα

3 Receptor hybridization, cross-talk and multiplicity, e.g., insulin receptor, IGF receptor, leptin receptor

4 Multiplicity and cross-talk among intracellular pathways activated by obesity mediators, e.g., PI3K-Akt-mTOR, JAK2-STAT3-
MAPK, NANOG-SOX, EGFR-Notch1-Survivin

5 Multiplicity of cellular targets, e.g., cancer cells, cancer stem cells, tumor microenvironment, vascular endothelium

Obstacles to Obesity Control

6 Genetic programming for energy storage

7 Abundance of high energy density foods

8 Poor adherence to caloric restriction

9 Inadequate sleep

10 Sedentary lifestyles and proliferation of energy saving devices

11 Built environment impediments to physical activity

12 Cost and accessibility of exercise equipment and programs

13 Absence of effective pharmacologic interventions

14 High cost and consequences of bariatric surgery
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