Skip to main content
. Author manuscript; available in PMC: 2013 May 2.
Published in final edited form as: Cell Mol Bioeng. 2011 Mar 8;4(2):281–301. doi: 10.1007/s12195-011-0162-2

TABLE 4.

Model input functions*.

Time (min) Input functions
t ≤ 15 Q = Q0, CI = CI,0, Ca,GLC = Ca,GLC,0, Ca,LAC = Ca,LAC,0
Ca,GLR = Ca,GLR,0, Ca,FA = Ca,FA,0, Ca,TG = Ca,TG,0
t > 15 Q = Q0 ·(1 + 7.76 · (1 − e−(t−15)/20.54) − 7.68 · (1 − e−(t−15)/36.48))
CI = CI,0 + 65.1 · (1 − e−(t−15)/10)
Ca,GLC = Ca,GLC,0 · (1 − 0.177 · (t − 15)5.26/(22.825.26 + (t − 15)5.26) + 0.421 · (1 − e−(t−15)/350.3))
Ca,LAC = Ca,LAC,0 · (1 + 0.389 · (t − 15)7.05/(18.887.05 + (t − 15)7.05))
Ca,GLR = Ca,GLR,0 · (0.41 + 0.59e−(t−15)/10.38)
Ca,FA = Ca,FA,0 · (0.11 + 0.89e−(t−15)/17.22)
Ca,TG = Ca,TG,0 · (1 − 0.0015 · (t − 15))
*

Parameters for the input functions were optimally estimated based on the data from the human in vivo study.8,9,19 Q: Blood flow to the adipose tissue; CI: Insulin concentration in the interstitial fluid; Ca,GLC, Ca,LAC, Ca,GLR, Ca,FA, Ca,TG: Arterial concentrations of glucose, lactate, glycerol, FA and TG; Ca,i,0: Initial arterial concentration of chemical species i as shown in Table 1. Time courses of these input functions are shown in Fig. 2.