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Abstract
CD4 counts and viral loads are dynamic quantities that change with time in HIV-infected persons.
Commonly used single summary measures, such as viral load set point or early CD4 count do not
explicitly account for changes in viral load or CD4 counts or other features of the overall time
course of these measures. However, the efficient use of all repeated measurements within each
subject is often a challenge made more difficult by sparse and irregular sampling over time. Here
we illustrate how functional principal component (FPC) analysis provides an effective statistical
approach for exploiting the patterns in CD4 count and viral load data over time. The method is
demonstrated using data from Kenyan women who acquired HIV-1 during follow-up in a high risk
cohort and were subsequently followed prospectively from early infection. The FPC scores for
each woman obtained by this method serve as informative summary statistics for the CD4-count
and viral-load trajectories. Similar to baseline CD4 count or viral set point, the first FPC score can
be interpreted as a single-value summary measure of an individual's overall CD4 count or viral
load. However, unlike most single-value summaries of CD4-count or viral-load trajectories, the
first FPC score summarizes the dynamics of these quantities and is seen to reveal specific features
of the trajectories associated with mortality in this cohort. Moreover, FPC scores are shown to be a
more powerful prognostic factor than other common summaries when used in survival analysis.
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Introduction
Repeated measurements of the HIV viral load in plasma and CD4 T cell counts in an HIV-1
infected individual over time represent a sampling of continuous trajectories for these
dynamic quantities. A variety of summaries for these trajectories have been used in HIV
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research, such as the first-observed CD4 count or viral load, the estimated viral set point,
and the estimated slope of CD4 count trajectory. Numerous studies among untreated men
and women in North America and Europe have shown that these summary measures of viral
load and CD4 trajectories predict survival to some degree [1–5]. Studies in African women
demonstrated similar associations between survival and summary measures including
baseline viral load [6, 7] or baseline CD4 percentage [6]. Although these single value
summaries are useful, most fail to account for the dynamic patterns in longitudinal data
which are appropriately viewed as curves or functions over time. The analysis of viral load
and CD4 count trajectories is often complicated by the sparsity and irregularity of the
measurements. Indeed, estimating the full trajectory from a small number of measurements
from each individual is problematic and comparison across individuals is made difficult by
the fact that time periods represented by measurements from two individuals may not even
overlap.

Methods for obtaining summaries of longitudinal data of this type include random-effects
models using linear or piecewise linear mixed effects [2, 8–10] to obtain individual viral
load or CD4 count slopes. These models assume a certain trajectory shape and they require
choices about portions of the trajectories where the assumed parametric shape is appropriate.
Other methods for capturing patterns in repeated measures of CD4 and viral load trajectories
after treatment with anti-viral medications include mechanistic models using differential
equations [11, 12]. This approach produces one or more parameters that characterize the
trajectories, but imposes restrictive structure on the shape of the trajectories and fitting these
models requires a substantial number of measurements from each subject. Subsequent
statistical inference is difficult to interpret in these models since the estimation is based on
subjective modeling assumptions. Furthermore, the models can be computationally
extremely complex, especially when model parameters are treated as random effects in
aggregate population analysis.

An alternative, flexible statistical framework that is well-suited to obtaining summaries for
sparsely and irregularly sampled longitudinal data is provided by recent functional principal
component analysis (FPC analysis) [13–15] which extends the methods for densely sampled
functional data [16]. Sparsity and irregularity of the data are dealt with using an
implementation described by Yao et al. [14] in which the functional principal components
are estimated through conditional expectation (termed PACE). Importantly, this approach
allows for a smooth estimate of covariance among the composite of all subjects’ trajectories
even when individuals have relatively few measurements. Moreover, no priori assumptions
or constraints are placed on the shape of trajectories since the estimated trajectories arise
naturally from the PACE-derived principal component functions and scores. Finally, the
FPC approach is designed to capture the most subject-to-subject variability among all
possible summary statistics. The FPC scores obtained in this type of analysis can be used as
a summary measure in place of the more common measures such as a single CD4
measurement or estimated set point for viral load. Yao et al. [14] analyzed a dataset of CD4
count trajectories from treatment-naïve participants in the Multicenter AIDS Cohort Study
[17, 18] and characterized the overall and subject specific trends in CD4 counts over time,
although CD4 count profiles were not related to any specific outcome, such as survival. In a
related use of FPCs, Yao [15] explored joint modeling of survival and longitudinal CD4
counts and evaluated the combined role of CD4 trajectories and treatment arm using data
from a clinical trial of zalcitabine (ddC) compared to didanosine (ddI) treatment [19]. Lower
CD4 counts were shown to be significantly associated with an increased risk of mortality
and patients in the didanosine arm had a CD4 count adjusted increased risk of mortality
compared to patients in the zalcitabine arm.

Holte et al. Page 2

Stat Med. Author manuscript; available in PMC 2013 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The primary focus of this work is to use a two-stage approach to examine the prognostic
power of the first FPC score (for both viral load and CD4 count data) on survival in the Cox
proportional hazards models and to compare these results to other two-stage analysis which
use common prognostic indicators of survival such as the early CD4 count, estimated viral
set point, or estimated viral load or CD4 slope. Previous analyses of data from a cohort of
female Kenyan sex workers acutely infected with HIV-1 found that plasma HIV-1 viral set
point predicted subsequent survival but failed to show a significant association between
early CD4 count (defined as the first CD4 measurement occurring 4 to 24 months after the
estimated date of HIV acquisition) with survival [7], even though it is commonly accepted
that higher CD4 counts are associated with increased survival rates. We illustrate how a two-
stage FPC and survival analysis of these data can be used to extract enough information to
show that a significant association between CD4 count profile and survival does indeed
exist. In contrast to the approach described in Yao [15], we consider specific features of the
“shape” of CD4 count trajectories rather than the actual CD4 counts as prognostic factors of
mortality in this paper. Our model, in which FPC scores are prognostic factors, reflects the
clinical belief that survival may be affected by the change and other patterns of CD4 counts
and viral loads over time.

Our approach first uses FPC analysis with data from the entire cohort to extract the primary
structure in individual trajectories and provides a concise summary of each trajectory–the
FPC score–without presuming a parametric model for its shape. In the second stage, this
FPC score is then used as a covariate in a survival model to evaluate the relationship
between CD4 or viral load trajectories and risk of mortality. We also show how an FPC
analysis of these data can be used to reveal clinical features of the CD4 and viral load
trajectories that are predictors of mortality risk in these data.

Methods
Study Population

Women in this analysis were identified from a prospective study of female sex workers in
Mombasa Kenya. Of 1579 women enrolled in the cohort between February 1993 and March
2004 when antiretroviral therapy became available, 265 became infected with HIV-1 and
218 of these had a date of HIV-1 acquisition which could be estimated with reliable
precision as defined by a combination of serology and HIV RNA testing [7]. Of these, 216
had at least one observed viral load or CD4 count after HIV-1 acquisition. These 216
women are the focus of the analysis in this work. Additional details and demographics of the
cohort are described in [7] and the results section.

Statistical Analysis
Functional Principal Component Analysis—Sparse functional principal components
analysis (FPCA) is performed following methods developed by Yao, Mueller, Wang and
others [14, 20, 21]. We briefly summarize this work as it relates to the model used for
estimating the FPC scores. Specifically, the sparsely sampled trajectories are viewed as
noisy samples from a set of independent realizations of a smooth random function, X, with
unknown mean µ(t) = EX(t) and covariance function G(s,t) = cov(X(s), X(t)), for s,t in a
closed and bounded time interval T. The autocovariance operator, K, defined on the space of
square-integrable functions on T, is (Kf)(t) = ∫T G(t,s)f(s) ds. When G is square-integrable
on T × T, then K has an orthornormal set of eigenfunctions {ϕ1, ϕ2, …} and corresponding
eigenvalues {λ1 ≥ λ2 ≥ … ≥0} (i.e., Kϕk = λkϕk, k = 1,2, …) such that G(t,s) = ∑k≥1
λkϕk(t)ϕk(s). Moreover, an individual trajectory xi can be expressed as xi(t) = µ(t) + ∑k≥1
ξikϕk(t), where {ξik}k≥1 is a set of uncorrelated random coefficients having mean 0 and
var(ξik) = λk. We refer to ϕk as the kth functional principal component (FPC). The kth FPC
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score for x is defined as the coefficient ξk = ξk(x). These scores act as random effects for
models using an FPCs basis representation. For the ith trajectory, xithe FPC scores may be
calculated as

(1)

Now, for irregularly sampled data, each trajectory xi is observed at different timepoints,
xi(tij), j = 1, …, Ni. The number of measurements, Ni, observed for the ith subject is assumed
to be random, iid, and independent of other random variables in the model. To allow for
additive measurement error, Yao et al. [14, 20, 21] incorporate uncorrelated errors with
mean 0 and constant variance: let εij be mean zero iid measurement errors, with var(εij) =
σ2, and assumed to be independent of the random scores ξik, for i = 1, …, n; j = 1, …, Ni; k
= 1, 2, …. Letting yij denote the observation of xi(tij) of the ith trajectory at the jth timepoint
made with error εij (with Eεij = 0, var(εij) = σ2), the model is

Using only a single principal component, the model for the ith trajectory takes the form

(2)

The first principal component function ϕ1 describes the direction of most dispersion while a
subject’s first FPC score ξi1 quantifies the extent to which their trajectory correlates with ϕ1.
Using more than one principal component function gives a more detailed fit. This is done,
however, at the cost of a more complicated model, larger variation and less power as each
additional principal component requires an additional term in the representation of each
trajectory (2) and additional FPC scores must be estimated.

The estimation of FPC scores in (1) is complicated by the sparse and irregular sampling of
each trajectory. This sparsity confounds the estimation of the population mean µ and FPC
ϕ1. The latter, being an eigenfunction of K, further depends on the estimation of G(s,t). Both
µ and G are assumed to be smooth and their estimates easily obtained by locally weighted
least squares. In the case of µ, an estimate is obtained by smoothing the aggregate data (tij,
yij) (or, without additional noise, (tij, xi (tij)). Given an estimate of the mean, µ ̑, one may set
Gijk = (yij – µ̑(tij))(yik – µ̑(tik)) and get an estimate of the surface G(s,t) from the aggregate
data ((tij,tik), Gijk). Once µ and G are obtained, they are discretized on a finite grid; we
continue to denote the discretized forms simply by µ and G. The first FPC is obtained as the
eigenvector, ϕ1, that corresponds to the largest eigenvalue, λ1, of G.

Now, the first FPC score could be obtained as a discrete approximation to the integral in (1),
but this clearly fails when the trajectories are extremely sparse and noisy. Instead, this
integral is replaced by a classic multivariate formula for conditional expectation [22]. For
this, let µi = (µ(ti1),.., µ(tiNi))

T, ϕi1 = (ϕ1(ti1),.., ϕ1(tiNi))
T and yi = (yi1,..., yiNi)

T denote,
respectively, the population mean, the first FPC, and the ith trajectory, as sampled with
respect to the ith subject’s observed timepoints ti1,.., tiNi. Also, let Σyi = cov(yi., yi) whose
(j,k) entry is G(tij, tik) + σ2δjk (where δjk = 1 for j=k and 0 otherwise). Then define an
estimate of the first FPC score as
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When ξi1 and εij are jointly Gaussian, and when each of µi, λ, 1, ϕi1, Σyi are substituted by
their estimates from the data ensemble, this is the best linear predictor of ξi1 given
information on the ith subject.

In summary, sparse FPCA [14] provides a parsimonious and consistent method for
estimating the FPC scores {ξi : i=1,…,n} in settings for which a set of n trajectories are
sparsely observed at irregularly–sampled time points. In our analysis, µ, and G are estimated
using local linear smoothing with Gaussian kernel on the pooled data using PACE [22]. For
the viral load trajectories, a bandwidth of 350 days is used to estimate µ and G is estimated
from measurements taken up to 2920 days post-infection, using a bandwidth of 300 days.
For CD4 trajectories, a bandwidth of 350 days is used to estimate the mean, and the
covariance surface estimated from measurements taken up to 2000 days post-infection,
using a bandwidth of 300 days. Due to extreme sparsity in the entire population of CD4
measurements observed less than 120 days or more than 2100 days post date of HIV
infection relative to sampling between 120 and 2100 days post infection, only CD4 counts
observed between 4 and 70 months post infection are used.

For both viral load and CD4 measurements, principal component functions are estimated
from the smoothed covariance surface. FPC scores for each woman are computed by
conditioning on the observed data for the woman in question, and assuming normally
distributed FPC scores and measurement errors. Individual trajectories (viral load and CD4
count) are estimated as the mean curve plus a weighted sum of the principal component,
with weights corresponding to the individual’s FPC score.

For the remainder of the paper, equation (2) is used to approximate individual viral load and
CD4 trajectories. The term “first FPC” will be used to refer to the (estimated) first functional
principal component, ϕ1, and “FPC score” will refer to the (estimated) first FPC score or
coefficient, ξi1for the ith subject.

Linear mixed effects estimates—A linear mixed effects (LME) model with random
slope and intercept was used to fit longitudinal trajectories, and then the obtained slope and
intercept for each woman were subsequently used as predictors in a survival model. To fit
the LME model, linearity of the trajectories must be assumed and so to approximate this,
only measurements taken at least four months post-infection are used. Furthermore, the
slopes and intercepts are only estimated for any woman having at least two measurements
(viral load or CD4 count).

Survival analysis—A Cox proportional hazards survival model is used to examine
prognostic power of FPC scores from both the CD4 and viral load trajectories. The results
are contrasted with the Cox models using the summaries of early CD4 count and viral set
point (defined as the first viral load measurement during 4–24 months of follow-up) for each
trajectory. In addition, we evaluate the Cox models using the estimated intercepts and slopes
from a LME as covariates.

Statistical analyses were performed with SAS version 9.2 and PACE was implemented using
Matlab 7.9 and the PACE toolbox [http://anson.ucdavis.edu/~ntyang/PACE/]. Both viral
load and CD4 data were log10 transformed prior to both the FPC and LME analyses.

Results
Among the 216 women for whom there is a reliable date of HIV-1 acquisition and at least
one viral load or CD4 count measurement, the median duration of follow-up after HIV
acquisition was 4.6 years and 40 deaths were observed. CD4 counts taken between 4 and 24
months post HIV infection (‘early CD4 count’) are available for 83 women and 168 women
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have a viral load measurement observed during that time period (‘viral setpoint’). The FPC
analysis of CD4 count trajectories includes 132 women having at least one CD4
measurement; among these, a median of 4 (and a maximum of 16) CD4 measurements per
subject were used. All 216 women with at least one viral load measurement are included in
the FPC analysis of viral load trajectories; among these, a median of 6 (and a maximum of
27) measurements per subject are used.

Analysis of CD4 count data
For the CD4 count cohort, the estimated mean CD4 count trajectory and the first FPC by
time since infection are shown in Figure 1. On average, CD4 counts are decreasing up to
approximately 2000 days post infection. Also illustrated in Figure 1 are curves
corresponding to the mean trajectory, µ, plus ξ1 times the first FPC, for ξ1= +1 (upper
dotted curve) and ξ1 = −1 (lower). Figure 1 suggests that variability in CD4 trajectories
increases up to approximately 1500 days post infection and levels off or decreases slightly to
2000 days post infection.

The first FPC captures 85.5% of variation of the CD4 count trajectories. With this large
percentage, each woman’s first FPC score, ξi1serves as an informative summary statistic for
the entire CD4 trajectory. As the first FPC of the CD4 trajectories does not change sign, it
serves as a surrogate measure of overall CD4 counts. That is, a positive FPC score
corresponds to a higher than typical CD4 trajectory for that individual, whereas a negative
score corresponds to a lower than typical CD4 trajectory. The FPC score also provides a
useful interpretation about the rate of change of CD4 counts. Since the mean CD4 trajectory
is monotone decreasing, and the first FPC is increasing up to about 1500 days post infection,
a positive FPC score indicates that the CD4 trajectory is decreasing more slowly than
average (or possibly increasing) while a negative score indicates the CD4 trajectory is
decreasing more rapidly than average, up to 1500 days post infection.

The summary statistic, ξ1is illustrated further in Figure 2: observed CD4 counts (points
connected by dotted lines) and the corresponding FPC-estimated CD4 trajectories (solid
lines) are shown for five individual women; a separate color is used for each subject and the
population mean CD4 trajectory is shown in black (solid line). Note that larger positive FPC
scores (red and teal) correspond to women with higher CD4 counts and more slowly
decreasing (or possibly increasing) trajectories, while negative FPC scores (green, blue, and
magenta) correspond to women with lower than average CD4 counts and more rapidly
decreasing trajectories. This suggests that the FPC score summarizes information about the
CD4 level and its change over time.

To evaluate the relationship between CD4 FPC scores and survival, the FPC scores are
rescaled so that a one unit change in the score corresponds to approximately a 100 unit
change in early CD4 counts. Table 1 provides a summary of Cox proportional hazards
modeling of time-to-death using various summaries of individuals’ CD4 trajectories as
covariates. When the FPC score is used as a single covariate, an increase in FPC score
corresponds to a significant decrease in mortality; a 0.82 hazard ratio for one unit increase in
FPC score, with p-value < 0.001; Table 1, row 1. Recall that a one unit increase in FPC
score captures information on both magnitude of CD4 counts and rate of change of the CD4
count trajectory over the entire period of observation so that the hazard ratio captures risk
associated with both level and change of individual CD4 count profiles. Note that 132
subjects have a CD4 FPC score, whereas only 83 women having an observed early CD4
count. When the early CD4 count is used as the covariate in this survival model, a hazard
ratio of 0.71 for 100 unit increase in early CD4 count is estimated but is not significantly
associated with survival (p-value = 0.089, Table 1, row 2).
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In [3] the authors showed that CD4 count slope explained very little of the variation in time
to AIDS or time to death in a cohort of untreated men. To evaluate the relationship between
CD4 trajectory slope and survival in this cohort we fit an LME model to log10 CD4 counts
measured more than four months post infection in women having at least two measurements
and used the resulting estimated individuals’ slopes and intercepts as covariates in a single
survival model. Among the 120 subjects with LME-estimated slope and intercept for log10
CD4 count, the Cox model shows that the slope is significantly associated with improved
survival (a 0.14 hazard ratio for each unit increase in slope, with p<0.001; Table 1, row 3).
However, the LME-obtained intercept is not significantly associated with survival outcomes
(p = 0.23; Table 1, row 4).

Since the number of subjects differs in each of the three analyses shown in rows 1–4 of
Table 1 (recall, for example, the early CD4 summary requires a measurement taken between
4 and 24 months), we repeat the survival analysis using FPC scores restricted to a common
set of subjects. Row 5 of Table 1 shows the result of fitting the survival model with the FPC
score covariate for the 83 women with an early CD4 count. The results are similar to those
obtained using the larger data set (row 1). In particular, even in this much smaller set of
subjects (more than 40% smaller) the first FPC score is significantly associated with
improved survival (a 0.83 hazard ratio, with p=0.003). Similarly, rows 6–8 of Table 1 show
the results from restricting the Cox models to the 113 subjects for whom both FPC scores
and LME-estimated slopes and intercepts are available. The results are similar to those
obtained with these same covariates in the larger populations.

Figure 3 gives a revealing look at how the CD4 trajectories are associated with survival.
Figure 3A displays the trajectories for all women in the cohort, color coded by quartile of
their estimated CD4 FPC score: the blue curves represent subjects having an FPC score in
the lower quartile, where FPC scores are less than Q1 = −3.58; the cyan curves represent
subjects with an FPC score larger than Q1 but smaller than the median, Q2 = 0.80; the black
curves represent subjects with an FPC score are larger than Q2 but less than Q3 = 5.19; and
the green curves are subjects with FPC scores larger than Q3. The Kaplan-Meier curves of
these four groups are displayed in Figure 3B using the same color scheme.

The mortality rate increases from the upper to lower quartile (from green to blue), as
expected, and suggests that the first CD4 FPC score is an appropriate linear covariate in a
Cox proportional hazards model. In this analysis, subjects in the two upper FPC score
quartiles have significantly improved survival compared to the lowest quartile. Specifically,
the hazard ratio for women with scores in the highest (green) quartile is 0.20 (p = 0.034)
while the hazard ratio for women with scores in the second highest (black) quartile is 0.16
(p=0.019). When the two upper quartiles are combined and compared to the two lowest
quartiles, the estimated hazard ratio is 0.24 with a p-value of 0.011.

Analysis of viral load data
Figure 4 shows the estimated mean curve (black) of the viral load measurements by time
since infection. There is an initial decrease in the mean curve reaching a minimum at
approximately 660 days post infection.

The first FPC (shown in gray) captures 73% of the variation in the set of all viral load
trajectories. As noted for the CD4 count data, due to the shape of the first FPC curve, the
FPC score summarizes both viral load level and change in viral load over time. Like the first
FPC for CD4 counts, the viral load first FPC does not change sign so the FPC score may be
viewed as a surrogate measure of overall viral load. A positive FPC score corresponds to a
viral load trajectory that is consistently greater than the population mean while a negative
FPC score corresponds to a viral load trajectory that is consistently less than the population
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mean. Since the first FPC is not monotone increasing (there appears to be slight dip to
around 2000 days post infection), the information that is captured about rate of change of
viral load trajectories is somewhat more complicated than for CD4 counts. However, up to
approximately 2000 days post infection, monotonicity of the first FPC indicates that a
positive FPC score corresponds to a viral load trajectory that is increasing more rapidly than
average while a negative FPC score corresponds to a viral load trajectory that is decreasing
more rapidly than average. This is demonstrated in Figure 5 with observed viral load
measurements (points connected by dotted lines) and the corresponding FPC-estimated
trajectories (solid lines) for five women. A separate color is used for each subject and the
estimated population mean trajectory is shown in black (solid line).

In a previous analysis of these data, Lavreys et al. [7] used the viral set point (available for
168/216 subjects) and showed that it is strongly associated with mortality with a hazard ratio
of 2.21 (p=0.0014) for each unit increase in log10 viral set point (see also, Table 2, row 2).
An FPC score is available for all 216 women in this cohort and Table 2, row 1, shows that
this summary is also strongly associated with mortality with a hazard ratio of 1.57 (p
<0.001) for each unit increase in viral load FPC score. For this analysis, viral load FPC
scores are rescaled so that a one unit change corresponds to approximately a log10 change in
viral set point. To compare the predictive nature of viral set point with that of the viral load
FPC score, the survival analysis is repeated using only FPC scores from the 168 individuals
for whom a set point is defined. The p-values and hazard ratios from this restricted analysis
are similar to the analysis using the data from all 216 women (Table 2, row 5).

Another common measure of viral load trajectories is the viral load slope [9]. We fit the
LME model for log10 viral loads measured more than four months post infection in women
having at least two measurements and used the resulting estimated individuals’ slopes and
intercepts as covariates in a single survival model. Both the estimated slopes and intercepts
are strongly associated with mortality; a hazard ratio of 1.80 (p=0.007) was estimated for
each unit change in estimated slope for log10 viral load and a hazard ratio of 4.51 (p < 0.001)
for each unit change in the estimated intercept for log10 viral load (Table 2, rows 3–4). For
comparison purposes, the survival analysis using the FPC score was repeated; restricted to
those 159 individuals having LME-estimated slopes and intercepts (Table 2, row 6). The
results are nearly identical to the analysis conducted on the entire cohort.

Viral loads and CD4 counts are generally thought to be strongly correlated. In [3] the
authors concluded that a single viral load measurement was the strongest predictor among a
variety of summary measures of viral load and CD4 count trajectories of time to AIDS or
death. In this cohort, longitudinal viral loads and CD4 counts are highly correlated. We
conducted a linear repeated measures regression of CD4 count regressed on log10 viral load.
The estimated coefficient of the viral load covariate was significant at level p < 0.001. The
estimated coefficient of the viral load covariate indicates that on average, for each log10
increase in viral load, CD4 counts drop by 50 units. To evaluate the combined role of CD4
count and viral load trajectory we considered a survival analysis using both the CD4 count
and the viral load FPC scores in the model. The estimated hazard ratio for the CD4 count
FPC score is 0.86 (p = 0.010) and the estimated hazard ratio for the viral load FPC score is
1.36 (p=0.055). Both scores are borderline significant, although this analysis suggests the
CD4 count is the primary indicator of survival in this cohort. This analysis can be thought of
as an evaluation of the relationship between CD4 count trajectory and survival adjusted for
viral load trajectory or, vice versa, as an evaluation of the relationship between viral load
trajectory and survival adjusted for CD4 count trajectory.
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Discussion
The first FPC score is shown here to be an effective and efficient summary of sparsely-
sampled longitudinal measurements of CD4 counts and viral load. A clear benefit is that it
exploits information from the population and hence can be stably calculated for individuals
in a cohort having any number of measurements taken at any time during the study period.
Using FPC analysis, we are able to demonstrate a significant relationship between CD4
profiles and survival outcomes when previous analyses of this data failed to find a
significant association between a summary measure of CD4 counts and survival [7].

This approach is successful for a variety of reasons. Longitudinal measurements of CD4
counts and viral load are trajectories with time-dependent structure. However the classical
summaries such as the estimated viral set point or early CD4 count (and others such as CD4
nadir) are single-value quantities which ignore a majority of the data from each subject.
FPCA, in contrast, is well-suited for the purpose of summarizing an entire trajectory and can
do so with a single quantity: the first FPC score. As seen in the analysis of this cohort, the
FPC score summarizes both the overall measurement level and the measurement changes
over time. Furthermore, any principle components analysis is designed to capture the most
variation among subjects so that any variation in viral load or CD4 count trajectories
associated with survival will be captured by the FPC scores. For this reason, the FPC scores
can be used in a preliminary analysis to determine if there is any feature of the longitudinal
trajectories associated with survival. Once established, subsequent analysis and evaluation
of the characteristics of the functional principle components is needed to identify which
clinical features are associated with survival.

The classical measures, viral set point or early CD4 count, are only available for a fraction
of the cohort–in this case, individuals for whom measurements were taken during early HIV
infection–and so the analysis must ignore a substantial portion of the cohort. Indeed, in the
viral load cohort, only 168 women had data available for estimation of viral set point
whereas FPC scores were estimated for all 216 women. In the CD4 cohort, only 83 out of
132 women had data available for estimation of early CD4 count. Thus, the FPC analysis
has the potential to increase sample size and improve power.

An attractive feature of this analysis is that no priori assumptions are made on the trajectory
shapes. Viral load trajectories are sometimes estimated using linear or piece-wise linear
models [2, 9, 10] with different rates of change during and after the acute infection phase.
While the acute infection stage is typically reported as the first 8–10 weeks of infection [23],
Lyles et al. [10] used piece-wise linear models and found different rates of change for viral
load in an Italian cohort before and after 18 months post-infection. Using a linear or piece-
wise linear model, the duration of the acute infection phase must somehow be estimated–via
statistical inference, from biological knowledge of the population, or by some other means.
FPC obviates the need for this. Different rates of change at different times post-infection
arise naturally through the estimated mean curve and principal components. Different
individuals may have different trajectory shapes, depending upon their FPC scores. In the
dataset analyzed in this work, the estimated mean curve and first principal component shape
suggest that some individuals may have continued rates of viral load decay lasting as long as
approximately 18 months post infection, consistent with the work of Lyles et al. [10] (see
Figure 4).

There are a number of weaknesses in the use of the two-stage FPC/Cox proportional hazards
approach for evaluating the relationship between longitudinal profiles and survival. The FPC
score is not a measure that can be calculated for individuals in the absence of data from an
entire cohort; in that regard it is similar, e.g., to LME estimates of slopes and intercepts. In
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addition, without careful evaluation of the shape of the first FPC and its relationship to the
population mean, the first (or higher order) FPC scores lack clinical interpretation and carry
no explicit information about how CD4 or viral load trajectories are associated with
survival. The hazard ratios estimated in our analysis do not have obvious clinical
interpretations; our results indicate primarily that there is an association between both viral
load and CD4 count trajectories and survival. In this study we are able to relate the FPC
scores to clinically meaningful features of CD4 and viral load trajectories and provide some
guidance on the interpretation of the hazard ratios, however, this is not guaranteed in
general. For example, if the FPC changes sign or monotonicity over time, separate
interpretations might be needed over different time intervals, possibly obscuring any
relevant clinical interpretation. Thus FPC scores are not likely to be useful measures for
clinical evaluation. Nonetheless, the approach is well suited to research analyses and
population studies and can be used to identify if any features of a longitudinal trajectory are
associated with an outcome of interest. When this is the case, additional analysis and careful
study of the form of the functional principle components is needed to identify which
clinically meaningful features of the trajectories are associated with the outcome of interest.

A further weakness, which is shared by many two-stage approaches when evaluating the
relationship between longitudinal profiles and survival is that the summary measures used in
the two-stage analysis (FPC score, estimated viral set point, early CD4 count, or slopes and
intercepts from random effects models) are often measured with error. As such, the point
estimate of the hazard ratio is known to be biased [24] towards the null with amount of bias
depending on the variation in the covariate. However, as described above, the magnitude of
the hazard ratio associated with the FPC score covariates lacks clinical interpretation; the
strength of the approach is that it identifies the trajectories as being strongly associated with
survival, leading to additional analysis to determine specific features of these trajectories
which impact survival.

There are many possible applications and areas for refinement. The analysis presented here
is a two-stage approach in the sense that FPC scores are obtained first and subsequently used
in a survival analysis. Joint modeling of survival data together with FPC is a promising
alternative approach [15, 25]. Because of the computational simplicity, our two-stage
approach can serve as a good initial estimate in the joint modeling approach, which involves
an Expectation Maximization (EM) algorithm to estimate parameters and may require
selection of the number of FPCs within the iterations. Due to the enrollment of
nonparametric longitudinal components, this estimating procedure will be more
computational intensive than that in the joint models with popular parametric longitudinal
submodels. Nevertheless, the proposed two-stage estimate can be used as an exploratory tool
in the preliminary analysis and a starting point in the further joint models.

For simplicity and direct comparison with other commonly used summaries we have
focused on only the first score. Examining finer trajectory details by including additional
principal components is of interest. The number of selected principal components and
smoothing parameters could be chosen objectively by automatic procedures. In this data set,
adding the second principle component scores as covariates in the regression analysis did
not qualitatively change the conclusions: neither the second FPC scores for CD4 count or
viral load were significant predictors of survival and did not change the conclusions based
on analysis with only the first FPC score as a covariate. Finally, FPC scores are used here to
evaluate survival outcomes but they have application in a variety of other statistical
analyses. Examples include the comparison of trajectories between two or more groups or as
an adjustment covariate in regression analysis which require adjustment for viral loads or
CD4 counts.
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In summary, the functional principal components approach for the evaluation of longitudinal
data is an attractive alternative to using single summary measures of longitudinal profiles in
a research setting. It requires almost no a priori assumptions and can increase power of
analysis by including all members of a cohort with observed data. Furthermore, if
associations between the FPC score(s) and survival are detected, it will often be the case that
additional evaluation of the profile using the functional principal components can reveal
specific characteristics that are associated with the outcome of interest. As more biomarkers
are identified and used to evaluate HIV survival and progression [26, 27] (such as measures
of inflammation or immune activation), summarizing longitudinal trajectories of these
biomarkers will become increasingly important. The FPC method presented here provides
one such method that is rigorous and effective for revealing structure in these data that is
associated with clinical outcomes.
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Figure 1.
Mean CD4 trajectory, µ, (black), first CD4 principal component direction, Φ1, (gray; scaled
and shifted for display), and µ ± 1*Φ1 (dotted).
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Figure 2.
Observed log10 CD4 count trajectories (dotted, *) for five representative women and the
corresponding color-matched first FPCs scaled by their respective FPC scores (solid lines);
the FPC scores are given in the legend. The overall mean log10 CD4 count trajectory is
shown in black (dashed).
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Figure 3.
A) CD4 counts by quartile of FPC score: blue=lowest, cyan=second lowest, black=second
highest, green=highest quartile of FPC score. Circles connected by lines indicate sampled
CD4 counts from one individual. B). Kaplan-Meier survival curves for groups defined by
each of the four quartiles of CD4 FPC scores.
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Figure 4.
Mean viral load trajectory, µ, (black), first CD4 principal component direction, Φ1 (gray;
scaled and shifted for display), and µ ± 1*Φ1(dotted).
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Figure 5.
Observed log10 viral load trajectories (dotted, *) for five representative women and the
corresponding color-matched first FPCs scaled by their respective FPC scores (solid lines);
the FPC scores are given in the legend. The overall mean log10 viral load trajectory is shown
in black (dashed).
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Table 1

Survival Analysis and measures of CD4 count data.

Predictor(s) Df N Hazard Ratio for a 1 unit
increase in predictor

(95% CI)

P

1st FPC score 1 132 0.82 (0.74, 0.91) <0.001

Early CD4 count 1 83 0.71 (0.49, 1.05) 0.089

LME slope + 2 120 0.14 (0.06, 0.34) <0.001

   intercept 0.16 (0.01, 3.16) 0.23

Subjects with both an FPC score and an early CD4 count

1st FPC score 1 83 0.83 (0.73, 0.94) 0.003

Subjects with both an FPC score and LME-estimated slope and intercept

1st FPC score 1 113 0.82 (0.73, 0.91) <0.001

LME slope + 2 113 0.15 (0.06, 0.36) <0.001

   intercept 0.17 (0.01, 3.31) 0.24
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Table 2

Survival Analysis and measures of viral load trajectories

Predictor(s) Df N Hazard Ratio for a 1 unit
increase in predictor

(95% CI)

P

1st FPC score 1 216 1.57 (1.25, 1.98) <0.001

Viral set point 1 168 2.21 (1.36, 3.60) 0.0014

LME slope + 2 159 1.80 (1.18, 2.76) 0.007

   intercept 4.51 (2.17, 9.38) <0.001

Subjects with both an FPC score and a viral set point

1st FPC score 1 168 1.67 (1.29, 2.14) <0.001

Subjects with both an FPC score and LME-estimated slope and intercept

1st FPC score 1 159 1.64 (1.26, 2.13) <0.001

Stat Med. Author manuscript; available in PMC 2013 August 30.


