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Abstract

Many Genome-Wide Association Studies (GWAS) have signals with unknown etiology. This
paper addresses the question — is such an association signal caused by rare or common variants
that lead to increased disease risk? For a genomic region implicated by a GWAS, we use Single
Nucleotide Polymorphism (SNP) data in a case-control setting to predict how many common or
rare variants there are, using a Bayesian analysis. Our objective is to compute posterior
probabilities for configurations of rare and/or common variants. We use an extension of coalescent
trees — the Ancestral Recombination Graphs (ARG) — to model the genealogical history of the
samples based on marker data. As we expect SNPs to be in Linkage Disequilibrium (LD) with
common disease variants, we can expect the trees to reflect on the type of variants. To
demonstrate the application, we apply our method to candidate gene sequencing data from a
German case-control study on nonsyndromic cleft lip with or without cleft palate (NSCL/P).
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2 Introduction

The Common-Disease-Common-Variant (CDCV) hypothesis [Balding et al., 2007]
extended the simple model of one-gene-one-disease applicable only to Mendelian disorders,
the notion of common disease variants being that a few common variants underly a common
disease by leading to increased disease susceptibility. Common variants were defined as
variants with > 5% Minor Allele Frequency (MAF). But as common variants could not
explain a large part of the heritability for many common diseases, the rare variants
hypothesis [Bodmer and Bonilla, 2008] [Schork et al., 2009] was put forward as an
explanation [Dickson et al., 2010].

As rare variants have very low LD with the SNP markers typically used for GWAS, such
studies are generally under-powered to detect the presence of rare disease variants [Asimit
and Zeggini, 2010]. So, while still using the SNP data, we aim to answer a fundamental
question - does this genomic region contain rare variants for increasing disease risk?

If we answer this correctly, then we can either continue doing SNP association studies if
only common disease variants are present, or go into sequencing studies to detect those rare
disease variants. Thus, it seems that a proper answer would be to predict the number of
common and rare disease variants in that region from the data. More generally, we will
provide a posterior distribution of the number of common and rare variants in the region.
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We suggest that the SNP data does in fact contain information about this problem. It is
commonly known that SNPs contain useful information about the genealogical history of the
samples [Balding et al., 2007], which is used to construct the genealogical tree on which the
samples are arranged. The common variants will shape the coarser structure of the tree,
while the rare mutations will come into play in the lower branches — how the affected and
unaffected are clustered in the lower subtrees will tell us if there are some rare disease
variants for those group of subjects. The diagram in the next section illustrate two such
scenarios.

Our Bayesian approach is the following — we want to obtain posterior probabilities for
having different configurations of rare and/or common disease variants. To do so, we use
SNP data to generate min-ARG’s [Wu, 2008] (an ARG [Griffiths and Marjoram, 1996] with
minimum number of recombinations) to model the genealogical history of the sample,
without regard to their case-control status. On these trees, to perform a Monte Carlo
integration, we generate different configurations of disease mutations, and calculate the
likelihood of the observed disease status. That is then coupled with priors to generate the
posterior distribution. To illustrate, we apply our method to a real dataset, and observe that
the posterior mode indicates the presence a few rare variants — it is discussed in detail in
the real data analysis section. A flowchart showing the steps is presented in the next section,
and a summarized algorithm is presented at the end of the methods section. We also explain
the workings of the method by a toy example presented in the appendix.

This method can be thought as an extension to the analysis in [Z&lIner and Pritchard, 2005]
or [Morris et al., 2002], where a single disease variant (which is unobserved) within one of
the SNP-intervals with the highest posterior probability was detected. (Similarly, we too
assume that the Disease Susceptibility Loci (DSL) are not the SNP markers themselves.)
Here, we allow for multiple disease variants, both common and rare. Moreover, we want to
make an overall conclusion regarding presence or absence of rare variants, so we aggregate
the common and rare variants by not trying to determine their location within the gene
segment (which would get particularly difficult for rare variants).

3 Materials and Methods

The genealogical tree has been a common approach [Balding et al., 2007] to model the
ancestral history of a set of individuals. It is generally accepted [Z6lIner and Pritchard,
2005], [Gusfield et al., 2004] that the ARGs are good approximations of the true unknown
genealogy for case-control data when we have sufficient number of SNPs. The purpose of
using them is to distinguish excess sharing of disease allele from allele sharing due to
relatedness. In this way, the genealogical tree presents the information in the marker SNPs
to the case-control association study, thereby increasing efficiency.

In the following diagram (figure 1), we illustrate the hypothetical situation of two (complex)
diseases via two different genealogical trees, one being driven by a common variant and the
other by rare variants.

This distinction between common and rare variants is driven largely by the disease model
that we will specify, because the analysis certainly depends on how we define those variants
and their effects. We specify all the components of the disease model while describing the
likelihood, which has three main components. After the likelihood, we define the priors to
be used in conjunction, and then show the steps to compute the posterior. It is important to
remember that, as the final posterior probability, we are interested in the presence or absence
of variants, rather than their locations. We explain our method through the flowchart on the
next page.

Genet Epidemiol. Author manuscript; available in PMC 2013 July 01.
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3.1 Flowchart of the Method

A flowchart (figure 2) illustrating the steps of our method is presented here. It is the
diagrammatic representation of the algorithm in section 3.6. Here, we show that, at first,
genealogical trees (actually, AR graphs) are generated from the SNP genotype (phased)
data. Then, disease information is added for the subjects, and the disease likelihood is
modeled, for which we simulate potential disease mutations at different branches of the tree.
Using all these, the likelihood is computed, and then using appropriate priors, the posterior
is calculated. The posterior is aggregated over simulated trees and mutations to give the final
posterior distribution of rare and common variant counts.

3.2 Bayesian Analysis

[Morris et al., 2002], [Z&lIner and Pritchard, 2005] perform Bayesian analysis to obtain
posterior probabilities of of the SNPs being (in LD with) the true DSLs. In the first step,
they use the SNP genotype data (G) to generate possible ARGs (7) from the posterior A7/
G). In the next step, they evaluate posterior probabilities of the disease loci (x) given
observed disease phenotypes (@) and the tree structure, i.e. Ax| ®, 7). The locus with the
highest posterior probability can then be reported.

Our Bayesian analysis, while along the lines of [Z6lIner and Pritchard, 2005], extends to
complex diseases by allowing multiple DSLs with different penetrance. So, instead of a
single DSL, we evaluate the posterior probability of a particular configuration of DSLs.
Then, we evaluate posterior probabilities corresponding to counts of rare and common
variants by aggregating over such posteriors.

Thus, instead of a single location, the vector x now contains all the information about
(simulated) disease-susceptible mutations in the gene — the locations of the mutations, type
of the mutation, as well as the allele at that locus. This x leads to a count of common and
rare variants — denoted by the tuple N = (N, N,). We can obtain AN) by aggregating over
A(X), and the posterior probability of the counts — AN | @, 7) is what we will be interested
in.

3.3 The Likelihood

The likelihood has three terms in all — first, the probabilities of the minARGs given the
SNP genotypes, A T/ G), secondly, the probabilities of the disease mutations occurring on a
tree, Ax/ 7), and finally, the disease probabilities given the disease mutations, A® | x, M).
It will also include the modeling parameters, which we discuss later.

We will explicitly mention the disease model M, which includes models for the disease
probabilities given the mutations, and involves models for penetrance, epistasis, phenocopy
etc. In the initial stages of our calculations we keep the model A, as a conditional term, to
clearly identify situations where those disease modeling assumptions play a role. We can
later omit the term, as we consider it fixed.

3.3.1 Modeling the Tree—While modeling the tree, a simple top-down approach is taken.
The root node has probability 1. Conditional on the parental node, a mutated offspring has
probability ., so a direct descendant, whose genotypes are same as his parent, has
probability (1 — ). Mutations are assumed to be independent. As each node only allows one
mutation, if there are .#'nodes in the tree, and /m mutations, then the likelihood term for
mutation is /(1 - }L)JV m,

Genet Epidemiol. Author manuscript; available in PMC 2013 July 01.
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We also assume that mutation and recombinations are independent. If the probability of a

recombination is p;at locus / at one particular node, the contribution is p§(1 - pj)l_’, where
rindicates if there is a recombination or not.

3.3.2 Modeling the Mutations—Our model extends the approach of [Z6lIner and
Pritchard, 2005], where we had only one possible DSL, and since we do not know
beforehand which SNP-interval it will belong to, it was assumed that without phenotype
information the tree does not contain information about the DSL.

Now, since we have multiple mutations possible, one simple extension would be to model
Ax/ T,n) = pk, where kis the total number of mutations in the tree that contribute to the
disease. We still preserve the basic assumption that the tree topology by itself does not
provide any information on the causal DSLs; this will be explained in detail in the
discussion on priors (section 3.4).

3.3.3 Modeling the Disease Probability—As we have seen, the disease loci variable x
contains the locations of the mutations, its type — rare/common, and the zygosity — 0/1/2 if
common, 0/1 if it is a rare variant (as a person having two copies of the same rare variant is
extremely low, without high inbreeding). These disease mutations are distinct from the
marker SNP mutations, which are only used in making the trees.

Given a tree, a variant can be determined to be rare or common based on the threshold — if
we take MAF < 1% to be the definition of rare variants, then by looking at where the
mutation occurs in a tree, we obtain the proportion of people who have that mutation, and
simply compare it with 1%SS.

While modeling the rare variants, we consider the mathematically simplifying assumption
that if a subject has inherited any of the hypothetical (simulated) rare causal mutations, that
individual will be diseased, i.e. complete penetrance. With completely penetrant rare
variants, having a second rare variant in addition to the first one does not change the
likelihood — that is the mathematical simplification we aim for. This is partly motivated by
the standard infinite-sites model [Balding et al., 2007]. Note that this is not same as
assuming that a person can have only one rare variant.

On the other hand, a person can have multiple common variants, each with small to
moderate effect. Let ¢ be the number of common variants a person carries, adding over all
loci in the two chromosomes. The penetrance is modeled as a function of the common
variant count ¢— it is easy to see that this function should be a positive non-decreasing
concave function. That is so because, it is desirable that the gain in penetrance while moving
from 20 to 21 common variants should be rather small than while moving from 1 to 2
common variants; if we used an additive or multiplicative instead, the change would have
remained same or even increased, something which is not desirable. It also means that we do
not enforce the common variants to have constant effect sizes. A suitable model for the
penetrance is thus the power law, where p= p - ¢V, where gy = 1 is a multiplying factor
(does not have the “base rate’ interpretation), ¢ € (0, 1) is the standardized count, and v € [0,
1] is the shape parameter. In this expression, the common variant count cis transformed to
be in (0, 1) by dividing with the total number of loci.

We also allow for phenocopy, i.e. an individual can be affected without having any causal
variants. It is modeled as Adisease | no variants) = ¢, which is a small but non-zero quantity.

Genet Epidemiol. Author manuscript; available in PMC 2013 July 01.
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These modeling assumptions constitute our disease model A4, and the results will certainly
vary to some extent if a different model is used. To note, M comes only in the A® | x, M)
term.

We have denoted likelihoods by A(*), and we denote priors by (). Following the standard
practice, we take m( 7) and rt(x) to be uniform. As mentioned in section 3.3.2, having a
uniform prior on the tree topology on absence of any specific information is reasonable, and
then our prior on the number of recombinations or mutations compensate for structures
which have more mutations or recombinations, because they are rare events in reality. Also,
if we do not have specific information about increased or decreased mutation rate in a
specific part of the candidate region, it would be reasonable to assume that mutation is
equally likely in any particular locus. One important point to consider is that these are
proper uniform priors. This is so because the spaces of 7and xare finite, as the number of
possible minARGs is finite, and also any tree being of finite size, the number of possible
mutations is also finite.

Now we put priors on the parameters p, p, ¢, g, v. We do not go on to use hyperpriors on
the prior parameters, but instead choose them carefully, e.g. the mean recombination rate
from HAPMAP.

Mutation rate: r() = beta(a,, ),
recombination: nt(p) = beta(a,, ).

Phenocopy: mt(p) = beta(ay, By)-

lo

Penetrance: () =gamma(a.p, B); 7T(V)=6_—gi +6",6 € (0,00),
The mutation, recombination and phenocopy rates are probabilities, and so it is standard to
use a beta prior for them, as beta distribution is generally a conjugate prior for probabilities.
For our real data analysis, we could estimate the rates from HAPMAP data extracted about
the same region, and compute the prior parameters. In general, the program uses standard
values provided in the literature, but since the probabilities can vary across the genomic
region and the phenocopy rate might vary based on various environmental factors, the
program allows for updated parameter values to better suit the dataset at hand. In Bayesian
methods, the priors have a larger effect when the sample size is small, and the effect of the
prior "washes away’ as the sample size tends to infinity. So, especially for smaller sample
sizes, the user can choose to vary the prior parameters themselves to see to what extent the
posterior distribution is affected.

The parameters g and v have prior distributions chosen in a way such that they provide
conjugate priors for the distribution of common variant penetrance described in the previous
section and achieve the intended “positive non-decreasing concave’ shape.

3.5 Posterior

Because the parameters here are setwise independent, i.e. the three likelihood terms have
different parameters, we can simplify the likelihood as (steps in appendix A):

P((Da G|)C, M9 {,u’py @, Po, V})=ZP((D|X, M’ {90’ Po, V}) : P()ClT, {M}) : P(T|G9 {p}),
T

which can be written concisely, by integrating out the parameters, as

Genet Epidemiol. Author manuscript; available in PMC 2013 July 01.
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P(®,Glx, M)=)" P(@]x, M) - P(AIT) - P(T|G).
T

As with likelihoods A-) and priors (), we denote posteriors by ). We are interested in &
x| ®, G, M).

By Bayes rule, (note that w(x) is an uniform prior):

DP(HD, G, M) < P(®,Glx, M) - n(x) o« P(D, Glx, M).

Note that AP, G/ x, M) can be easily obtained from the likelihood after integrating out the
model parameters. That step is much simplified by observing again that the parameters are
setwise independent, and therefore the three terms in the likelihood can be integrated
independently. (Actually, i contributes to both tree and mutation terms. But by the
construction of coalescent trees, each SNP locus can mutate exactly once, and therefore the
term involving p is same for all trees. So we take it out of the calculations. Hence, p
remains only in the mutation term.) The details are in appendix B.

Hence, we can write,

P (x|, G, M):ZP(T|G) - P(x|T) - P(D|x, M).
T

In the final stage, we summarize the information on mutations to the count vector N = (N,
N,), which stores the number of common and rare variants present in the case-control
sample. Since are actually interested in is A, not x, S0 we aggregate over xto get the
posterior distribution of M.

P(N|D, G, M):Z Z P(T|G)-P(x|T)-P(D]x, M):ZP(T|G) { Z P(x|T) - P(D]x, M)} i

T x—N T x—N

3.6 The Steps for Computation

After describing the model in the previous sections, we now outline the steps for computing
the posterior ZN| ®, G, M), which is to be used for making inferences. These steps are also
illustrated on the flowchart (figure 2) in the beginning of this section.

1. We use SNP haplotype data (G) to generate possible minARGs (7).

2. Givenatree (7), we model the likelihood A(x/ 7) of the putative DSL
configurations (x), which depends on the probability of mutation and
recombination at each site.

3. Next, we model the disease probabilities, A® | x, 7, M), where @ is the disease
status, M is the disease model.

4. They are used to simulate configurations of mutations (x) at probable DSLs. Each
configuration corresponds to a particular count of common and rare variants, NV/=
(N Np).

Genet Epidemiol. Author manuscript; available in PMC 2013 July 01.
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5. So the terms in the likelihood are: A® | x, 7, M), Ax/ T), AT/ G). The complete
likelihood AP, G /x, M) aggregates the previous terms by summing over all
possible 7’s.

P(®,Glx, M)=)" P(@]x, M) - P(IT) - P(T|G).

6. We use appropriate priors, e.g. uniform prior on trees (7), prior on recombination
rate obtained from HAPMAP, etc.

7. We evaluate posterior probabilities x| ®, G, 7, M) of such configurations (x),
given the observed phenotypes (®), SNP data (G), and the tree (7).

8. Finally, we get posteriors ZN| ®, G, M) for variant configurations (A), by
aggregating over corresponding configurations, and over simulated trees.

P(N|®, G, M):ZTZ PGO.G.T. M),

The trees are generated in step 1 by Wu’s algorithm of generating minARGs uniformly from
a given haplotype data. The mutations in step 4 are generated randomly on the branches of a
given tree. Both these simulations are used for Monte Carlo estimates of probabilities by
averaging, and therefore our computed posterior depends on the accuracy of the drawn
samples — the number of draws and how well they span the sample space. As the sample
space is finite in both cases, ensuring these criteria are much more straight-forward.

4.1 Real Data Analysis

Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a common congenital
malformation that is caused by an interplay of multiple genetic and environmental factors
[Mossey et al., 2009]. Our dataset comprises 96 NSCL/P cases and 96 controls of Central
European ethnicity in whom the exonic and adjacent intronic regions of one candidate gene
for NSCL/P has been sequenced. The gene was among the candidate regions in an
independent GWA study [Mangold et al., 2010]. Moreover, this gene has functional
importance, as it codes for a protein which is involved in bone development, and is therefore
relevant for further analysis.

The genotypes were obtained as unphased, and the software PHASE [Stephens et al., 2001],
[Stephens and Donnelly, 2003] was used to infer the haplotypes. Phasing probability
estimates were high in general (i.e. posterior probability computed by the software for the
phase calls were mostly 100%, and in occasional cases going down to 85%, but never
below). There was a single missing SNP in a person, and it was imputed using PHASE. The
recombination rates estimated [Li and Stephens, 2003], [Crawford et al., 2004] from the data
by PHASE tally with those from the CEU population of HAPMAP (phase I) [The
International HapMap Consortium, 2007], which comments favorably on our data quality.

On a cursory comparison of the allele frequencies between cases and controls, it seems that
lower-frequency SNPs have comparatively higher relative difference in terms of allele
frequencies between the two groups, as compared to higher-frequency i.e. common variants.
This implies that there should be some effect from rare variants. If we graphically display
the generated ARGs for the data (a tree is shown in figure 3), they also imply that the top-
level (i.e. higher MAF) SNPs do not provide a good partition of the cases and controls,

Genet Epidemiol. Author manuscript; available in PMC 2013 July 01.
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whereas the lower-level SNPs provide small clusters of mostly cases and controls. These are
scenarios where our algorithm, as expected, provide higher evidence for rare variants.

When we look at the obtained posterior distribution (figure 4) for the joint distribution of
count of common and rare variants, we observe that the posterior mode is positioned along
the axis of rare variants. The posterior dies out with increase in the number of common
variants, which is expected to be the case when there are few or no common variants. Albeit,
the posterior is not highly peaked, something to be expected given the small number of
cases.

In fact, as the number of cases is only 96, the possible number of haplotypes is only 192,
therefore for rare variants with MAF < 1%, on average we expect to see them in < 2 people.
Such situations make it difficult to distinguish between real variant and phenocopy,
therefore we can expect the detection efficiency to be low. But the posterior does indicate a
skew towards rare variants, which is something we expect, based on our knowledge of the
data. So we can conclude that the method works reasonably with this small sample too. In
practice, as verified in our extensive simulations, for usual case-control studies with
hundreds or even thousands of subjects, this method will have reasonably good
performance.

Since we allow for phenocopy in our model, the posterior distribution also allows for the
case with no causal variants in the genomic region, i.e. the (0,0) point. Thus, a posterior
distribution comparing the presence or absence of causal variants in that region can also be
derived from the current posterior distribution. That can lead to a statistical test for presence
of causal variants, something which can complement the objective of this current paper,
which works on a genomic region already identified as a potential candidate by a GWAS. It
can be an interesting future project.

4.2 Simulated Data Analysis

We conduct a simulation study for a number of different scenarios - samples with no
underlying variants, samples with only rare variants, with only common variants, and with
both types of variants. Some (smoothed) plots of the bivariate posterior densities are
produced as examples.

The haplotype distribution is generated by drawn the haplotypes from a coalescent
genealogy via MaCS [Chen et al., 2009]. The loci are selected at random to be the DSLs
with equal probability. The disease phenotypes are generated under various disease models
(e.g. rare DSLs, common DSLs, both, or none), from which a specified number of cases and
controls are selected without replacement. The causal loci are then excluded, following the
assumption that the marker loci are not the DSLs. The number of SNPs is varied from 30 to
100, and similarly the number of causal rare and common variants. The sample size is also
varied — we examine scenarios with total sample size ranging from 300 to 3000. Although
we have taken equal number of cases and controls, it is not mandatory for our program.
1000 replications are typically used for calculating the posterior distribution, though this
number can be changed easily.

For all the figures presented here as examples, there is more spread in the posterior
distribution on the axis of rare variants, as expected; both when there are true rare variants
and when not. When there are true rare variants (figure 5), the posterior is shifted towards an
increased count of rare variants. Similarly, for common variants as well (figure 6), the
posterior is shifted more along the common variants axis as more common variants are
added while simulating the dataset. For the scenarios presented here, we use 1000 cases and
controls each, and 1000 replicates for the simulation. The data is generated as phase known.

Genet Epidemiol. Author manuscript; available in PMC 2013 July 01.
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We observe that the peakedness of the posterior increases with the increase with sample
size, which is natural, given that we get more information about the true number of variants.
This is especially true for rare variants. As mentioned in the last section, when we have
sample sizes of just a couple hundred, it is hard to distinguish rare variants from
phenocopies. Then the posterior is largely dictated by the priors. But as we increase our
sample size, given a true rare variant, we should see a cluster of affected people under some
particular leaf of the genealogical tree. That is how we get increased efficiency to detect the
presence of rare variants.

The posterior mode gives a rough idea about how many rare and common variants there are.
This can be considered as an estimate, though is bound to have some variability, particularly
in rare variants, as illustrated by the higher spread in that co-ordinate. We can see in figure
7, for example, that even under no true variant, the mode may be close to zero but not
exactly zero.

The simulated scenario with no true variants (figure 7) shows what can be considered of the
null behavior for this method, where as the other cases reflect its efficiency. While that is
somewhat model and parameter-dependent, it appears that the method does well in large
samples; in the GWAS era, a sample of about a few thousand is not unexpected.

Although the tree sizes increases with the sample size, the tree nodes work with the
haplotypes instead of the genotypes. And the number of possible haplotypes will be much
less that the number of people, in particular if there is LD, which we expect to see in the
small candidate regions that we work with. Thus, a moderate increase in sample size does
not incur an unreasonable increase in tree computation.

5 Discussion

In this paper, we presented a method to predict the number of rare and common variants in a
genomic region underlying a complex disease. While still based on SNP data, we are able to
obtain information on this by utilizing the genealogical history inherent in the sample, by the
use of genealogical trees (more specifically, ancestral recombination graphs). With a
Bayesian approach, we provide a bivariate posterior distribution for the counts.

While being a Bayesian analysis, we avoid the use of Markov Chain Monte Carlo (MCMC)
or Gibbs sampling to obtain posterior distributions, by taking simple conjugate likelihood
and prior models. The choice of priors always has a scope of debate, and might be improved
if more information is available from the studies of real datasets. For now, we try to
incorporate as much available information as possible, e.g. using the mutation and
recombination rates obtained from the HAPMAP. We think that this method can be
extended by considering better models for rare variants, which can improve upon some
simplifying assumptions.

By excluding such useful but computation-intensive methods, we are able to cut down on
runtime, and the program runs under a few minutes for moderate sized datasets, even on
personal computers. To be specific, with a few hundreds of subjects, and SNP counts around
30 to 100, the program runs in less that a couple minutes on a laptop (2.5GHz, 3 GB RAM),
when we perform 500 simulations for each scenario. The program has fast computation
speed for two reasons — first, we mostly use conjugate priors and are able to integrate
mathematically, so we avoid Monte Carlo integrations for many variables (and we avoid
MCMC altogether) — the computation time is mostly spent on simulating the trees and
doing Monte Carlo integration. Secondly, the total number of unique haplotypes after
phasing is much smaller than 2 x the total number of subjects, so the number of tree nodes in
the ARG is much smaller than the expected number of nodes in a standard genealogical tree.
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However, as the computation required for trees increases rapidly with large number of
SNPs, this method might not be well-suited for large datasets, e.g. a whole-genome scan, at
this point; as the capability of computing infrastructure is increasing rapidly, and sequencing
costs are also going down very fast, such extensions could become possible in the near
future.

Another interesting way of extending this method would be to include covariates. Using
covariates in order to better model the environmental effects, in addition to the genetic
effects modeling, is becoming increasingly popular, and we could easily extend our method
to allow for environmental factors by incorporating covariates into the phenocopy rate
parameter.

At this point, we follow the standard assumption ([Wu, 2008], [Z6lIner and Pritchard, 2005])
that that haplotype phase is known or readily available. But this method can be readily
extended to include haplotype uncertainty. As the package PHASE provides haplotype
estimates along with posterior probability estimates corresponding to those phase calls,
those can easily be incorporated into our likelihood calculations, and simulations based on
different phase configurations can be aggregated with phasing probabilities as weights, to
produce the final posterior probability.

The method is fairly robust to population stratification, as it employs genealogical trees to
model the population. It will be interesting to see how this method can be extended to
family-based studies, which already contains some useful structural information, and is
believed to be more powerful for studying rare variants.
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Appendix
A. Simplifying the Likelihood

The parameters here are setwise independent, i.e. the the three likelihood terms have
different parameters. We will later see why this is true. Then, we can simplify the likelihood
as:

P(D,Glx, M)
= P(®,Glx, T, M)P(T|x, M) ~ ) P(@]x, T, M)
T T

- P(Glx, T, M)

- P(T)x, M):ZP((Dlx, M)
T [assumption A]

- P(G|T)

- P(T\|x)

:ZP((D|x, M)
T

- P(x|T) - P(T\G).

Assumption A says that given the complete ancestral history of both marker and disease
loci, and given the disease model, the marker SNPs and disease phenotypes are independent.
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Which is reasonable given that the DSLs are not the markers, and we are conditioning on the
DSLs directly. The next step follows as the model A7only controls the disease probabilities.

Thenweusethat AG/T)x AT/G)/AT),and AT/x)x Ax/T) - AT).

B. Simplification of the Likelihood Components

As mentioned in the deduction of posterior distributions, we integrate out the model
parameters from the three likelihood components. This is facilitated by the parameters being
setwise independent, which can be easily seen by looking at the three terms.

P(T|G)= [ P(T|p, G)n(p)dp,
P(T)= [ P(xlu, T)m(udp,
P(®lx, M)= [ P(®|py, v, ¢, x, M)m(po)n(v)n(@)dpodvd.

C. A toy example

In the following simple example, we show how this method compares different tree
structures based on their posterior (computed using likelihood and prior as disucessed
below). we fix a tree and compute the posterior probabilities for different mutation
configurations. Our data has 4 affected and 5 unaffected subjects. For simplicity, let

p = P(disease|1 common variant) = 0.4,

r= P(disease|rare variant) = 1,

¢ = P(disease|wildtype allele) = P(phenocopy) = 0.1,
i = P(mutation at any node) = 0.05.

Given the tree structure, there are various possible configurations of DSLs. In figure 8, we
show four such scenarios.

First, we compute A® | x, 7, M) = P(phenotype | mutations, tree, disease model).

1. If we had no mutations, i.e. only phenocopies;

I=[¢* - (1 —¢)°1=[0.1* - 0.97],1ogl= — 9.7.

2. 1 common (MAF = 5/9), no rare variants;

I=[p®- (1= pPIx[e" - (1-¢)’1=[04°-0.6°] x[0.1' - 0.9%],logl= — 6.4.

3. 1 common (MAF =5/9), 1 rare variant (MAF = 1/9);

I=[p* (1= p)2I1x[F1x[(1 = ¢)*1=[04%-0.67]x[1']x[0.9%], logl= — 4.1.

4. 1rare (MAF = 1/9), no common variants;

=[x [¢® - (1 —¢)°1=[1'1 % [0.1% - 0.9°], logl= — 7.4.

o

2 rare (MAF = 1/9), no common variants;
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=[x [¢* - (1 — )’ 1=[12] x [0.1% - 0.9°], logl= — 5.1.

Next, we compute Alx / 7T) = P(mutationsitree).

2 log(1 —u)=-0.1, no mutation
logl oc  logu+log(l — )= —3, 1 mutation
2logu= -6, 2 mutations.

Combining these together, the total log-likelihood is:

-9.8, no mutation(1)
-9.4, 1 common(2)

logl={ —11.1, 1 common, 1 rare(3)
—-10.4, 1 rare(4)
—11.1, 2 rare(5).

Here, we have not evaluated all possible configurations (the ones with higher number of
variants will have even smaller probability). Among those considered, case (2) with one
common mutation seems most likely.
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Figure 1. Two scenarios wher e a complex diseaseis caused by a common or two rare variants

Genet Epidemiol. Author manuscript; available in PMC 2013 July 01.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Adhikari et al.

010100...
011110...

|

Common\

ZRare

€

P(®,Glx, M, {1 p, 9,p0v})

€

P(x|®,G,T, M)

|

P(N|®, G, M) = Z Z P(x|®,G,T, M)

T x-N

Figure 2. Flowchart for the algorithm
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i ]!

Figure 3. A simulated dendrogram for the dataset with cases and controls shown corresponding
totheleaves, asred and black dotsrespectively
Note that some subjects have identical genotypes and therefore are grouped together.
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common 2 rare

Figure 4. Smoothed posterior for real dataset
The X and Y axes denote counts of rare and common variants, and the Z axis shows the (un-
normalized) posterior density. The density is smoothed with a Gaussian kernel.
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x 10

Common 0 0 Rare

Figure 5. Posterior for simulated dataset with rarevariants
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Figure 6. Posterior for simulated dataset with common variants
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Figure 7. Posterior for simulated dataset with no variants
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Figure 8. Some possible DSL configurations
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