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Clinical Implications of HIV-1 Minority
Variants
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Technologic advances in human immunodeficiency virus type 1 (HIV-1) sequencing have revolutionized the
study of antiretroviral drug resistance and are increasingly moving from the laboratory to clinical practice.
These techniques are able to detect HIV-1 drug resistance mutations present at low frequencies not detectable
by current HIV-1 genotyping assays. For a number of commonly used antiretroviral medications, such as non-
nucleoside reverse transcriptase inhibitors, the detection of these drug-resistant minority variants significantly
increases the risk of treatment failure. The level of evidence, however, is insufficient to determine the impact of
HIV-1 minority variants for several other classes of antiretroviral medications. Clinicians should be aware of
the novel technologies that are moving into routine clinical use and the clinical implications of HIV-1 minority
variants. Additional studies are needed to determine the optimal platform for clinical application of these new
technologies and to provide guidance to clinicians on the type and frequency of clinically important HIV-1 mi-
nority variants.
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Genotypic tests for human immunodeficiency virus
type 1 (HIV-1) drug resistance employ polymerase
chain reaction (PCR) amplification and population se-
quencing techniques that detect resistance-associated
mutations present at ≥15%–25% of the viral population
[1, 2]. These assays do not reliably detect the presence
of low-frequency resistance mutations present as mi-
nority variants within the population of HIV-1 in an
infected individual. A number of studies have now
shown that such low-frequency mutations, also known
as minority variants, can have significant clinical impli-
cationsontheriskofcombinationantiretroviraltreatment
(cART) failure. However, there remains much confu-
sion over which HIV-1 minority variants are clinically

significant and how their presence should affect clinical
practice.

Minority HIV-1 drug resistance mutations found in
treatment-naive patients originate from 1 of 2 sources:
transmitted drug resistance or de novo generation as
part of natural viral diversification. Compared to wild-
type HIV-1, those viruses harboring resistance muta-
tions generally have lower fitness. In the absence of
drug-selective pressure, the frequency of such transmit-
ted HIV-1 drug resistance mutations is likely to decay
and at a certain time would no longer be detectable by
current genotyping assays that rely on population se-
quencing [3, 4]. HIV-1 minority variants can also arise
due to the underlying diversity of the viral population.
This remarkable diversity stems from a high replication
rate and the error-prone reverse transcriptase enzyme.
It is estimated that up to 5 mutations may arise with
each replication cycle [5]. The daily production of more
than a billion new virions in a typical chronically in-
fected patient implies that the virus undergoes 10–100
million rounds of replication daily, resulting in the
rapid generation of viral progeny carrying every possi-
ble mutation throughout the viral genome [6, 7].
Because of this underlying diversity, it is estimated that
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drug resistance mutations are likely to be present during
chronic infection even in the absence of drug exposure, with
the frequency of the mutations dependent on their fitness
costs [8]. This situation allows HIV-1 drug resistance to emerge
rapidly in patients who are on antiretroviral therapy that is not
adequately suppressive or during episodes of treatment inter-
ruption.

Minority HIV-1 drug resistance mutations can be detected
by a number of ultrasensitive assays. The characteristics of the
most commonly used assays are compared in Table 1. These
assays can generally be categorized as point-mutation assays
(eg, allele-specific PCR [ASPCR] and oligonucleotide ligation
assay [OLA]) or deep-sequencing techniques. Although
ASPCR is a highly sensitive assay with a limit of detection of
much less than 1% of the viral population, this technique is
limited by the select number of resistance mutations that can
be interrogated concurrently, because the detection of each mu-
tation requires a separate PCR reaction [9–11]. The OLA uses
labeled probes that preferentially bind to either the wild-type
sequence or a sequence with the mutation of interest [12]. This
assay is relatively inexpensive and does not require costly equip-
ment. However, like other point-mutation assays, the number
of mutations it evaluates concurrently is limited and OLA is
not quantitative. Recent advances in high-throughput sequenc-
ing have revolutionized HIV-1 sequencing and the study of
HIV-1 minority variants. Unlike point-mutation assays, deep
sequencing confers the benefit of evaluating an entire region of
HIV-1 (eg, HIV-1 reverse transcriptase or the third variable

[V3] loop of HIV-1 envelope) and all mutations contained in
that region. The most commonly used next-generation se-
quencing platforms are a pyrosequencing system developed by
Roche/454 and a sequencing-by-synthesis system developed by
Illumina. The general principle behind both of these technolo-
gies lies in the clonal amplification of millions of individual
fragments of HIV-1 DNA that can then be sequenced in paral-
lel. The Roche/454 system was the first to enter the market and
has been the most popular platform for deep sequencing HIV-
1 to date. As a whole, the deep sequencing field remains quite
fluid due to the continual development and evolution of these
and other next-generation sequencing platforms [13].

In this review, we explore the evidence behind 3 scenarios
where HIV-1 minority variants have been shown to affect the
risk of virologic failure and discuss the antiretroviral medica-
tions (ARVs) for which the impact of minority variants is still
controversial.

NONNUCLEOSIDE REVERSE TRANSCRIPTASE
INHIBITOR RESISTANCE AFTER SINGLE-DOSE
NEVIRAPINE EXPOSURE

The use of peripartum single-dose nevirapine (sdNVP) is an
inexpensive and effective means of reducing the risk of
mother-to-child transmission of HIV-1 [14]. This strategy was
rapidly adopted in many developing countries, especially in
Africa. However, the use of sdNVP has also been associated
with the emergence of nonnucleoside reverse transcriptase

Table 1. Characteristics of Conventional Genotypic, Phenotypic, and Ultrasensitive Drug Resistance Assays

Assay Advantages Disadvantages
Currently in
Clinical Use

Conventional genotypic
(Sanger DNA sequencing)

• Relatively inexpensive
• Rapid turnaround

• Difficult to interpret complex
resistance patterns

• Misses minority variants

Yes

Phenotypic • Avoids need to interpret complex
mutational patterns

• Intuitive results

• Expensive
• Slow turnaround time
• Limited availability outside Europe

or United States and Canada
• Less sensitive than standard

genotype testing

Yes

Ultrasensitive techniques
Allele-specific polymerase
chain reaction

• Highly sensitivea • Detects only a few targeted resistance
mutations

No

Deep sequencingb • Moderately to highly sensitivea

• Evaluates entire region of interest.
• Cost
• Need for computational support

Yesc

Oligonucleotide ligation assay • Moderately sensitivea

• Avoids expensive equipment or
specialized technical expertise

• Only detects a few targeted resistance
mutations

• Assay is not quantitative

No

Adapted from [104].
a Test sensitivity and limits of detection vary by testing site and patient-specific variables (eg, viral load, sample volume).
b Refers to the Roche/454, Illumina, and other next-generation sequencing platforms.
c The Roche/454 deep-sequencing system is currently used as part of a coreceptor tropism test developed by Quest Diagnostics (Madison, New Jersey).
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inhibitor (NNRTI) resistance, detected by standard genotyp-
ing, in a significant subset of women and infants exposed to
sdNVP [15–17]. Even more concerning was the finding that
with the use of more sensitive assays, the majority of women
and children who had received sdNVP harbored NNRTI resis-
tance mutations, often at frequencies below the detection of
standard genotyping [18–25]. The proportion of NNRTI-
resistant minority variants decays over time, but they could
still be detected in both women and infants a year or more
after sdNVP exposure [23–27]. Three factors help explain
these findings: (1) high-level resistance to the most commonly
used NNRTIs can be conferred by a single mutation; (2) a long
elimination half-life resulting in prolonged exposure to sub-
therapeutic drug levels [28]; and (3) the relatively small nega-
tive impact on viral replication kinetics (fitness) conferred by
these NNRTI resistance mutations.

But do these minority variants increase the risk of treatment
failure? The OCTANE Trial 1 was performed to determine the
efficacy of a nevirapine-based regimen compared to a regimen
containing ritonavir-boosted lopinavir (LPV/r) for women pre-
viously exposed to sdNVP. The study found that women who
had received sdNVP are more likely to reach the primary end-
point (virologic failure or death) when assigned to nevirapine-
based antiretroviral therapy than when assigned to a regimen
containing LPV/r (26% vs 8%) [29]. Interestingly, this outcome
was observed even in participants in whom nevirapine resis-
tance was not detectable in pretreatment samples by standard
genotyping. A subsequent analysis of this trial revealed that
women without NNRTI resistance by standard genotyping, but
harboring K103N or Y181C detected by an ultrasensitive
ASPCR assay, had >3 times the risk of virologic failure or death
compared to women without these mutations [30]. This associ-
ation between the presence of NNRTI-resistant minority vari-
ants and treatment failure has also been detected in several
other studies of women and children exposed to sdNVP [31–34].
These results have led to several clinical trials evaluating the use
of a nucleoside reverse transcriptase inhibitor (NRTI) regimen
concurrent with sdNVP to prevent HIV-1 from developing re-
sistance as the nevirapine is metabolized. These studies have
shown that treatment with a short “tail” of NRTIs significantly
decreases, but does not eliminate the emergence of NNRTI re-
sistance mutations detectable by either conventional genotyp-
ing [35, 36] or by ultrasensitive techniques [37–42].

NNRTI RESISTANCE IN cART-NAIVE and
-EXPERIENCED INDIVIDUALS

The effect of drug-resistant minority variants in cART-naive
patients has been studied most rigorously for patients on an
NNRTI-based first-line regimen. Interpretation of these studies
has been challenging due to heterogeneity in the patient

population and outcomes (ie, definition of virologic failure). To
facilitate the interpretation of these studies, a pooled analysis
was performed of 10 studies involving 985 participants [43–52].
This pooled analysis included only individuals with no detect-
able NNRTI and NRTI resistance by standard genotyping and
standardized the definition of virologic failure across studies.
Overall, 14% of participants were found to harbor either an
NNRTI or NRTI minority variant, but this estimate varied de-
pending on the sensitivity of the assay and the mutations
tested. However, the finding was consistent with prior studies
showing that ultrasensitive assays significantly increase the de-
tection of HIV-1 drug resistance mutations in treatment-naive
individuals [53, 54]. The pooled analysis also revealed that the
presence of a minority HIV-1 drug resistance mutation at base-
line is associated with more than twice the risk of virologic
failure [55]. The increased risk of virologic failure was most
evident early after therapy initiation (Figure 1) and was mediat-
ed primarily by NNRTI-resistant minority variants (hazard
ratio, 2.6). To evaluate whether a threshold existed for the mi-
nority variant effect, analyses were performed categorizing par-
ticipants by either the minority variant percentage or minority
variant copy numbers, which takes into account both the mi-
nority variant percentage and viral load for each individual.
The effect of the minority variants was dose-dependent and
was detectable even after controlling for medication adherence
and other potential confounding factors [55, 56]. In addition,
an increased risk of treatment failure was detected even at very
low minority variant frequencies (<0.5% and 10–99 mutant
copies/mL).

Studies in treatment-naive African patients have also shown
an association between NNRTI minority variant detection and

Figure 1. Kaplan-Meier curves for the proportion of patients without vi-
rologic failure on a first-line nonnucleoside reverse transcriptase inhibitor
(NNRTI)–based combination antiretroviral therapy regimen by the presence
of human immunodeficiency virus type 1 nucleoside reverse transcriptase
inhibitor and NNRTI-resistant minority variants. Adapted from [55].
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an increased risk of treatment failure [31, 57]. However, a re-
cently reported analysis of OCTANE Trial 2 of treatment-naive
African women did not detect a significant association between
NNRTI minority variant detection and risk of treatment fail-
ure [58]. The reason behind this discrepant finding is unclear.

Ultrasensitive techniques may also be useful for detecting
drug-resistant minority variants in NNRTI-experienced pa-
tients [59–62]. As in treatment-naive patients, presence of mi-
nority variants increases the risk of treatment failure [63, 64].
In addition, the use of ultrasensitive drug resistance assays
in NNRTI-experienced patients frequently reveals the presence
of minority variants associated with reduced efficacy of
etravirine [65, 66].

HIV-1 TROPISM

HIV-1 requires the use of either CCR5 or CXCR4 as a corecep-
tor for cellular entry. Maraviroc, a CCR5 antagonist that blocks
HIV-1 entry, is approved by the US Food and Drug Adminis-
tration for treatment of HIV-1 infection. Resistance to the
CCR5 antagonists occurs either by adaptation of HIV-1 to use
the drug-bound receptor or through the use of the CXCR4 cor-
eceptor. Approximately 10%–15% of treatment-naive individu-
als and 50% of treatment-experienced individuals harbor virus
that can use CXCR4 [67, 68]. To avoid prescribing maraviroc to
patients harboring CXCR4-using variants, coreceptor usage of
a patient’s virus must first be determined by a genotypic or phe-
notypic tropism test. Historically, the phenotypic assay (Trofile,
Monogram Biosciences) has been the preferred assay in the
United States whereas the genotypic assay (by population se-
quencing of the V3 region of the HIV-1 envelope) has been
used predominantly outside the United States. Despite tropism
testing prior to the use of CCR5 antagonists, virologic failure is
frequently accompanied by evidence of CXCR4-using virus.
Using both cloning and deep sequencing, a number of studies
have shown that virologic failure of a CCR5 antagonist can be
caused by the outgrowth of a preexisting minority population
of CXCR4-using HIV-1 not detected by current tropism assays
[69–73]. In a retrospective analysis of 2 phase 3 clinic trials of
maraviroc in treatment-experienced patients, the use of 454
deep sequencing was found to be a potentially better predictor
of maraviroc response than the original Trofile phenotypic test
[74]. Ultradeep sequencing also performed as well as an im-
proved version of the Trofile assay in predicting the response to
maraviroc [75]. A limitation of that analysis is that all the pa-
tients who received maraviroc were prescreened by the original
Trofile assay. Thus, it was not possible to estimate the true sen-
sitivity and specificity of deep sequencing for predicting treat-
ment response to maraviroc.

A genotypic tropism assay that includes initial population
sequencing with deep sequencing of samples that show only

R5-tropic virus by population sequencing is now available com-
mercially in the United States (HIV-1 Coreceptor Tropism
with Reflex to Ultradeep Sequencing, Quest Diagnostics). This
Reflex assay was compared to both population sequencing
alone and the enhanced sensitivity Trofile test in the retrospec-
tive analysis of 327 treatment-experienced patients who received
maraviroc in the MOTIVATE and A4001029 studies [76]. The
assay was found to have nearly identical ability to predict week
8 and 24 viral load declines and similar positive and negative
predictive values when compared to the standard phenotypic
assay. Population sequencing alone had significantly lower pos-
itive and negative predictive values compared to either the
Reflex or phenotypic assay. These results represent the first
commercial application of HIV-1 deep sequencing for the de-
tection of HIV-1 minority variants. The use of deep sequencing
as part of a genotypic tropism test has additional advantages as
it is currently more cost-effective and faster to perform than
phenotypic tropism testing.

CONTROVERSIES

Nucleoside Reverse Transcriptase Inhibitors
In the pooled analysis of treatment-naive patients initiating an
NNRTI-based regimen, those with NRTI-resistant minority
variants were found to have 1.6 times the risk of treatment
failure compared to those without. However, only a subset of
individuals was tested for NRTI minority variants, which were
mainly limited to M184V and K65R [55]. Other studies evalu-
ating the importance of NRTI-resistant minority variants have
reported conflicting results. Several small studies have shown
possible associations between NRTI-resistant minority variants
and virologic failure [77–79], while others have detected no as-
sociation [80–82]. There is evidence though, that low-frequency
NRTI mutations can be detected after virologic rebound/failure
[62, 83]. Additional studies evaluating the impact of NRTI-re-
sistant minority variants would benefit from deep sequencing
to assess the full spectrum of NRTI resistance mutations as
there are currently ≥60 NRTI resistance mutations listed in the
Stanford HIV Drug Resistance Database.

Integrase Inhibitors
Resistance to the integrase strand-transfer inhibitors (INSTI)
raltegravir and elvitegravir share a number of characteristics
with NNRTI resistance that may increase the likelihood that
drug-resistant minority variants could contribute to the risk of
virologic failure. First, these INSTIs have relatively low barriers
to resistance and single amino acid changes are sufficient to
confer a substantial decrease in antiretroviral activity. Integrase
inhibitor resistance is usually selected more rapidly during in
vitro passage experiments than is resistance to NRTIs or prote-
ase inhibitors (PIs). As with NNRTIs, clinical failure of
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raltegravir and elvitegravir is frequently accompanied by geno-
typic evidence of INSTI resistance [84]. One report documents
a case of virologic failure and emergence of raltegravir resis-
tance in a patient with preexisting raltegravir-resistant minority
variants [85]. The proportion of patients with low-frequency
drug resistance mutations is also an important component in
determining to what degree these minority variants contribute
to the risk of treatment failure. In one study of 32 patients, 81%
were found to have Q148R minority variants before exposure
to integrase inhibitors [86]. In a retrospective case-control anal-
ysis of the BENCHMRK-2 study, 46% of those with treatment
failure arm as compared to 31% with treatment success were
found to harbor at least 1 primary or secondary minority ralte-
gravir resistance mutation prior to raltegravir treatment [87].
However, neither study showed a significant association be-
tween the presence of raltegravir-resistant minority variants
and an increased risk of treatment failure. In addition, a
number of other studies have not detected either significant
pretreatment raltegravir-resistant minority variants or an in-
creased risk of virologic failure [88–91]. However, those studies
have been relatively small and larger studies are needed. The in-
vestigational INSTI dolutegravir appears to have a higher
genetic barrier to resistance than raltegravir and elvitegravir. Its
activity is less likely to be affected by minority variants contain-
ing single INSTI resistance mutations.

Protease Inhibitors
The use of more sensitive genotyping methods has signifi-
cantly increased the number of PI resistance mutations detect-
able in pre- [47, 52, 77, 92, 93] and posttreatment failure
samples [62, 94–96]. However, evidence has not yet emerged
for a significant association between low-frequency PI resis-
tance mutations and a significantly increased risk of treatment
failure [52, 77]. A number of factors may contribute to this lack
of association. Unlike most NNRTIs and integrase inhibitors,
the majority of ritonavir-boosted PIs have a high barrier to resis-
tance as they require multiple mutations to confer significant re-
sistance [97, 98]. The appropriate combination of mutations is
unlikely to arise de novo in any significant proportion in the
absence of drug selective pressure. Although a single resistance
mutation (I50L) confers high-level resistance to atazanavir,
the significant reduction in viral fitness associated with this
mutation may minimize the frequency and hence the impact of
minority variants carrying this mutation [99]. It is possible that
drug-resistant minority variants could play a role in PI failure
in patients with transmitted resistance or in those who have
previously failed PI therapy with resistance mutations that have
decayed in frequency over time. However, unless multiple
linked mutations are detected, it can be difficult to distinguish
between transmitted drug resistance and those generated de
novo. Because of the number of PIs in clinical use and the

variety of mutations implicated in resistance to these drugs, it
will be challenging to perform a pooled analysis (as was
done for the NNRTIs) to assess the clinical significance of PI-
resistant minority variants.

CONCLUSIONS

The detection of low-frequency variants of HIV-1 with altered
drug susceptibility has been shown to be clinically significant in
3 settings: (1) detection of NNRTI-resistant minority variants
after exposure to single-dose nevirapine; (2) detection of
NNRTI-resistant minority variants prior to the initiation of a
first-line NNRTI-based regimen; and (3) detection of CXCR4-
using variants prior to treatment with CCR5 antagonists. In ad-
dition, there is evidence that ultrasensitive techniques could be
useful after virologic failure of either NNRTI- or PI-based regi-
mens to detect resistance mutations that emerged during treat-
ment failure, but have decayed after drug discontinuation due
to reduced fitness of the resistant virus in the absence of drug.
Whether the efficacy of drugs in other classes are also affected
by the presence of minority variants remains controversial. Un-
certainty also exists as to the best method for detecting minori-
ty variants in a clinical setting, whether a threshold exists for
what constitutes a significant frequency or number of resistant
variants, and the importance of evaluating resistance mutations
in the HIV-1 DNA reservoir.

At present, testing for HIV-1 minority variants is not avail-
able to clinicians for patient management with the exception of
testing for coreceptor usage. However, efforts are ongoing
worldwide to validate and implement deep sequencing for
routine HIV-1 drug resistance genotyping [57, 100–103].When
compared to current HIV-1 genotyping assays, deep sequenc-
ing not only has improved sensitivity for detecting low-
frequency resistance mutations, but will likely prove to be a
lower-cost method of HIV-1 resistance testing for centers with
a high demand for HIV-1 genotyping. However, the increased
sensitivity of these novel assays for minority variant detection
is also coupled with a heightened risk of detecting resistance ar-
tifacts generated in the laboratory during the amplification or
sequencing steps. It is important to define conservative limits
of detection for these ultrasensitive assays and to rigorously val-
idate sequence analysis software that are to be used in clinical
practice. In addition, the challenge for both clinicians and re-
searchers alike will be in defining appropriate resistance inter-
pretation algorithms for low-frequency variants detected by
these ultrasensitive assays.

Additional research is also needed to provide clarity on the
importance of minority variants outside of NNRTIs and CCR5
antagonists, and to define the frequency or copy number of mi-
nority variants that should prompt selection of an alternative
regimen. For the time being, clinicians should be aware of these
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novel technologies and the clinical implications of HIV-1 mi-
nority variants, especially for those who have received sdNVP
or who are initiating a CCR5 antagonist.
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