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Abstract
De novo protein structure prediction often generates a large population of candidates (models),
and then selects near-native models through clustering. Existing structural model clustering
methods are time consuming due to pairwise distance calculation between models. In this paper,
we present a novel method for fast model clustering without losing the clustering accuracy.
Instead of the commonly used pairwise root mean square deviation and TM-score values, we
propose two new distance measures, Dscore1 and Dscore2, based on the comparison of the protein
distance matrices for describing the difference and the similarity among models, respectively. The
analysis indicates that both the correlation between Dscore1 and root mean square deviation and
the correlation between Dscore2 and TM-score are high. Compared to the existing methods with
calculation time quadratic to the number of models, our Dscore1-based clustering achieves a
linearly time complexity while obtaining almost the same accuracy for near-native model
selection. By using Dscore2 to select representatives of clusters, we can further improve the
quality of the representatives with little increase in computing time. In addition, for large size
(~500 k) models, we can give a fast data visualization based on the Dscore distribution in seconds
to minutes. Our method has been implemented in a package named MUFOLD-CL, available at
http://mufold.org/clustering.php.
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1 Introduction
Predicting the 3D structure for a given protein amino acid sequence remains an important
and challenging research topic in computational biology [1, 2]. Generally, a large number of
possible conformations (referred to as models or decoys) [3–6] are typically generated in
which near-native models are often contained. However, selecting the best near-native
model is one bottleneck. Theoretically, the native structure of the target sequence is the
conformation with minimum energy [7]. Thus, there is a popular hypothesis that near-native
structures are more likely clustered in a large free-energy basin in the free-energy landscape
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[8, 9]. Under this hypothesis, population-based approaches are often used for near-native
model selection [3,9–12].

Population-based model analysis includes clustering and representative selection for
selecting and ranking the structural models. Specifically, clustering methods group models
into different clusters based on structural similarities, while the representative selections
typically take the centers of the clusters (representatives) as the candidates of near-native
structures and ranks the candidates according to cluster sizes. There are three major issues
involved in such a population-based approach: (i) measure of structural distance; (ii) use of
distance information for clustering; and (iii) selection of a cluster representative.

There are a number of methods to measure the structural distance/similarity [13], such as
RMSD (root mean square deviation) [14], MaxSub score [15], Global distance test total
score [16], and TM-score (template modeling score) [17]. For all of these measures,
transformation and optimization are needed, and different pairs of models have different
transformations. For optimization, RMSD minimizes structural difference while the other
measures maximize structural similarity between models. In this process, structural
similarity maximization is much more computationally expensive than RMSD minimization,
although the similarity measures are often more useful to describe the relationship between
models than RMSD. To save computing time, RMSD is the most widely used in protein
structure clustering [9, 11, 12, 18–22] during both cluster determination and representative
selection.

Most algorithms for model clustering are based on pairwise C-alpha-atom RMSD distance
(pRMSD). All pRMSD-based methods [9, 11, 12] are time and space expensive because the
clustering requires N(N-1)/2 RMSD calculations and storage for N models, where N is often
on the order of 105 or higher. Some methods were proposed to reduce the number of
pRMSD calculations. For example, Calibur [18] uses auxiliary groups with upper and lower
bounds and only the pRMSDs among the members in the same group need to be calculated;
Durandal [19] estimates pRMSD of (B, C) by the known pRMSDs of (A, B) and (A, C);
ONION [20] estimates approximate centers via random samplings and only the RMSDs of
models to the estimated centers need to be computed; SCUD [21] proposes a reference
RMSD distance to mimic RMSD, i.e. to orientate all of the models to a randomly selected
model (named reference), and to calculate pRMSD directly without further translation and
rotation; Pleiades [22] uses 31-dimensional Gauss integral vectors [23] to represent protein's
3D structure and perform K-means clustering on these Gauss integral vectors. All these
studies made some progress in improving the clustering efficiency, but there is still
significant room to speed up the clustering, as we will demonstrate in this paper.

In this work, we propose a novel approach for much faster structural model analysis than
existing methods without loss of clustering accuracy [26]. At first, we propose two new
measures, identified as Dscore1 and Dscore2, to describe the difference (mimicking RMSD)
and the similarity (mimicking TM-score) of two models by a direct distance matrix
comparison without using an optimized superimposition search. Both Dscores1 and Dscore2
have good mathematical attributes, leading to a much lower computational complexity and
faster computing for large-scale structural clustering and representative selection. Second,
different from the common strategy that calculates the pRMSD (or reference RMSD) at first
and then conducts clustering our method detects the potential cluster centers from the
distribution of Dscore1 and constructs the clusters from the potential centers directly. This
method avoids the costly pairwise distance calculation and speeds up the clustering
dramatically. Furthermore, instead of using the structural difference of RMSD for selecting
structural representative, we take advantage of the structural similarity score, i.e. TM-score
mimic, Dscore2 to obtain better representatives. We can obtain comparable clustering and
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representative selection performance to existing pRMSD methods while taking only a
fraction of the computational resource of pRMSD methods. In addition, for large number
(>105) of models, MUFOLD_CL still works well and we also can provide a fast data
visualization based on the Dscore distribution.

2 Materials and methods
2.1 Data sets

We have two data sets. One is a benchmark that has been used to evaluate clustering and
near-native selection performance by existing tools [18–20, 22], i.e. the dataset published on
I-TASSER's website, which includes 12 500–32 000 models per protein for 56
nonhomologous proteins (http://zhanglab.ccmb.med.umich.edu/models/model1.html). The
other one is to show our performance and visualization on larger-scale data, including 500
000 Rosetta models per protein for two proteins (http://mufold.org/clustering.php). We refer
these two data sets as I-TASSER models and Rosetta models in the following.

2.2 Dscore1 and Dscore2
Both Dscore1 and Dscore2 are based on a distance matrix, which contains the pairwise C-
alpha distance of a model. The distance matrix is a 2D representation of a 3D structure; it is
independent of the coordinate system and contains sufficient information to reconstruct the
3D structure except for overall chirality [24]. We further apply a 1D form, distance vector,
to represent distance matrix for convenience.

Given a model of a protein with L residues, its distance vector is defined as D = [dij] = [d11,
d12, . . . , d1L, . . . , dij, . . . , dLL], where dij is the Euclidean distance of the i-th and j-th C-
alpha atoms of the model. Dscore1 of two models with distance vector of D1 and D2 is
defined as

(1)

where ∥D1D∥ and ∥D2∥ are the norms of D1 and D2. We normalize to D/∥D∥ and citeD/∥D∥
as D in the following for convenience. Note that Dscore1 between any two models is in the
range of [0, 1]. The Dscore2 of two models is defined as

(2)

where the functional form is similar to TM-score [17] andd0is also defined as that described

in TM-score, i.e. . Note that when the distance vector is normalized
by d0asD = [dij], 1 ≤ i, j ≤ L, then we have the simplified formulation of
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(3)

Although for a given residue pair <i, j>, dij = dji, we can simplify the calculation of Dscore1
and Dscore2, we still keep the definitions for better understanding.

2.3 Mathematical properties of Dscore1
Both centroid and medoid reflect the center of a cluster, i.e. the point whose average
dissimilarity to all members in the cluster is the minimum (or the average similarity to all
members is the maximum). Mediod is required to be one member of a cluster while centroid
is not. In practice, medoid is more useful in model selection than centroid since a centroid
may not be protein like. Medoid may not be the one closest to the centroid in general,
especially for RMSD, TM-score, and global distance test total score measures. However, for
Dscore1, the medoid of a cluster is the one closest to the centroid, as proved in the
following.

Given a cluster of structural models, C = [1], where D is the normalized distance vectors of

model, if we consider the minimum Dscore1 square, the centroid of C is ,
where ∥C∥ represents the number of models in C. This can be proved in the following
equation. The average Dscore1 square of any distance vector X to all the members in C is

(4)

Since  is a constant,  reaches the maximum and the average Dscore1 square

reaches the minimum in Eq (4). when . It indicates

, i.e.  is the centroid of the cluster
C. In addition, the average Dscore1 square of any D in C to all the members in the C is

(5)

which indicates that

,
i.e., the one closest to the centroid is the medoid of the cluster.

We note the normalized centroid as the centroid  in the following, i.e. . Given any

D in C, the projection of D on  is . The
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difference of the projections of models D1 and D2 on  is

, thus,

(6)

For any D in C, we have∥D∥2 = dot(D, D) = 1, thus,

Thus, Dscore (D1, D2)

(7)

From Eqs. (6) and (7), we obtain that ∥D1’ – D2’ ≤ 2 * Dscore1 (D1, D2), which means the
difference between the projections of two models on the centroid is no more than two times
of their Dscore1 distance, which is illustrated in Fig. 1. This property provides a basis for a
projection-based clustering depicted in the following subsection.

2.4 Projection-based clustering
Instead of the commonly applied strategy that calculates the pairwise distances at first and
then performs clustering, our preferred clustering method is to project the models onto the
Dscore1 centroid to estimate the potential representatives and then cluster the models by
their distances to the estimated representatives.

Specifically, given two models D1 and D2 with small RMSD, RMSD(D1, D2) < δ1, then
Dscore1 (D1, D2) < δ2 where δ2 is probably a small value also since Dscore1 is highly
correlated with RMSD for small RMSD values; thus, the difference of the projections of D1

and D2 onto centroid  is less than 2 * δ2. This means that the models in a cluster (with

small RMSD distances) typically have clustered projections on , showing that the

distribution of  can be used to guide the clustering. However, the opposite is

not true, i.e. models with close projections onto  may not have small RMSD value.
Therefore, we can start clustering by finding the candidate clusters of the projections then
apply a filtering process to remove outlier models.

An intuitive way of clustering from the distribution of  is to treat the centroid

 of the whole dataset as a reference to estimate the centroid  of the biggest cluster.
However, since two models far from each other in terms of RMSD may have similar
Dscore1 values to , centroid estimated based on Dscore1 alone may not work well. To
address this issue, an iterative purifying and expanding strategy is applied: at first a
reference (the estimated center of a cluster) is calculated through those models with similar
Dscore1 values to centroid  and then the models close to the reference will be collected to
a cluster. The algorithm is depicted as follows (an illustration flowchart can be found in
Supporting Information Fig. 1):
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Input: The model pool P including N models of one protein, and CL = {φ}

i.
Calculate , and obtain .
calculate the distribution of DscoreSet

ii. Calculate a Mixture Gaussian fitting for DscoreSet, and determine the best number
of Gaussians by Schwarz criterion [25], which takes into account both the data
fitting and the number of parameters used in the fitting. Choose the Gaussian fitting
N(μ, σ2) with the smallest μ value. // According to the definition of Dscore1, we
know that the smaller the Dscore1 value, the closer the two models are. Here, we
choose the Gaussian fitting with the smallest μ value, which means that we choose
those models that are closest to the center for estimating the potential reference
model of the dataset.

iii.
Collect .

iv.
Calculate , and . to obtain
the estimated reference.

v. C = {D|D ∈ P – C L, Dscore1(D, Dref) < 2σ} is the newly obtained cluster, and

 is the representative of the cluster C. // to
build new cluster according to Dref.

vi. C L = C L υ C, go to step (i) till P – C L ϕ.

Output: the sorted representatives according to the cluster sizes.

In steps (i) and (ii), the Gaussian fitting N(μ, σ2) of Dscore1 to the centroid of the dataset
provides a raw bound of the largest cluster, and based on this fitting a purified subset is
obtained. In step (iii), Dset1 includes models close to the center of the Gaussian distribution,
which is assumed to be close to the center of the biggest cluster. Then Dset2 is calculated to
exclude models that are not close to the center of the cluster. Finally, a reference is
calculated as the centroid of Dset2, and a cluster is obtained by collecting models close to
the reference. The models in the current detected cluster are removed from the model pool
and the clustering process is applied on the remaining models until there is no model left.
Since we just compare the models to the estimated reference, the clustering time is linear to
the number of models. Considered the Dscore1 calculation and the comparison between the
models and the estimated reference, the computational complexity is O(N * L2), where N is
the number of the models and L is the number of residues of the protein.

2.5 Dscore2 and representative selection
Dscore2 is designed to describe the structural similarity of two models based on their
distance matrices. Given a cluster including N models, C = {Dk, 1 ≤ k ≤ N}, the centroid
under Dscore2 maximizes its average similarity to the members in the cluster, i.e.

(8)

Specifically,

. Thus,
we have
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(9)

It means that we can calculate the centroid by calculating xij, 1 ≤ i, j ≤ L independently.

As we have discussed in Subsection 2.3, the centroid of a cluster under Dscore1, ,
is a mean value of the distance vectors in the cluster. When the data is divergent, the mean
value does not reflect the center of the data well. Figure 2 illustrates the difference of
centroid vectors defined by Dscore1 and Dscore2. When the values of one element distribute
narrowly, the centroids defined by Dscore1 and Dscore2 are very close. However, when the
values of one element distribute divergently, the centroid defined by Dscore2 reflects the
data center much better than the one by Dscore1. Thus, we apply Dscore2 rather than
Dscore1 for representative selection.

The one closest to centroid may not be the medoid of Dscore2 for an arbitrary dataset.
However, when the dataset is distributed narrowly, the one closest to the centroid is more
likely to be the medoid. We tested on a nonredundant subset of I-TASSER models (http://
zhanglab.ccmb.med.umich.edu/models/model2.html, where each set includes 300–500
models). In 4 of 56 (7.1%) subsets, the one closest to the centroid is not the medoid. We also
tested on clusters of I-TASSER models in which models of each target were clustered up to
20 clusters and the clusters were ranked according to their sizes. In general bigger clusters
have tighter distributions, and bigger clusters are typically used in near-native model
selection in practice. In total, there are 354 clusters for 56 targets in which 22 models (6.2%)
closest to the centroids are not medoids (details are shown in Supporting Information Table
1). The average violation rate is similar to that in the above nonredundant subset. However,
there is only one violation out of 56 No. 1 clusters and three violations in total out of 168
top-3 clusters (1.8%), while the remaining 19 violations come from the other 186 smaller
clusters (10.2%), showing much less violation rate for bigger (tighter) clusters. Considering
the low computational cost to calculate the centroid and the low violation rate on big
clusters, we select the one closest to the centroid as the representative of the cluster although
it may not always be the exact medoid.

3 Results
Dscore1 and Dscore2 are designed to mimic RMSD and TM-score, respectively. We
calculated the correlation coefficients of Dscore1/RMSD and Dscore2/TM-score on
randomly selected 500 I-TASSER models for each protein (details are shown in Supporting
Information Table 2). The average values for all data from 56 proteins are 0.9226 (Pearson)
and 0.8922 (Spearman). The low correlation is mostly attributed to cases with large RMSD.
When RMSD ≤ 4Å, the Pearson/Spearman correlation coefficients are 0.9490/0.9305,
showing a significantly higher correlation for small RMSD values [26]. Since only models
with small RMSD values are expected to be clustered, this provides a basis for replacing
RMSD with Dscore1 in clustering. Similarly, Dscore2 has a very high correlation coefficient
with large TM-score. Such a high correlation between Dscore2 and TM-score provides a
basis for replacing TM-score with Dscore2 in structural representative selection (an example
of linear fittings of Dscore1/RMSD and Dscore2/TM-score can be found in Supporting
Information Fig. 2).
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We implemented our new method in a software package MUFOLD-CL, which is available
at http://mufold.org/clustering.php. To evaluate performance of MUFOLD-CL, we
compared it with SPICKER [12], Calibur [18], ONION [20], and Pleiades [22] in terms of
the CPU time and the quality of representatives. At first, we applied Dscore1 for both
clustering determination and representative selection. Figure 3 shows the comparison with
SPICKER (details of this comparison can be found in Supporting Information Table 3).

For proteins with more than 20 000 models, we cite the RMSD/TM-score of the SPICKER
representatives from I-TASSER's website since SPICKER failed to calculate clusters on our
computers. For proteins with 20 000 or fewer models, the average computing time
(excluding the file processing for both tools) of MUFOLD-CL is 11.73 s, 60 times faster
than 727.44 s of SPICKER on average. As the number of models increases, MUFOLD-CL
would be much faster than SPICKER since the computing time of MUFOLD-CL is linear to
the number of models while SPICKER is quadratic. More importantly, MUFOLD-CL has
similar accuracies for the top-1 near-native model selection to SPICKER: 4.94Å versus
4.84Å in RMSD and 0.5910 versus 0.5911 in TM-score on average [26]. We can observe
some outliers in Fig. 3; for example, the representatives of 1ah9_ and 2cr7A. For 2cr7A, the
two top clusters of MUFOLD-CL have comparable sizes, and the corresponding
representatives have RMSD/TM-score to the native structure of 7.95Å/0.3979 and 3.59Å/
0.4793, respectively. The two top representatives of SPICKER have RMSD/TM-score of
3.64Å/0.4793 and 7.70Å/0.3392. The situation for protein 1ah9_ is similar to that of 2cr7A,
indicating that overall SPICKER and MUFOLD-CL conduct the clustering and select
representatives similarly. We also compared the best representatives from the top-3 clusters
(details of this comparison can be found in Supporting Information Table 4). The average
RMSD/TM-score of representatives of MUFOLD-CL and SPICKER are 4.44Å/0.6023 and
4.59Å/0.5910, respectively, showing a slightly better of representative selection of
MUFOLD-CL.

Among the 56 target proteins, seven proteins have more than 20 000 models for which
SPICKER failed to report the results. Calibur [18] claimed that it was 4/3 times faster than
SPICKER, and Pleiades showed around two times faster than Calibur while Pleiades had a
similar accuracy to Calibur [22]. We compared MUFOLD-CL with Calibur on these data as
shown in Table 1. We found 88 to 270 (152 on average) times speedup of MUFOLD-CL
over Calibur for these cases [26]. In addition, MUFOLD-CL is significantly better than
Calibur, thus, much faster and better than Pleiades also, in the quality of selected models,
with 3.36Å versus 4.12Å in RMSD and 0.6903 versus 0.6530 in TM-score on average,
respectively [26].

Among the 56 proteins in the test set, there are many “easy” cases, for which most models
are very similar to the native there is one dominant model cluster. Hence, all clustering
methods obtain very similar clustering and representative selection results. There are also
nine “hard” proteins with less than 20 000 models each, for which the models are much
more divergent, and more clusters with comparable sizes exist. We compared the best
representatives of the top-5 clusters in term of RMSD obtained by different methods (details
of the comparison can be found in Supporting Information Table 5). The average RMSDs of
MUFOLD-CL, SPICKER, Pleiades, and Calibur representatives are 5.90Å, 6.43Å, 6.92Å,
and 6.95Å, respectively, indicating that MUFOLD-CL performs the best. We also compared
MUFOLD-CL with ONION on these nine “hard” proteins (details of the comparison can be
found in Supporting Information Table 6). MUFOLD-CL obtained slightly worse
representatives than ONION, with average TM-score of 0.3764 versus 0.3822 to the native
structure. However, compared to MUFOLD-CL, ONION reported too many clusters
(average of 52 of ONION versus 12 of MUFOLD-CL). In addition, MUFOLD-CL used a
total of 236.14 s for the nine targets CPU time (including 126.24 s for file processing and
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109.90 s for clustering and representative selection), while ONION used a total of 1228.71 s
[20], which indicates that MUFOLD-CL is much faster than ONION on clustering and
selection.

We also applied Dscore2 for representative selection after we obtained the clusters by using
Dscore1 (a detailed comparison in terms of the quality of representative selection by
Dscore1 and Dscore2 can be found in Supporting Information Table 7). Dscore1 has an
average performance of 4.94Å/0.5910 (RMSD/TM-score) for the representative selection.
After we applied Dscore2 on the same clusters, the performance was improved to 4.89Å/
0.5939, while Dscore2 did not increase the computing time much. It is obviously that for
those proteins with narrowly distributed models, there is basically no room for improvement
in the clustering and representative selection. In fact, for 28 of 56 proteins, there is no
improvement in TM-score by applying Dscore2. There are 18 improved cases with a total of
0.3265 point TM-score gain, while ten cases become worse with a total of 0.1618-point loss
in TM-score. The average TM-score of 0.5939 by MUFOLD-CL is even better than 0.5911
by SPICKER, although MUFOLD-CL is substantially faster.

The above used distance vector in Dscore1 and Dscore2 includes all pairwise residue
distances of a model, i.e. L(L-1)/2 distances for a protein with L residues, which are highly
redundant. It is estimated that only a small portion of these distances are needed to describe
the structure [27, 28]. For large-scale datasets, such as the Rosetta models including 500 000
structural models each for two protein 1aoy_ (with 68 amino acids) and 1abv_ (with 103
amino acids), we randomly selected one-tenth of all pairwise residue distances as the
distance vector and did the same clustering and selection process. For data of 1aoy_, it took
MUFOLD_CL 457.03 s for loading the data into the program while only 43.92 s for
clustering; For models of 1abv_, it took 767.37 s for data loading while 206.51 s for
clustering (details of the clustering results can be found in Supporting Information Table 8).
The structural models of 1aoy_ are clustered into 14 clusters in which there are four
dominant clusters. The best representative of the four clusters has 0.7612 TM-score and is
2.099Å to native; it is even better than the best of the 32 000 I-TASSER models, which has
0.7330/2.410Å, respectively. It means that we can benefit from sampling a larger number of
models and selecting the good models very quickly by MUFOLD-CL. The data of 1abv_ are
clustered to 22 clusters in which there are two large clusters and 20 other clusters with
similar sizes. The best representative of the two large clusters and the best of the total 22
representatives have 0.4873 and 0.5097 TM-scores to the native, respectively, while the best
of the 12 500 I-TASSER model has 0.5090 TM-score. The top-1 model selected by
SPICKER has only 0.2955 TM-score.

In addition, we can visualize the model distribution by their Dscore distribution in seconds
to minutes for 500 k models. As mentioned in subsections of 2.3 and 2.5, the centroids under
Dscore1 and Dscore2 can be treated as the centers of the data. We calculate and plot Dscores
of all models to these two kinds of centers for the Rosetta models in Fig. 4. Since the smaller
of Dscore1 and the larger of Dscore2, the closer of two models are, we can see that the
models of 1aoy_ in Fig. 4 distribute narrowly around the centers while the models of 1abv_
distribute much divergently. As a consequently, the models of 1aoy_are clustered to less
number of clusters than the models of 1abv_.

4 Discussion
This paper has introduced two new measures, Dscore1 and Dscore2, based on the distance
matrix comparison of the structures. Dscore1 is highly correlated with RMSD and Dscore2
is highly correlated with TM-score, while both scores have good mathematical properties
that enable us to avoid the time-consuming structure superimposition in RMSD/TM-score

Zhang and Xu Page 9

Proteomics. Author manuscript; available in PMC 2014 January 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



calculation. More importantly, under the Dscore1 measure, the centroid of a cluster
represents the center of the cluster, making it possible to detect the potential cluster
representatives from the distribution of Dscore1's projection to the centroid of the dataset
and construct the clusters from the potential representatives accordingly. In this way, we
avoid the costly pairwise distance calculation and speed up the clustering dramatically. By
using Dscore2 to select representatives of clusters, we can further improve the quality of the
representatives to the native structure. Test results indicate that our method is much faster
than the existing methods while achieving comparable accuracy. This method may also be
adapted for other problems, e.g. small molecule structure clustering, clustering 3D objects,
etc. [29].

Although distance matrix contains sufficient information to reconstruct the 3D structure, it
cannot tell the chirality of structure model, since the model and its mirror share the same
distance matrix. Because Dscore1 and Dscore2 are based on distance matrix, a model and its
mirror have the same Dscore1 or Dscore2. This is not the case for RMSD and TM-score.
Although in practice, one model and its mirror rarely exist as valid models in the same pool;
nevertheless, we still need to address this issue in the future. In addition, since the all-
pairwise residue distances for a given protein are highly redundant, we need to improve the
efficiency of MUFOLD-CL further. We are designing algorithms to optimally select a
subset of distance vector elements that can reflect the distance matrix without significant
information loss. In this way, we can further decrease the computing time and memory
space dramatically using reduced Dscore1 and Dscore2.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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pRMSD pairwise RMSD

RMSD root mean square deviation

TM-score template modeling score
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Figure 1.
A schematic illustration of the relationship between Dscore1 value of two models (D1 and
D2) and their projection difference on the centroid. Here, Dscore1 (D1, D2) (shown by bold
solid oblique line) equals to the half chordal length between D1 and D2. The projection
difference between D1 and D2 (shown by bold solid line) is no more than 2 * Dscore1 (D1,
D2). Although this graph is a 2D illustration, the relationships represented in the graph hold
true for high-dimensional space.
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Figure 2.
An example to show the difference of the centroids defined by Dscore1 and Dscore2.
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Figure 3.
Comparison between MUFOLD-CL and SPICKER by their representatives of the largest
clusters in terms of RMSD (a) and TM-score (b) to the native structures for 56 proteins.

Zhang and Xu Page 14

Proteomics. Author manuscript; available in PMC 2014 January 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Dscore1 and Dscore2 of all models to the centroids of the dataset under Dscore1 and
Dscore2 measures, respectively; (A) distribution of 1aoy_ models and (B) distribution of
1abv_ models. The bottom part of the figure shows the 2D projected view of the data
intensities, the darker, the denser. The upper part of the figure shows the histogram of the
data.
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